
International Journal of Computer Applications (0975 – 8887)

Volume 21– No.2, May 2011

38

Performance Management Information System Development

Dhruv Seth
Senior Analyst

Wells Fargo India

Vidisha Raj
Assistant Systems Engineer
Tata Consultancy Systems

ABSTRACT

An organization namely a government, corporate house or even

a school nowadays relay on information collected for a huge

amount of data. Storing the data, handling it to get the relevant

record and presenting it gives the organizing body an aid to

make a decision. Similarly, a management information system

(MIS)[2] is used in corporate houses and other similar institutes

to provide control of all the businesses involving people,

documents, technologies, and other procedures used by

management accountants to solve problems such as costing a

product, service or a business-wide strategy. Our project was to

develop a similar system which could store the data in a flat file

and fetch it in a lesser time and display it on a UI for the user.

We developed the static library in C language in Linux

environment and used GTK+2.0 library[1] to build the User

Interface to present the records.

Keywords

MIS[4], Management Information System, Indexing,

Development, C-ISAM[5].

1. INTRODUCTION
An 'MIS' is a planned system of the collecting, processing,

storing and disseminating data in the form of information

needed to carry out the functions of management. According to

Philip Kotler "A marketing information system consists of

people, equipment, and procedures to gather, sort, analyze,

evaluate, and distribute needed, timely, and accurate information

to marketing decision makers.” The terms MIS and information

system are often confused. Information systems include systems

that are not intended for decision making. The area of study

called MIS is sometimes referred to, in a restrictive sense, as

information technology management. That area of study should

not be confused with computer science. IT service management

is a practitioner-focused discipline. MIS has also some

differences with Enterprise Resource Planning (ERP) as ERP

incorporates elements that are not necessarily focused on

decision support.

2. PROPOSED METHOD
The project implements the modified version of the b-tree for

maintaining a database management system, which includes all

the facilities of a basic database system. The concept used to

decide the line of action was C-ISAM library. C-ISAM stands

for Indexed sequential access method, it is a library used to

maintain a database. However, the library was not available as it

was a propriety library of IBM Informix. So, we worked out the

solution, which used the concept of C-ISAM, using a modified

Bayer’s Tree. The project includes a backend implementation of

the modified BTREE version, which handles the database

storage strategies. The frontend of the projects handles the basic

GUIs and the services which the application provides. The

project focuses on development of MIS. This maintains the

database of few tables regarding the Sales and Delivery in a

Company. The fact is that a file is stored as a sequential data of

records. For example, a table of Project has three fields for

example, Project number, name, date, project engineer, would

be like:

Figure 1. Showing a sample record

Serial No. Name Date
Employee

Name
…

302 Project 1 12/3/2009 Amit …

405 Project 2
31/01/200

7

Kunal

Singh
…

Storing the record in a form of “struct” data type, for each table,

would be a solution for the problem of the mode of storage. But,

the records stored in the file, would not return a reliable file

pointer. Therefore, we had to store the database in the simple

style of storing in a sequential format as shown in the Figure 2.

Figure 2. A way to store data in a file is shown.

The records can be identified uniquely by the primary key of the

table. Hence, using the feature of the key, one can search any

record in a database. Now, the problem was of storing the

primary key with the record’s position is the only chance of

getting any desired record. Hence, we stored the file position

against the primary key of each record. This is also called

indexing of each record.

2.1 Implementation of Indexing
As the data is being stored in the file, the starting location of

each record, in the sequential file, with the primary key is stored

in a file named “master index”. Now, the indexes of the records

are stored in a file. The question arises that in which way one

should implement this search of primary key, to access the

record’s location in the database file. Other than that, searching

of an index in the Master Index file would result into a larger

time complexity, if the records are larger in number. The

contents for a master index file are shown in Figure 3.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.2, May 2011

39

Figure 3. The master index file is shown.

2.2 Proposed Solution Strategy
To solve the above stated problem, one can store the indexes in

a form of data structure. This implementation is being done

using the concept of BTREE (Bayer’s Tree), which stores the

primary keys in a form of tree, which have a root and leaves.
The original BTREE is being modified in the project, so as to

make it customized to our requirement. The concept of BTREE

is to store the data values in a sorted order and search the key as

per the value of the current node with the search key.

For example, represented in the Figure 4.

Figure 4. Showing a B-TREE.

The regular BTREE has the factors of minimizing the search for

a leaf node by a factor know as t, which states that the maximum

nodes a leaf can have is 2t-1. In the modified BTREE,

implemented, the maximum keys stored in a leaf is set constant

as 3, as the number of records being stored is assumed to be less.

Further, the searching for the required key in the BTREE is done

using simple binary search, as the keys are stored in ascending

(or already sorted) order. This method is adopted because when

the amount of records exceeds a certain level, say 10MB, then

the usage of RAM would increase and the system might

consume more and more memory on increase of records. Instead

the storage of each leaf is been on the disk and whenever the

leaf is required the corresponding leaf file is accessed for that

purpose. This way the usage of RAM decreases, though it

decreases a factor for I/O performance. This method is devised

keeping in mind the number of records in the database to be

above a million. Below figure (Figure no. 5) shows an

implementation of B-tree.

