
International Journal of Computer Applications (0975 – 8887)

Volume 21– No.2, May 2011

41

Proffering Task oriented Grid Resource Discovery based
on Learning Automata

ABSTRACT

Main challenge of existing resource discovery service is the lack

of support from task oriented query. This paper puts forward a

design of task-oriented grid resource discovery service based on

learning automata to enable users to dynamically discover the grid

resources which are suitable for their task. The core of this service

is learning automata based grid resource classifier, which

periodically accesses the Meta computing directory service and

dynamically classifier the grid resources into task-oriented

categories according to the real-time state of grid computing

environment. Users can invoke this service and pass her or his

task type as a parameter to discover the current most suitable grid

resources. Grid resource allocation manager also can interact with

this service to improve its practicability and efficiency.

Keywords

Grid, resource discovery, Learning automata, task oriented.
1. INTRODUCTION

Computational Grid [3] [9] is a new paradigm in distributed

computing which aims to realize a large-scale high performance

computing environment over geographically distributed resources.

Computational Grid enables the sharing, selection, and

aggregation of highly heterogeneous resources for solving large

scale problems in science, engineering and commerce. Numerous

efforts have been exerted focusing on various aspects of grid

computing including resource specifications, information services,

allocation, and security issues. A crucial issue to meeting the

computational requirements on the grid is the resource discovery

[14] [15]. Resources on the grid are typically shared and

undedicated so that the contention made by various tasks results in

dynamically fluctuating delays, capricious quality of services, and

unpredictable behavior, which further complicates the

scheduling[1,2]. On the other hand, architectures of machines

available in a Grid [3] are very diverse in specification to meet

different task requirements; therefore, the extent to which a given

task can exploit a given architectural feature depends on how well

the task's computational requirements match the machine's

advanced capabilities. In brief, Grid resource management faces to

two major problems; one is matching computational needs to

appropriate resources, and the other is exploiting resources over

highly dynamic environment. MDS (metacomputing directory

service) is a key component of globus, which provides users with

functions to discover, register, query, and modify the information

of grid computing environment. The MDS information process is

composed of the dynamic descriptions of all kinds of resources in

grid computing environment. So MDS reflects the real-time state

of grid computing environment. Users can discover grid resources

and get their attributes by invoking MDS. For example, by

invoking MDS, users can query about which resources have the

specified architecture, software, and/or network bandwidth to

locate their wanted resources, or query about current states of

physical attributes of some resource to get their wanted dynamic

information of specified resource.

In this paper, our main concern is to address the limitation of

existing MDS for most users. The task-oriented queries are much

more useful, such as query about which resource is suitable for

massive scale data mining, and/or which resource is suitable for

massive online transaction process. Unfortunately, existing MDS

doesn't support the task-oriented query. It is a serious limitation,

so we should design a new service for users to discover the

suitable grid resources according to their task. This paper designs

a learning automata based task-oriented grid resource discovery

service [16] (GRDS) to solve the problem which can not be solved

by existing MDS. Furthermore, GRDS could effectively cooperate

with GRAM (Globus resource allocation manager) to improve the

efficiency and quality of grid resource allocation.

2. RESOURCE DISCOVERY BY MDS

Resources in grid environment may be shared by organizations

and individuals. Grid users have little information about the

pertinent resource. Therefore, they have limited efficacious usage

of the resource in question. Grid information services [6] have

been devised to

Support searches, resource discovery [4] and supervision of vital

grid entity. There are various architectural plans for grid

information services. MDS2 is the most sophisticated one that

illustrated in fig.1.

Ali Sarhadi
Department of Computer

Engineering, Malayer Branch,
Islamic Azad University

Malayer Iran

Hosein Zohrevand
Department of Computer

Engineering, Malayer Branch,
Islamic Azad University

Malayer Iran

Ebad Zohrevandi
Department of Computer

Engineering, Malayer Branch,
Islamic Azad University

Malayer Iran

Rasoul Rostaei
Department of Computer

Engineering, Malayer Branch,
Islamic Azad University

Malayer Iran

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.2, May 2011

42

Fig. 1: Resource discovery by MDS

The functions of existing MDS include information

generalization, information distribution, information storage,

information search, information query and information display.

