
International Journal of Computer Applications (0975 – 8887)

Volume 21– No.10, May 2011

35

An Extended Three Phase Commit Protocol for
Concurrency Control in Distributed Systems

Poonam Singh1, Parul Yadav1 Amal Shukla 2 and Sanchit Lohia2

1
Amity University, Lucknow, 226070 India

2
Institute of engineering & technology, Lucknow, 226070 India

ABSTRACT

One of the important issues of distributed system is to improve

Concurrency control , I observed that Concurrency Control is

very difficult task for distributed systems because of absence of

global clock and lack of shared memory. To improve the

concurrency control problems in my work, a new modified

version of three phase commit protocol is introduced that works

for the sake of concurrency control in distributed systems.

The basis of this protocol is the division of all the sites into two

groups depending upon the number of queries generated and

importance of the queries at these sites. The sites where more

queries are generated are considered as primary sites and those

having less, are considered as secondary sites. The Primary sites

are given more importance while deciding whether to commit or

abort a transaction. In this a modified version of three phase

commit protocol is praposed that ensures if a transaction is

originated from a primary site then it is bound to commit

provided all other primary sites vote to commit, no matter

whether secondary sites commit or not and there the advantages

and disadvantages of this new version is considered.

It is to be mentioned that this protocol works only for

transactions that accesses a single database object. Instances of

such transactions could be debiting or crediting a bank account as

in this only a single database object such as a personal bank

account is accessed.

Keywords: Concurrency Control, Two-Phase Commit Protocol ,

Three Phase Commit Protocol, Primary Sites, Secondary Sites.

1. INTRODUCTION
There are two types of commit protocols used for concurrency

control. One is the two phase commit protocol and other is the

three phase commit protocol . in Two phase commit protocol

has only two phases first is voting phase and second is

decision phase . Two phase commit protocol has a blocking

disadvantage in which either the co-ordinator or some

participating site is blocked, Three phase commit protocol was

introduced as a remedy to the blocking disadvantage of two

phase commit protocol . It introduces an extra phase which

ensures the non blocking property of this protocol but I analyesed

by three phase protocol we can romove blocking problem but

only caused by some sited which are not more important basis of

these sites three phase commit protocol global obortion is not in

the fouver of efficiency, to improve the total efficiency of

distributed systems I have choosen this area and try to romove

global obort problem which occure only caused by some

unimportant sites.

2. PREVIOUS WORK
Three phase commit protocol is used for concurrency control in

distributed systems. It is an extension of two phase commit

protocol. It was introduced as a remedy to the blocking

disadvantage of two phase commit protocol. This protocol has

three phases—

Phase 1 (Voting Phase) : At first the site at which the

transaction originates becomes the coordinator and it asks the

other sites to vote to either commit or abort . The other sites send

their votes . If all sites have voted to commit the transaction, it

decides to commit the transaction and if even if one of the sites
has voted to abort the transaction it decides to abort.

Phase two (Prepare to commit) : The coordinator tells its

decision to all of the sites.If it has decided to commit then ―Enter
into ready to commit stage‖ message is sent.

Phase 3 (Decision Phase) : If the coordinator has decided to

commit the transaction it sends a global_commit to all sites and

waits for their acknowledgement . Only after receiving

acknowledgement it decides to commit the transaction . If the

coordinator has decided to abort the transaction it sends

global_abort to all the sites and aborts the transaction. Only after

receiving the acknowledgement it decides the fate of the

transaction.

3. PROPOSED MODIFIED VERSION OF

THREE PHASE COMMIT PROTOCOL
This protocol in some ways reduces the blocking disadvantage of

two phase commit protocol and also overcomes in some failure

mode situations. Before discussing this protocol we are going to

give proposal that will be required to implement this modified

version. These Proposed verison are as follows

Each site is either a ―Primary Site‖ or ―Secondary Site‖.

