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ABSTRACT 

Main challenge of existing resource discovery service is the lack 

of support from task oriented query. This paper puts forward a 

design of task-oriented grid resource discovery service based on 

learning automata to enable users to dynamically discover the grid 

resources which are suitable for their task. The core of this service 

is learning automata based grid resource classifier, which 

periodically accesses the Meta computing directory service and 

dynamically classifier the grid resources into task-oriented 

categories according to the real-time state of grid computing 

environment. Users can invoke this service and pass her or his 

task type as a parameter to discover the current most suitable grid 

resources. Grid resource allocation manager also can interact with 

this service to improve its practicability and efficiency. 
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1. INTRODUCTION 

Computational Grid [3] [9] is a new paradigm in distributed 

computing which aims to realize a large-scale high performance 

computing environment over geographically distributed resources. 

Computational Grid enables the sharing, selection, and 

aggregation of highly heterogeneous resources for solving large 

scale problems in science, engineering and commerce. Numerous 

efforts have been exerted focusing on various aspects of grid 

computing including resource specifications, information services, 

allocation, and security issues. A crucial issue to meeting the 

computational requirements on the grid is the resource discovery 

[14] [15]. Resources on the grid are typically shared and 

undedicated so that the contention made by various tasks results in 

dynamically fluctuating delays, capricious quality of services, and 

unpredictable behavior, which further complicates the 

scheduling[1,2]. On the other hand, architectures of machines 

available in a Grid [3] are very diverse in specification to meet 

different task requirements; therefore, the extent to which a given 

task can exploit a given architectural feature depends on how well 

the task's computational requirements match the machine's 

advanced capabilities. In brief, Grid resource management faces to 

two major problems; one is matching computational needs to 

appropriate resources, and the other is exploiting resources over 

highly dynamic environment. MDS (metacomputing directory 

service) is a key component of globus, which provides users with 

functions to discover, register, query, and modify the information 

of grid computing environment. The MDS information process is 

composed of the dynamic descriptions of all kinds of resources in 

grid computing environment. So MDS reflects the real-time state 

of grid computing environment. Users can discover grid resources 

and get their attributes by invoking MDS. For example, by 

invoking MDS, users can query about which resources have the 

specified architecture, software, and/or network bandwidth to 

locate their wanted resources, or query about current states of 

physical attributes of some resource to get their wanted dynamic 

information of specified resource.  

In this paper, our main concern is to address the limitation of 

existing MDS for most users. The task-oriented queries are much 

more useful, such as query about which resource is suitable for 

massive scale data mining, and/or which resource is suitable for 

massive online transaction process. Unfortunately, existing MDS 

doesn't support the task-oriented query. It is a serious limitation, 

so we should design a new service for users to discover the 

suitable grid resources according to their task. This paper designs 

a learning automata based task-oriented grid resource discovery 

service [16] (GRDS) to solve the problem which can not be solved 

by existing MDS. Furthermore, GRDS could effectively cooperate 

with GRAM (Globus resource allocation manager) to improve the 

efficiency and quality of grid resource allocation. 

2. RESOURCE DISCOVERY BY MDS  

Resources in grid environment may be shared by organizations 

and individuals. Grid users have little information about the 

pertinent resource. Therefore, they have limited efficacious usage 

of the resource in question. Grid information services [6] have 

been devised to  

Support searches, resource discovery [4] and supervision of vital 

grid entity. There are various architectural plans for grid 

information services. MDS2 is the most sophisticated one that 

illustrated in fig.1. 
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Fig. 1: Resource discovery by MDS 

 
The functions of existing MDS include information 

generalization, information distribution, information storage, 

information search, information query and information display. 

There are two important components in MDS is GRIS (grid 

resource information service), which is a configurable information 

provider component. 

The other one is GIIS (grid index information service), which is a 

configurable aggregative directory component. 

The realization of existing MDS uses the LDAP (lightweight 

directory access protocol) as the unified interface to access grid 

information, meanwhile, it also support other protocols, such as 

SNMP (Simple Network Management Protocol) and NIS 

(Network Information Services), etc.  

GRIS is a distributed information service, which is deployed into 

grid computing environment. It provides a uniform interface for 

clients to query about the configuration, capability and state of 

grid resources, such as query about static information including 

host computer name and version number of OS, etc., and query 

about dynamic information including available CPU and memory, 

etc. 

GIIS provide away to combine all kinds of GRIS and also 

provides a coherent system mapping of those GRIS to facilitate 

the searches and queries generated by grid tasks and other clients. 

GIIS can differentiate resources by types, for example, GUS can 

list all the computing resources, and/or all the distributed storage 

systems of a specified virtual organization. The information which 

can be obtained from the existing MDS includes: 

1) The information of computing resources: IP address, available 

software, system administrator, network connected, type and 

version number of OS, information of storage system, system 

loading, information of processes, and task queue, etc. 