There are two important components in MDS is GRIS (grid

resource information service), which is a configurable information

provider component.

The other one is GIIS (grid index information service), which is a

configurable aggregative directory component.

The realization of existing MDS uses the LDAP (lightweight

directory access protocol) as the unified interface to access grid

information, meanwhile, it also support other protocols, such as

SNMP (Simple Network Management Protocol) and NIS

(Network Information Services), etc.

GRIS is a distributed information service, which is deployed into

grid computing environment. It provides a uniform interface for

clients to query about the configuration, capability and state of

grid resources, such as query about static information including

host computer name and version number of OS, etc., and query

about dynamic information including available CPU and memory,

etc.

GIIS provide away to combine all kinds of GRIS and also

provides a coherent system mapping of those GRIS to facilitate

the searches and queries generated by grid tasks and other clients.

GIIS can differentiate resources by types, for example, GUS can

list all the computing resources, and/or all the distributed storage

systems of a specified virtual organization. The information which

can be obtained from the existing MDS includes:

1) The information of computing resources: IP address, available

software, system administrator, network connected, type and

version number of OS, information of storage system, system

loading, information of processes, and task queue, etc.

2) The information of network resources: network bandwidth,

network protocols, network delay and network topology, etc.

3) The information of the infrastructure of Globus[5]: the

information of host computers and resources administrator, etc.

According to the above description of MDS, we can find out that

existing MDS supports the basic information queries very well,

such as the queries about which resources have the specified

architecture, software, and/or network bandwidth, etc. But do not

support task oriented queries because users have to enter the

specifications of the resource in query as query parameters.

Therefore users themselves have to pinpoint which resource

matches the tasks they have in mind. The above human

recognition procedure can’t be ameliorated owing to the dynamic

and heterogeneous nature of the resource in grid environment. So

users can't discover the suitable grid resources by passing the

basic-information-based query conditions to MDS. So they need a

grid resource discovery service which supports the task-oriented

queries, such as the queries about which resource is suitable for

page maker software, and/or which resource is suitable for

massive data base transaction, and so on. Thus, users just need to

pass their task types to GRDS to discover their wanted grid

resources.

In this paper proposed a task oriented grid resource discovery

service with learning automata at the core of this service that

classifier resource with the task.

3. LEARNING AUTOMATA

Learning Automata [10] are adaptive decision-making devices

operating on unknown random environments that show in fig.2. A

Learning Automaton has a finite set of actions and each action has

a certain probability (unknown to the automaton) of getting

rewarded by the environment of the automaton. The aim is to

learn to choose the optimal action (i.e. the action with the highest

probability of being rewarded) through repeated interaction on the

system. If the learning algorithm [13] is chosen properly, then the

iterative process of interacting on the environment can be made to

result in selection of the optimal action. Figure 1 illustrates how a

stochastic automaton works in feedback connection with a random

environment. Learning Automata can be classified into two main

families: fixed structure learning automata and variable structure

learning automata (VSLA) [11]. In the following, the variable

structure learning automata which will be used in this paper is

described.

Fig. 2: The interaction between learning automata and

environment

A VSLA is a quintuple < α, β, p, T(α,β,p) >, where α, β, p are an

action set with s actions, an environment response set and the

probability set p containing s probabilities, each being the

probability of performing every action in the current internal

automaton state, respectively. If the response of the environment

takes binary values learning automata model is P-model and if it

takes finite output set with more than two elements that take

values in the interval [0, 1], such a model is referred to as Q-

model, and when the output of the environment is a continuous

variable in the interval [0, 1], it is refer to as S-model. The

function of T is the reinforcement algorithm, which modifies the

action probability vector p with respect to the performed action

and received response. Assume . A general linear schema

for updating action probabilities can be represented as follows. Let

]1,0[

(n) (n)

Learning

Automata

Stochastic

Environment

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.2, May 2011

43

action i be performed then:

Where a and b are reward and penalty parameters. When a=b, the

automaton is called LRP. If b=0 the automaton is called LRI and if

0<b<<a<1, the automaton is called LRεP. For more Information

about learning automata the reader may refer to [10].