The sites where more queries are generated are considered as

Primary and sites having less queries generated at them are

considered as Secondary . The hardware and software

vulnerability are also considered while choosing the site as the

primary or secondary.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.10, May 2011

36

All of the Primary sites do not crash at a time. We have a flag

associated with each database object having value ―Consistent‖

or ―Inconsistent‖.

We have a local clock at each site that runs at regular intervals.

3.1 Purpose of the Modified version of Three-

phase commit protocol
This modifies version of Three-phase commit protocol ensures

the commitment of a transaction originated at a primary site even

if one or more of the secondary sites has voted to abort. This is

unlike the Three-phase commit protocol in which if one of the

sites votes to abort the whole transaction is aborted.

3.2 Alogrithm
In distributed systems the site at which transaction is originated

becomes the coordinator .The transaction is then broken down

into sub-transactions and then each sub-transaction is issued at

different sites. So there are 4 cases to be considered

 The coordinator is a primary site

 If (all the sites vote to commit)

 begin

then start Phase two and send ―Enter into ready to

commit stage‖ message to all primary sites and

enter into Phase Three sending global_commit to all

sites and upon receiving the acknowledgement

commiting the transaction.

 end

 else

 If (any of them votes to abort)

 then check ― if it is a primary site or not‖

 if (yes)

 begin

 then goto Phase Three and send global abort

 end

 else

 begin

goto Phase Three and send global commit to all sites

who have voted to commit and set the flag with

respect to that database object as ―inconsistent ― at that

primary site which is the coordinator and also at site

which has voted to abort, sets its flag with respect to

that database object as ―inconsistent‖.

 end

 The coordinator is a secondary site.

Check flag status of the database object which will be

in use.

 if(flag ="Inconsistent")

begin

 Contact the nearest primary site to remove inconsistency and

 set the flag as ―consistent‖.

 and enter into voting phase .

 If (all sites vote to commit)

 then

begin

 enter into Phase two and send prepare to commit message to all

primary sites,

 after that enter into phase three and send global commit.

 end

 else

 begin

Enter into Phase two and send prepare to abort message to all

primary sites and then enter into phase three and send global

abort

 end

end

 else if (flag =‖consistent‖)

begin

 enter into voting phase .

 If (all sites vote to commit)

 then

begin

enter into Phase two and send prepare to commit message to all

Primary Sites,

after that enter into phase three and send global commit

end

 else

 begin

enter into Phase two and send prepare to abort message to all

primary sites and then enter into Phase Three and send global

abort

end

end

A sub transaction is issued at a primary site-

If (sub-transaction is issued at a primary site)

begin

 Continue with the transaction.

end

 A sub transaction is issued at a secondary site-

Check the flag status of the database object that will be in use

 if(flag is ― inconsistent‖)

 begin

 Then contact the nearest primary site to remove consistency

and set flag as ―consistent‖ and then continue with the

transaction.

End

 else

 begin

 carry on with the transaction.

 end

As we have seen above there are four cases to be considered .

There is no need to check the flag_status in cases 1 and 3 when

the coordinator is a primary site or when a sub-transaction is

issued at a primary site respectively. This is because if the flag is

set as ―inconsistent‖ with respect to a database object at a

primary site then it only implies that there exists atleast one

secondary site at which that database object is incorrect (i.e, it is

not consistent with the primary site) and it does not imply that

the database is incorrect at that primary site. Hence there is no

need to check for the flag status in case 1 and 3 . The protocol

also will work correctly because whenever secondary site is the

coordinator or a sub-transaction is issued at the secondary site the

flag status is first checked to remove any inconsistency and only

then the transaction proceeds.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.10, May 2011

37

3.3 Analysis of modified Three-phase commit

protocol
This modified version of 3 phase commit protocol, like the

original 3 phase commit protocol avoids the blocking limitation

of 2 phase commit protocol. In case, the coordinator fails then

one of the primary site is chosen as the new coordinator and it

proceeds the transaction. The metrics for choosing the new

coordinator can be anything , for example distance metrics can be

chosen. In this the primary site that is nearest to the main

coordinator can be chosen as the new coordinator.