2) The information of network resources: network bandwidth, 

network protocols, network delay and network topology, etc. 

3) The information of the infrastructure of Globus[5]: the 

information of host computers and resources administrator, etc. 

According to the above description of MDS, we can find out that 

existing MDS supports the basic information queries very well, 

such as the queries about which resources have the specified 

architecture, software, and/or network bandwidth, etc. But do not 

support task oriented queries because users have to enter the 

specifications of the resource in query as query parameters. 

Therefore users themselves have to pinpoint which resource 

matches the tasks they have in mind. The above human 

recognition procedure can’t be ameliorated owing to the dynamic 

and heterogeneous nature of the resource in grid environment. So 

users can't discover the suitable grid resources by passing the 

basic-information-based query conditions to MDS. So they need a 

grid resource discovery service which supports the task-oriented 

queries, such as the queries about which resource is suitable for 

page maker software, and/or which resource is suitable for 

massive data base transaction, and so on. Thus, users just need to 

pass their task types to GRDS to discover their wanted grid 

resources.  

In this paper proposed a task oriented grid resource discovery 

service with learning automata at the core of this service that 

classifier resource with the task. 

3. LEARNING AUTOMATA 

Learning Automata [10] are adaptive decision-making devices 

operating on unknown random environments that show in fig.2. A 

Learning Automaton has a finite set of actions and each action has 

a certain probability (unknown to the automaton) of getting 

rewarded by the environment of the automaton. The aim is to 

learn to choose the optimal action (i.e. the action with the highest 

probability of being rewarded) through repeated interaction on the 

system. If the learning algorithm [13] is chosen properly, then the 

iterative process of interacting on the environment can be made to 

result in selection of the optimal action. Figure 1 illustrates how a 

stochastic automaton works in feedback connection with a random 

environment. Learning Automata can be classified into two main 

families: fixed structure learning automata and variable structure 

learning automata (VSLA) [11]. In the following, the variable 

structure learning automata which will be used in this paper is 

described. 

 

 

 

 

 

 

 

 

Fig. 2: The interaction between learning automata and 

environment 

A VSLA is a quintuple < α, β, p, T(α,β,p) >, where α, β, p are an 

action set with s actions, an environment response set and the 

probability set p containing s probabilities, each being the 

probability of performing every action in the current internal 

automaton state, respectively. If the response of the environment 

takes binary values learning automata model is P-model and if it 

takes finite output set with more than two elements that take 

values in the interval [0, 1], such a model is referred to as Q-

model, and when the output of the environment is a continuous 

variable in the interval [0, 1], it is refer to as S-model. The 

function of T is the reinforcement algorithm, which modifies the 

action probability vector p with respect to the performed action 

and received response. Assume . A general linear schema 

for updating action probabilities can be represented as follows. Let  
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action i be performed then: 

 

Where a and b are reward and penalty parameters. When a=b, the 

automaton is called LRP. If b=0 the automaton is called LRI and if 

0<b<<a<1, the automaton is called LRεP. For more Information 

about learning automata the reader may refer to [10]. 

4. RESOURCE DISCOVERY SERVICE 

BASED ON LEARNING AUTOMATA 
A new architecture based on the learning automata to pinpoint the 

resource discovery service in computational grid with regard to 

the task oriented of the resource discovery service has been 

proffered. The learning automaton has been opted for on account 

of the fact that their efficiency is much higher than other similar 

techniques in classification predicaments based on the obtained 

conclusions. The core of this service is a grid resource classifier 

based upon the learning automata which access Meta directory 

service on a periodic basis. It also classifier grid resource in terms 

of the diverse propounded tasks within the computational grid 

environment. Users can summon the aforementioned services to 

pass her/his task in query as the input search parameter instead of 

the specifications of the resource in query to select the best 

resource. Meta directory service reflects the situation of the 

computational grid environment and all the other information 

pertinent to the available entity in the grid. Users can determine 

their task as the input of learning automata. The output vector of 

the learning automates evinces the possibility of appropriateness 

of each one of the resource for the task in query. For instance the 

output vector is formulated based upon the ensuing relationship 

based upon the information obtained from a particular resource. 

Tk = (0.1, 0.1, 0.9… 0.1) 

This output denotes the fact that the 3rd resource is more 

appropriate for this task than other ones. 

5. The ARCHITECTURE OF TASK 

ORIENTED GRID RESOURCE 

DISCOVERY (GRD) 
The architecture of task-oriented GRD is shown in fig.3. 