4. RESOURCE DISCOVERY SERVICE

BASED ON LEARNING AUTOMATA
A new architecture based on the learning automata to pinpoint the

resource discovery service in computational grid with regard to

the task oriented of the resource discovery service has been

proffered. The learning automaton has been opted for on account

of the fact that their efficiency is much higher than other similar

techniques in classification predicaments based on the obtained

conclusions. The core of this service is a grid resource classifier

based upon the learning automata which access Meta directory

service on a periodic basis. It also classifier grid resource in terms

of the diverse propounded tasks within the computational grid

environment. Users can summon the aforementioned services to

pass her/his task in query as the input search parameter instead of

the specifications of the resource in query to select the best

resource. Meta directory service reflects the situation of the

computational grid environment and all the other information

pertinent to the available entity in the grid. Users can determine

their task as the input of learning automata. The output vector of

the learning automates evinces the possibility of appropriateness

of each one of the resource for the task in query. For instance the

output vector is formulated based upon the ensuing relationship

based upon the information obtained from a particular resource.

Tk = (0.1, 0.1, 0.9… 0.1)

This output denotes the fact that the 3rd resource is more

appropriate for this task than other ones.

5. The ARCHITECTURE OF TASK

ORIENTED GRID RESOURCE

DISCOVERY (GRD)
The architecture of task-oriented GRD is shown in fig.3.

Fig.3: Architecture of Task-oriented GRD

As depicted in the above figure, the aforementioned service is

composed of five components:

1. Internal GIIS

The operator of a grid resource discovery is an applied one. It

summons global GIIS services on a periodical basis to obtain the

situation of the grid environment and to become aware of any type

of alterations in the resource status.

2. Grid resource classifier

Grid resource classifier is a chief component in task oriented grid

resource discovery services. It can implement applied

classifications of the resource based on the data received from grid

resource through learning automata. GRC design will be

expounded in the subsequent section. The above component

effectuates the main task of the resource discovery service.

3. Index tree

This is a location where the conclusions produced by GRC are

stored. The classification of the results from the grid resource is a

pair amount. The identification key of the resource is in grid and

specifies the predefined amount of the applied classification. The

index tree is utilized to save such conclusions.

4. Cache

There are so many of resources in the grid environment. Thus we

make a cache to save the results of the last searches to enhance the

efficiency of the search. The search manipulator guarantees the

matching of cache with the index tree.

5. Query handler

The task of this component is the processing of the users query.

The query handler looks through cache at first. If it comes across

the identifiers of the important resource of the use in cache, the

query handler will delete all the counters in this resource. Then it

checks the compatibility of the cache contents and the index tree.

Then the identifier of the resource in question is rendered to the

user, otherwise the search runner looks through the index tree and

updates the cache based upon the new upshot obtained from the

index tree and returns it to the user afterwards. The

aforementioned amount is rewritten in cache and the pertinent

counter is input as zero.

5.1 Grid resource classifier (GRC) based on

learning automata

At the core of grid resource classifier learning automata are used.