Figure 5. Implementation of the B-TREE

2.3 Implementation Details
The implementation of the problem was done in a simple

fashion. The steps involved are:

For storing the nodes, in a format of BTREE

1. START

2. The user enters the record, the primary key is stored in

the MASTER INDEX FILE, along with the file location.

3. As the record is saved, the MASTER INDEX FILE is

read and the modified BTREE is formed as:

a. The first record is stored in the root file, as seen in the

figure below.

b. As the records are saved, the root file is filled, along

with their file pointer positions, in an ascending order.

c. After the root is completely filled, the records are

filled following the order of leaves i.e in ascending order.

d. The naming of the leaves are named as table/first

node_leaf, which states that it contains the nodes having value

less than primary key of the first node of the root.

e. Similar is with every leaf.

f. STOP

For searching of the nodes, in the BTREE:

1. START

2. The BTREE is stored in an ascending order, the value

to be searched is first picked, for matching, in the root node.

3. The root leaf is searched for the match, in a binary

search mode.

4. If the value is matched, by a node in the leaf, the result

is returned with the corresponding file pointer.

5. If the value is not found in the current leaf, the related

position of the next leaf to be searched is returned to the

recursive function.

6. The function returns if the value is not found, when

the function reaches the last leaf without a match.

7. STOP

The root of the BTREE is been stored as a file namely

“table1/root”, the keys having lesser value than the key 200 in

the root is been stored as “table1/200_leaf”, and so on.

The deletion process:

1. START

2. The user gives the primary key of the record to be

deleted.

3. The root leaf is being searched for the match.

4. If the value is not matched, then user is given the

notification.

5. If the value is found in the BTREE, the value of the

file position and the primary key is set to -1 in the MASTER

INDEX FILE.

6. After that, the current BTREE of the record is deleted.

A new BTREE is formed with the modified MASTER INDEX

FILE.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.2, May 2011

40

7. Also, the database file is modified with an invalid

value for the set of record, to be deleted.

8. STOP

The modification process:

1. START

2. The user gives the primary key of the record to be

modified.

3. The primary key value is matched in the current

BTREE.

4. If the value is not found, the user is given notification

of the result.

5. If the value is found, the user is given a dialog box,

which contains the current values of the record. Then the user,

can alter or change the record details and save the new record.

6. As the primary key has a default file pointer stored

against it in the MASTER INDEX FILE. The value is used to

alter the record in the database file.

7. STOP

SEARCHING IN A BTREE (example as shown in Figure 6)

Command: Search 250, in the BTREE.

The above mechanism will render the complexity of searching a

key from a large database system to mere O(log n). This method

is adopted because when the amount of records exceeds a certain

level, say 10MB, then the usage of RAM would increase and the

system might consume more and more memory on increase of

records. Instead the storage of each leaf is been on the disk and

whenever the leaf is required the corresponding leaf file is

accessed for that purpose.

Figure 6. Searching mechanism

This way the usage of RAM decreases, though it decreases a

factor for I/O performance. This method is devised keeping in

mind the number of records in the database to be above a

million. The above problem has the time complexity of log(n).

As the BTREE has an implementation in the hard disk rather

than RAM. This states that, if the numbers of records are larger

the size of memory used by the application will be less. But the

I/O operations will render the system to slow; this problem can

be dealt with the help of the BTREE itself, by increasing the

number of nodes to be stored in each leaf, which is set by

DEFAULT as 3 per leaf. This gives flexibility to the problem

according to the number of records stored in a table. Below is

the graph which shows the average real time (in ms) vs number

of items per leaf taken after implementing the algorithm to

search an item on a Pentium 3 (1.65 Ghz) system having Ubuntu

8.10 (linux kernel 2.26) with varied items per leaf set from a

range [3-1700] items per leaf.

Figure 7. Graph generated after implementation of the

algorithm to search an item.

3. ACKNOWLEDGMENTS
Our special thanks to Mr. K. K Majumdar, General Manager,

HCL Info services Ltd. and Ratika Pradhan, Faculty member

from Sikkim Manipal Institute of Technology for reviewing the

project.

4. REFERENCES
[1] Beginning Linux Programming by Neil Mathew and

Richard Stones. Publisher Wrox Publishing inc. 4th Edition.

[2] “Development strategy of MIS for small and medium-sized

enterprise”- Guo-Shun Lin Dong Xiang Qing Chang

Shipping Manage. Coll., Dalian Maritime University.

[3] “Development of a comprehensive management

information system for a large R&D laboratory”- Panella,

R.F.; Jendrian, F.H.; ASTARS Program Branch, Wright

Lab., Wright-Patterson AFB, OH.

[4] “Evolutionary database design and development in very

large scale MIS”- M. C. Filteau, S. K. Kassicieh and R. S.

Tripp.

[5] IBM Informix C-ISAM Version 7.x for UNIX and Linux,

official e-book by IBM Informix. (ISBN - GC27-1491-00)

[6] “Systems Development in Information Systems Research”

– Jay F. Nunamaker, JR., Minder Chen, and Titus D.M.

Purdin.