 

Fig.3: Architecture of Task-oriented GRD 

As depicted in the above figure, the aforementioned service is 

composed of five components: 

 

1. Internal GIIS 

The operator of a grid resource discovery is an applied one. It 

summons global GIIS services on a periodical basis to obtain the 

situation of the grid environment and to become aware of any type 

of alterations in the resource status. 

2. Grid resource classifier 

Grid resource classifier is a chief component in task oriented grid 

resource discovery services. It can implement applied 

classifications of the resource based on the data received from grid 

resource through learning automata. GRC design will be 

expounded in the subsequent section. The above component 

effectuates the main task of the resource discovery service. 

3. Index tree 

This is a location where the conclusions produced by GRC are 

stored. The classification of the results from the grid resource is a 

pair amount. The identification key of the resource is in grid and 

specifies the predefined amount of the applied classification. The 

index tree is utilized to save such conclusions. 

4. Cache 

There are so many of resources in the grid environment. Thus we 

make a cache to save the results of the last searches to enhance the 

efficiency of the search. The search manipulator guarantees the 

matching of cache with the index tree. 

5. Query handler 

The task of this component is the processing of the users query. 

The query handler looks through cache at first. If it comes across 

the identifiers of the important resource of the use in cache, the 

query handler will delete all the counters in this resource. Then it 

checks the compatibility of the cache contents and the index tree. 

Then the identifier of the resource in question is rendered to the 

user, otherwise the search runner looks through the index tree and 

updates the cache based upon the new upshot obtained from the 

index tree and returns it to the user afterwards. The 

aforementioned amount is rewritten in cache and the pertinent 

counter is input as zero. 

5.1 Grid resource classifier (GRC) based on 

learning automata 

At the core of grid resource classifier learning automata are used. 

The reason for choosing the learning automata is their ability in 

choosing the best case according to specified criteria, that this 

action is done via repetition and comparison of acquired result 

with the previous ones. In this case input of learning automata is 

user's task and the action of automatons is choosing one of the 

resources for doing selected task. The criterion for choosing 

resource in this paper is choosing the resource that performs the 

proposed user's task at least time in comparison with other 

resource. After choosing resource by each automaton the 

environment gives reward or penalty to this action that the rate of 

reward 0.2 and the rate of penalty are 0.02. Based on experiment it 

is proved that with this rates regarding to final response have been 

quickly done. 
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5.2 Details of Designation 

To the spreading of grid environment and number of resource that 

have been joined in it and dynamic property of grid environment 

we have consider separate pools for membership of resources. 

Every pools and resource members have an identifier. So that each 

pools can keep maximum of 5000 heterogeneous resource. After 

entering a new resource it is register in to a pool. If none of pool 

has necessary capacity for accepting the resource, grid resource 

management provides new pool for membership new resource. 

And if the resources of a pool are emptied, grid resource 

management will be deleting this pool. For increasing the 

selection speed of a resource for a proposed task, instead of using 

one learning automata for choosing resource, each of these pools 

is equipped with a learning automata and a assign queue that input 

tasks are placed in it. After entering and registrations a new task in 

assign queue of all pools, learning automata of each pool begin to 

discover the best existing resource in pool for performing 

proposed task. Each of automatons based on fig.4 chooses the best 

its pool resource for performing at least time in comparison with 

other pool resources. Then all executed time of automatons and its 

identifiers (for following in next state) are placed in a vector and 

minimum value of them is selected as chosen resource for 

executing proposed task. 

 
1- Sorting the received requests in descending order in terms of 

the duration the pertinent Resource is required. 

2- The beginning of the learning procedure in the learning automatons 

connected to the pools 

    2-1: reiterate them 5000 times 

      2-1-1 Deplete the assignment queue of each pools 

       2-1-2 Conduct the following stages for each input task 

           2-1-2-1 Opt for the germane resource of each task and     

                         set the task in the designation queue of the  

                         pertinent pools 

         2-1-3 The beginning of the fining procedure: 

                   Inflict financial penalty on each task who has  

                   opted for a resource that does not fulfill the               

                    Temporal limitation. 

         2-1-4 The commencement of the rewarding phase: 

                 if a task is not fined and chooses a resource who is   

                 identical or earlier than the previous one, reward it  

                 With 0.02 rating. 

     2-2 completion time of appropriate Resource of each  

            pools(a resource that complete task at least time in  

            comparing with other ones) with its identifier and  

            pool's identifier(for tracking at the next stage) placed  

            at a vector. 

     2-4 select minimum value of vector and follow it with its  

            Identifier and Pool's identifier. 

3. Input task will be registered to the most appropriate resource 

subsequent to the convergence of results and the completion of 

Reiterations. 

Fig.4 Resource discovery algorithm by learning automata 

Environment response for learning automata associated to each 

pools on ideal conditions is complete time of input task by 

selected resource. For this propose environment uses of blew tow 

point for give reward or penalty to selected action by learning 

automata.  