The reason for choosing the learning automata is their ability in

choosing the best case according to specified criteria, that this

action is done via repetition and comparison of acquired result

with the previous ones. In this case input of learning automata is

user's task and the action of automatons is choosing one of the

resources for doing selected task. The criterion for choosing

resource in this paper is choosing the resource that performs the

proposed user's task at least time in comparison with other

resource. After choosing resource by each automaton the

environment gives reward or penalty to this action that the rate of

reward 0.2 and the rate of penalty are 0.02. Based on experiment it

is proved that with this rates regarding to final response have been

quickly done.

ijjnapnnbprbnnpnp jjjj)()](1[)]()1/()[()()1((1)

)](1[)](1[)()()()1(npannbpnnpnp iiii
(2)

Query

Response

User

Search

Search
Update

Index tree

Change

management

Periodic
call

Same result

Query

Handler

Cache

Grid resource

Classifier

Internal GIIS

Global GIIS

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.2, May 2011

44

5.2 Details of Designation

To the spreading of grid environment and number of resource that

have been joined in it and dynamic property of grid environment

we have consider separate pools for membership of resources.

Every pools and resource members have an identifier. So that each

pools can keep maximum of 5000 heterogeneous resource. After

entering a new resource it is register in to a pool. If none of pool

has necessary capacity for accepting the resource, grid resource

management provides new pool for membership new resource.

And if the resources of a pool are emptied, grid resource

management will be deleting this pool. For increasing the

selection speed of a resource for a proposed task, instead of using

one learning automata for choosing resource, each of these pools

is equipped with a learning automata and a assign queue that input

tasks are placed in it. After entering and registrations a new task in

assign queue of all pools, learning automata of each pool begin to

discover the best existing resource in pool for performing

proposed task. Each of automatons based on fig.4 chooses the best

its pool resource for performing at least time in comparison with

other pool resources. Then all executed time of automatons and its

identifiers (for following in next state) are placed in a vector and

minimum value of them is selected as chosen resource for

executing proposed task.

1- Sorting the received requests in descending order in terms of

the duration the pertinent Resource is required.

2- The beginning of the learning procedure in the learning automatons

connected to the pools

 2-1: reiterate them 5000 times

 2-1-1 Deplete the assignment queue of each pools

 2-1-2 Conduct the following stages for each input task

 2-1-2-1 Opt for the germane resource of each task and

 set the task in the designation queue of the

 pertinent pools

 2-1-3 The beginning of the fining procedure:

 Inflict financial penalty on each task who has

 opted for a resource that does not fulfill the

 Temporal limitation.

 2-1-4 The commencement of the rewarding phase:

 if a task is not fined and chooses a resource who is

 identical or earlier than the previous one, reward it

 With 0.02 rating.

 2-2 completion time of appropriate Resource of each

 pools(a resource that complete task at least time in

 comparing with other ones) with its identifier and

 pool's identifier(for tracking at the next stage) placed

 at a vector.

 2-4 select minimum value of vector and follow it with its

 Identifier and Pool's identifier.

3. Input task will be registered to the most appropriate resource

subsequent to the convergence of results and the completion of

Reiterations.

Fig.4 Resource discovery algorithm by learning automata

Environment response for learning automata associated to each

pools on ideal conditions is complete time of input task by

selected resource. For this propose environment uses of blew tow

point for give reward or penalty to selected action by learning

automata.

1- Run time of input task by selected resource shouldn't have

many differences with other resources.

2- Each task must be assigned to resource that can run it earlier

from other resources.

Thus the environment by using the first points will give penalty to

selected action and with second point give reward to selected

action by learning automata.

In fig.4, we must explain two important points: First, the above

algorithm only specifies that the training process shouldn't be

stopped unless meet the stop condition, but not specifies the stop

condition, because in fact the training process would not be

stopped for ever. The GRC always uses the current learned

function to classify some grid resource in real time. According to

the feedback of users, the GRC will update the current function to

generate a new function by using this grid resource as a training

instance to train itself.

The grid resources are highly dynamic, and their states are maybe

different in any time. So, in theory, the instance space of grid

resources is infinite. In order to improve the accuracy of

classification, the GRC need to study continuously. So this

algorithm important point would not be stopped for ever, we just

continuously use the newest learned function. The result of GRC

will be stored in index tree.