3.3.1 Handling inconsistencies:
 As we have seen in this protocol that whenever coordinator is a

primary site and the site that voted to abort is a secondary site the

protocol commits the transaction and flag is set as ―inconsistent‖

at both sites with respect to that database object. So there is

inconsistencies that have arisen. To remove these inconsistencies

we have introduced the concept of local clock which runs at each

primary site . This clock runs at regular intervals and checks for

the database objects for which the flag is set as ―Inconsistent‖.

Then it issues a transaction to remove this consistency. Thus in

regular intervals the local clock runs at each primary site to

remove inconsistency. Whenever a transaction is originated at a

secondary site the at first a check is done to see whether the

database object that will be in use is in consistent or inconsistent

state . if the database object’s flag is set as ―inconsistent‖ then a

request to the nearest primary site is made to remove the

inconsistency. Only after the consistency is removed then the

transaction proceeds.

3.3.2 Concept of local clock
A few things are to be noted about local clock:

This clock runs at all primary sites.

This clock runs only at primary sites not at any secondary site.

The clock runs periodically i.e, at regular intervals.

Code for local clock

At regular intervals at each primary site

begin

A search is made through the database at the primary site to see

if any database object’s flag is set as ―inconsistent‖.

 If (any database object’s flag say X is set as ‖inconsistent‖)

 begin

 Issue a transaction to remove inconsistency at all sites.

This transaction checks all secondary site to see if the flag with

respect to database object X is ―inconsistent‖ at that site.

 for (all secondary sites)

 begin

 If(flag is ―inconsistent with respect to database object X

 begin

 remove this inconsistency by making the database object

 X consistent with the database object X at the primary

 site at which the local clock is running

 end

 end

 Set the flag as ―inconsistent‖ at that primary site with respect

to the database object X

 end

 end

3.3.3 Concept of flag
 A flag is kept at each site with respect to each database object .

A flag has two values ―consistent‖ and ―inconsistent‖.

Use of flag at each primary site: Local clock runs at each

primary site at regular intervals .So at regular intervals the flag

to check whether to see if there is inconsistency .

If there is inconsistency then a transaction is issued to remove

this inconsistency.

Use of flag at secondary site: The local clock runs at each

primary site periodically . Suppose at a time when local clock

has not removed the inconsistency , a transaction or a

subtransaction is issued at the secondary site.

This transaction at first checks the flag of the database object that

will be in use.

If(flag is ―inconsistent‖)

begin

Contact the nearest primary site to remove the inconsistency and

set the flag as ―consistent‖ at both sites.

end

else

begin

 Carry on with the transaction.

End

 3.4 Advantages of modified 3 phase commit

protocol

This modified version of 3 phase commit proves to be very

useful in the cases where we perform some transaction on single

database object in distributed systems. This protocol ensures the

commitment of transaction originated at a primary site even

when some secondary site have voted to abort . This is unlike

the original 3 phase commit protocol in which if one of the sites

votes to abort then the whole transaction is aborted . So this

protocol ensures that if the transaction has originated from a

primary site and all of the primary sites have voted to commit

then the transaction will commit even if one or more of the
secondary sites have voted to abort.

Another advantage of this protocol is that this protocol is non-

blocking protocol. If the coordinator fails then one of the primary

site is chosen as the new coordinator and the transaction

proceeds.

3.5 Limitations of modified 3 phase commit protocols

There are few disadvantages of this protocol. We list some of
them below

This protocol can only be applied to global transactions that

access the single database object.