1- Run time of input task by selected resource shouldn't have 

many differences with other resources.  

2- Each task must be assigned to resource that can run it earlier 

from other resources.  

Thus the environment by using the first points will give penalty to 

selected action and with second point give reward to selected 

action by learning automata. 

In fig.4, we must explain two important points: First, the above 

algorithm only specifies that the training process shouldn't be 

stopped unless meet the stop condition, but not specifies the stop 

condition, because in fact the training process would not be 

stopped for ever. The GRC always uses the current learned 

function to classify some grid resource in real time. According to 

the feedback of users, the GRC will update the current function to 

generate a new function by using this grid resource as a training 

instance to train itself.  

The grid resources are highly dynamic, and their states are maybe 

different in any time. So, in theory, the instance space of grid 

resources is infinite. In order to improve the accuracy of 

classification, the GRC need to study continuously. So this 

algorithm important point would not be stopped for ever, we just 

continuously use the newest learned function. The result of GRC

will be stored in index tree. 

6. EXPERIMENTS  

The goal of this experiment is to compare the performance of the 

task-oriented gird resource discovery to other conventional 

resource discovery approach such as p2p model [7], and the 

incoming task queries are matched with the next available 

resource offer which meets the task’s constraints. We simulate 

grid environment [8] to evaluate experimentally the task-oriented 

gird resource discovery by means of gridsim[12]. 

The most suitable parameters for evaluation of this service have 

been propounded with regard to the effectuated securitizations. 

The error rate parameter expenditure improvement algorithms are 

regulated with regard to each selection for instance in failure cases 

of discovery, or in cases demanding rediscovery. Another 

parameter is the wait time that defines as duration of times before 

discovery of resource to a task and total time is complete time of a 

task. And finally efficiency of proffered algorithm in compared of 

conventional method will be shown. Reported results, is for 

average 20 times of simulation. Grid resource is high 

heterogeneous. We neglect the network topology and the 

communication costs associated with it. Instead, we assume that 

each of the users can submit applications to any of the resources. 

However, it is still adequate for certain situations. This experiment 

is to study task-oriented gird resource discovery and pricing 

algorithm in terms of conventional resource discovery efficiency. 

In this experiment, we choose respectively 100, 200, 600, and 

1000 resource domains to compare resource discovery efficiency 

of task-oriented gird resource discovery service to the 

conventional approach under various the numbers of resource 

domains. The experiment results are shown in blew for resource 

discovery efficiency.  
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From the results in Fig. 5, when the number of resource domains 

is low, the difference in resource discovery efficiency between the 

two discovery methods is small, and both can achieve good 

discovery efficiency, so using conventional approach might be 

sufficient. When the number of resource domains increases, 

resource discovery efficiency of both methods will decrease. 

However, the resource discovery efficiency of approach might be 

sufficient. When the number of resource domains increases, 

resource discovery efficiency of both methods will decrease. 

However, the resource discovery efficiency of task-oriented gird 

resource discovery service decreases slower than that of the 

conventional approach. In other words, for a large number of 

resource domains, the conventional approach will not match the 

performance of the task-oriented gird resource discovery service. 

From above performance comparisons, we can see that the 

resource discovery efficiency of the task-oriented gird resource 

discovery method is effective improved.  

As the Fig. 6 show Completion time of allocated job to the 

resource discovered by the proffered algorithm is less than to 

completion time of the same job allocated to other resources. But 

as shown in Fig. 7 the error rate in applying the proffered 

algorithm because of repeated learning automata to reach the 

desired resource is more. Fig. 6 shows the relation between 

completion time and task-oriented gird resource discovery 

method.  

 

Fig. 5 Resource Discover Efficiency Comparison 

 

Fig. 6 Completion Time Comparison 

 

Fig. 7 Error Rate Comparison 

7. CONCLUSIONS 

In this paper, we put forward a design of learning automata based 

task-oriented gird resource discovery service to enable users to 

dynamically discover the grid resources which are suitable for 

their tasks. The core of this service is a learning automata based 

grid resource classifier, which periodically accesses the Meta 

computing directory service and dynamically classifies the grid 

resources into task-oriented categories according to the real-time 

state of grid computing environment. Users can invoke this 

service and pass the task type as a parameter to discover the 

current most suitable grid resources. Grid resource manager also 

can interact with this service to improve its practicability and 

efficiency. However, several aspects of the GRDS given in this 

paper still need to be researched, such as the time complexity of 

training process of learning automata based GRC, the space 

complexity of instance space of learning automata based GRC, the 

training algorithm, and emulation. These aspects will be the 

focuses of our future work.  
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