6. EXPERIMENTS

The goal of this experiment is to compare the performance of the

task-oriented gird resource discovery to other conventional

resource discovery approach such as p2p model [7], and the

incoming task queries are matched with the next available

resource offer which meets the task’s constraints. We simulate

grid environment [8] to evaluate experimentally the task-oriented

gird resource discovery by means of gridsim[12].

The most suitable parameters for evaluation of this service have

been propounded with regard to the effectuated securitizations.

The error rate parameter expenditure improvement algorithms are

regulated with regard to each selection for instance in failure cases

of discovery, or in cases demanding rediscovery. Another

parameter is the wait time that defines as duration of times before

discovery of resource to a task and total time is complete time of a

task. And finally efficiency of proffered algorithm in compared of

conventional method will be shown. Reported results, is for

average 20 times of simulation. Grid resource is high

heterogeneous. We neglect the network topology and the

communication costs associated with it. Instead, we assume that

each of the users can submit applications to any of the resources.

However, it is still adequate for certain situations. This experiment

is to study task-oriented gird resource discovery and pricing

algorithm in terms of conventional resource discovery efficiency.

In this experiment, we choose respectively 100, 200, 600, and

1000 resource domains to compare resource discovery efficiency

of task-oriented gird resource discovery service to the

conventional approach under various the numbers of resource

domains. The experiment results are shown in blew for resource

discovery efficiency.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.2, May 2011

45

From the results in Fig. 5, when the number of resource domains

is low, the difference in resource discovery efficiency between the

two discovery methods is small, and both can achieve good

discovery efficiency, so using conventional approach might be

sufficient. When the number of resource domains increases,

resource discovery efficiency of both methods will decrease.

However, the resource discovery efficiency of approach might be

sufficient. When the number of resource domains increases,

resource discovery efficiency of both methods will decrease.

However, the resource discovery efficiency of task-oriented gird

resource discovery service decreases slower than that of the

conventional approach. In other words, for a large number of

resource domains, the conventional approach will not match the

performance of the task-oriented gird resource discovery service.

From above performance comparisons, we can see that the

resource discovery efficiency of the task-oriented gird resource

discovery method is effective improved.

As the Fig. 6 show Completion time of allocated job to the

resource discovered by the proffered algorithm is less than to

completion time of the same job allocated to other resources. But

as shown in Fig. 7 the error rate in applying the proffered

algorithm because of repeated learning automata to reach the

desired resource is more. Fig. 6 shows the relation between

completion time and task-oriented gird resource discovery

method.

Fig. 5 Resource Discover Efficiency Comparison

Fig. 6 Completion Time Comparison

Fig. 7 Error Rate Comparison

7. CONCLUSIONS

In this paper, we put forward a design of learning automata based

task-oriented gird resource discovery service to enable users to

dynamically discover the grid resources which are suitable for

their tasks. The core of this service is a learning automata based

grid resource classifier, which periodically accesses the Meta

computing directory service and dynamically classifies the grid

resources into task-oriented categories according to the real-time

state of grid computing environment. Users can invoke this

service and pass the task type as a parameter to discover the

current most suitable grid resources. Grid resource manager also

can interact with this service to improve its practicability and

efficiency. However, several aspects of the GRDS given in this

paper still need to be researched, such as the time complexity of

training process of learning automata based GRC, the space

complexity of instance space of learning automata based GRC, the

training algorithm, and emulation. These aspects will be the

focuses of our future work.

8. ACKNOWLEDGMENTS
This paper is resulted of research project supported by Malayer

Branch, Islamic Azad University Malayer Iran have been titled

"Proffering application oriented architecture for resource

discovery in computational grid using learning automata" under

code (117). I am very grateful from Dr Majid Shams and Dr

Behrooz Kord for their assistance during research.