This protocol introduces some overhead, as a flag is needed to be

maintained with respect to each database object. Also a local

clock is needed at each primary site whose purpose is to remove
inconsistency at regular intervals.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.10, May 2011

38

4. RESULTS

After some transaction we can check performance 3PC and and

Modified 3PC aur protocol is better perform then 3PC for single

database objects

Some other comparisons on the basis of:

• Total Efficiency

• Propagation Delay

• Tarn Around Time

• Resending of Request

5. CONCLUSION
It can be concluded that the modified version can be used only

when there is a transaction that accesses a single database object

and ensures commitment of the some transactions that would

have otherwise failed in Three phase commit protocol so it

definitely reduces the probability of a transaction abortion and

improve the overall performance of distributed systems.

Remarks and Discussion: as per rule of concurrency control in

any transaction ACID properties must be maintain in proposed

version of three phase commit protocol it is not necessary if

secondary site fails because distributed environment is a large

collection of computers only cause of some unnecessary sites fail

total transaction failure is not in the favor of efficiency so

proposed modification is highly recommended.

Recommendations for Future Work: I have simulate my work

in stand alone system to check the authenticity of the proposed

protocol in future I will simulate my work in a totally distributed

environment and correction in protocol at network level is

recommended.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.10, May 2011

39

6. ACKNOWLEDGMENT

I like thank to my students Krishna kumar, Vikrant Sachan,

Rakesh Kumar, Ashish Baghel, Mohd. Saifulla, Amrit Kumar,

Vikas Mathur ,Saikat Chakma ,Satendra Kumar for their help.

7. REFERENCES
[1] Tanenbaum Andrew S. 2006, Distributed Systems: Principles

and Paradigms, 2/E Maarten Van Steen.2006.

[2] Bernstein Dr. Philip. 2001 Concurrency Control, Database

Hall of Fame (WS2001)

[3] Krishna Reddy P., Bhalla Subhash, TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, VOL. 15,

NO. 3, MAY/JUNE 2003,

[4] Lectures on distributed systems, Distributed Deadlock, Paul

Krzyzanowski, Philip Bernstein, Eric Newcomer, Principles

of Transaction Processing (for the Systems Professional),

Morgan Kaufmann Publishers, January 1997

[5] Philip Bernstein, Vassos Hadzilacos, Nathan Goodman

Concurrency Control and Recovery in Database

Systems,Addison-Wesley, 1987

[6] Commit Protocols CS60002: Distributed Systems Distributed

Systems Pallab Dasgupta Dept. of Computer Sc. & Engg

Indian Institute of Technology Kharagpur.

[7] Shanker Udai, Agarwal Nikhil ACTIVE-A Real Time

Commit Protocol ªScheduling Real-Time Transactions: A

Performance Evaluation,º Proc. 14th Int'l Conf. Very Large

Databases, Aug. 1988.

[8] Agrawal R., Carey M., and Livny M., ªConcurrency Control

Performance Modeling: Alternatives and Implications,º

ACM Trans. Database Systems, vol. 12, no. 4, Dec. 1987.

[9] Bernstein P., Hadzilacos V., and Goodman N., Concurrency

Control and Recovery in Database Systems. Addison-

Wesley, 1987.

[10] A. Bestavros and S. Braoudakis, ªTimeliness Via

Speculation for Real-Time Databases,º Proc. 15th Real-

Time Systems Symp., Dec.1994.

[11] Bhargava B., ed. Concurrency and Reliability in Distributed

Database Systems. Van Nostrand Reinhold, 1987.

[12] Carey M. and Livny M. , ªDistributed Concurrency Control

Performance: A Study of Algorithms, Distribution, and

Replication,º Proc. 14th Int'l Conf. Very Large Databases,

Aug. 1988.

[13] Chrysantis P., Samaras G., and Al-Houmaily Y., ªRecovery

and Performance of Atomic Commit Processing in

Distributed Database Systems,º Recovery Mechanisms in

Database Systems. V.Kumar and M. Hsu, eds. Prentice Hall,

1998.

[14] Skeen, D., Stonebraker,M.: A formal model of crash

recovery in a distributed system. Concurrency control and

reliability in distributed systems, 295–317 (1987).