9. REFERENCES

[1] T. L. Casavant and J. G. Kuhl, " A taxonomy of scheduling

in general-purpose distributed computing systems," IEEE

Transactions on Software Engineering, Vol. 14, No. 2,

1998, pp. 141-154.

[2] T. D. Braun, H. J. Siegel, et al.," A taxonomy for describing

matching and scheduling heuristics for mixed-machine

heterogeneous computing systems," Proceedings of the 17th

IEEE Symposium on Reliable Distributed Systems, 1998,

pp. 330-335.

93

94

95

96

97

98

99

100

100 200 600 1000

Number of Resource

R
e
s
o

u
rc

e
 D

is
c
o

v
e
ry

E
ff

ic
ie

n
c
y Conventional

Approach

Proffered

Approach

0

10

20

30

40

50

60

70

80

100 200 600 1000

Number of Resource

C
o

m
p

le
ti

o
n

 t
im

e

Conventional

Approach

Proffered

Approach

0

0.5

1

1.5

2

2.5

3

3.5

100 200 600 1000

Number of Resource

E
rr

o
r

R
a
te Conventional

Approach

Proffered

Approach

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.2, May 2011

46

[3] I. Ekmecic, I. Tartalja, and V. Milutinovic, “A taxonomy of

heterogeneous computing," IEEE computer, Vol.28, No.12,

1995, pp.68-70.

[4] Iamnitchi and I. Foster, “On Fully Decentralized Resource

Discovery in Grid Environments,” IEEE International

Workshop on Grid Computing,Denver, CO, 2001.

[5] The GridLab Project, http://www.gridlab.org

[6] R. Al-Ali, O. Rana, D. Walker, S. Jha, and S. Sohail, "G-

QoSM: Grid Service Discovery using QoS Properties",

Computing and Informatics Journal, Special Issue on Grid

Computing, vol. 21, no. 4, pp.363–382, 2002.

[7] Domenico Talia, Paolo Trunfio and Jingdi Zeng, Peer-to-

Peer Models for Resource Discovery in Large-Scale Grids:

A Scalable Architecture, May 2004

[8] R. Buyya, "Interactive Class Hierarchy Diagram of

Economic Grid Resource Broker Simulated using the

GridSim Toolkit",

http://www.buyya.com/gridsim/doc/gridbroker/, Dec. 2001.

[9] 17- I. Foster, C. Kesselman and S. Tuecke, "The anatomy of

the Grid: Enabling scalable virtual organizations",

International Journal of Supercomputer Applications, 2001.

[10] 20- K. Narendra and M. A. L. Thathachar, Learning

Automata: An Introduction, Prentice Hall, Englewood

Cliffs,New Jersey, 1989.

[11] 21- R. Mirchandaney and J. A. Stankovic, "Using stochastic

learning automata for Buyer scheduling in distributed

processing systems", Journal of Parallel and Distributed

Computing, pp. 527-551, 1986.

[12] 22- R. Buyya and M. Murshed, GridSim: A Toolkit for the

Modeling and Simulation of Distributed Resource

Management and Scheduling for Grid Computing,

Technical Report, Monash University, Nov. 2001. To

appear in the Journal of Concurrency and Computation:

Practice and Experience (CCPE), 1-32pp, Wiley Press, May

2002

[13] 25- Kargupta, H. & Ghosh, S. (2002). Toward Machine

Learning Through Genetic Codelike Transformations.

Genetic Programming and Evolvable Machines, 3(3), 231-

258.

[14] A. Iamnitchi, and I. Foster, "On fully decentralized resource

discovery in Grid environments", IEEE Int. workshop on

Grid computing, Denver, 2001.

[15] Universal description discovery and integration (UDDI).

http://www.uddi.org, 2001.

[16] S. Venugopal and R. Buyya, “A Market-Oriented Grid

Directory Service for Publication and Discovery of Grid

Service Providers and their Services”, in Journal of

Supercomputing, Kluwer Academic Publishers, USA,

February 2004.

http://www.gridlab.org/

