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ABSTRACT 

This article proposes a new spatial domain measure of local 

energy to extract the image features like edges. We define the 

measure as the local form factor (FF). It is the ratio of RMS to 

average of the pixel values in a region. Inverse square of the 

local FF around a center pixel is defined as an index of edge 

strength at that pixel. The proposed method could be applied 

directly on any image without smoothing for noise removal. It 

only needs an estimate of the Signal-to-Noise ratio (SNR) of the 

images to compensate the effect of noise. The compensated 

feature image is passed through non-minimum suppression and 

universal thresholding processes to produce the final edge map. 

The performance of the method is assessed using Baddeley 

Error Metric (BEM) and compared with those resulted from the 

popular Canny edge detector with different scales. The 

experimental results are encouraging the application of the 

method to extract edges and hence can be used as a potential 

candidate for general feature extraction.   
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1. INTRODUCTION 
Extraction of Image features like edges, lines etc. finds its 

application in image analysis as well as computer vision for 

several decades. It requires a number of local image 

preprocessing techniques [1-4]. A considerable research has 

been performed for the development of optimal edge detectors 

using various models.  

A gradient based detector has used masks to approximate the 

first derivative of intensity at an image pixel to find the edges 

[1-2]. Performance of these convolution based methods depends 

on the size of the region bounded by the edges and achieves 

accuracy only for specific images [1]. On the other hand, 

Laplacian operator finds the second derivative to determine the 

edge magnitude at each pixel in an image using mask of 

different sizes. It may produce double response to a few types of 

edges [1-2], [5]. The later development in this line such as [4], 

[6-8] utilizes the fact that second derivative crosses zero value at 

the edge pixel in an image. These methods are highly sensitive 

to noise and use a smoothing filter to remove it at the cost of 

higher inaccuracy in the edge location. Literature reports that the 

Gaussian smoothing may lead to suboptimal detection of edges 

[1]. Thus choice of the smoothing scale is crucial. However no 

systematic method exists to find a suitable scale for an optimum 

performance. Moreover, all these methods are highly sensitive to 

illumination variations. Recent work on edge detection by 

Scotney et al. [9] employs a near circular operator. Here the 

Gaussian smoothing is embedded in the operator and thus 

performance depends on choice of scale.   

In [6] Canny has developed an optimal detector for step edges. It 

can detect other types of edges such as roofs, lines and gratings 

etc. with limited accuracy. Amongst all the Canny’s method has 

been the most popular choice as reported in the literature [4], 

[6].   

It is observed that a significant variation in local energy 

indicates the existence of edges in that region [10-11]. It 

suggests that the congruency of phase achieves maximum at the 

edge pixel. This method essentially operates on image in the 

frequency domain. Here, the choice of filter kernel may affect 

the output of the detector. The performance is also dependent on 

the amount of frequency spread and scales considered for the 

measurement [12-14]. The weights to the local energy that 

alleviates the problem with low frequency spread are computed 

using arbitrarily fixed weighting fraction and a gain. It is also 

reported that being a normalized dimensionless index the PC is 

highly sensitive to noise [12-14]. The effect of noise that is 

considered to be uniform in all orientations is removed by a 

choice of threshold that is also dependent on a set of constants 

determined by trial and error. Finally, the computational 

complexity is high for this method [12]. The high computational 

burden is due to large number of convolution operations with 

filters for many wavelet scales and orientations.  

Other technique such as SUSAN is also related to gradient 

measure and thus may be sensitive to noise [15]. Here, the 

choice of user settable thresholds affects the detection 

performance. An improved SUSAN technique has been reported 

in [16]. However, the complexity of this algorithm increases two 

fold as compared to the original SUSAN proposed in [15].  

The multi-scale edge detection reported in the literature may not 

exhibit good performance as the feature count and the location 

varies at different scales [11-14].  Albeit, the computational 

burden of these algorithms is often high for practical uses 

[17-18]. 

An "on and off" edge filter based on learning probability 

distribution has been reported in [19-20]. Here, the learning is 

based on gradient edge map. The performance has been tested 

using misclassification error of edge pixel. However, the 

misclassification error has been reported to be a poor 

performance indicator as far as edge detection is concerned [21]. 
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Moreover, choice of filter scale during learning and test may 

influence the outcome.   

The aim of this paper is to develop an approach of edge 

detection based on the measurement of energy in local region in 

an image. To meet the goal we propose a novel measure of local 

energy. We call it the form factor (FF). Inverse of square of FF 

in a region gives the edge strength. As will be evident, the 

proposed method could be applied directly on any image 

without any pre-smoothing. The FF is computed within a 3 3  

region around a centre pixel. This method only needs an 

estimate of the Signal-to-Noise ratio (SNR) of the images to 

compensate for the effect of noise. The SNR is estimated using 

the method proposed by Sim et al. [22]. The compensated 

feature image is passed through non-minimum suppression (as 

local energy is inversely proportional to edge strength here) 

within 5 5  window and a universal thresholding processes to 

produce the final edge map.  

The qualitative and quantitative results are compared with those 

resulted from the Canny’s detector with different scales. These 

results confirm the suitability of the method to extract edges and 

hence can be used as a potential candidate for general feature 

extraction.  

Section-II describes the proposed method of edge detection. In 

Section-III the experimental results on images with various 

types of edges along with discussion are presented. The 

conclusion and the future scope of the work are presented in 

section IV. 

2. THE PROPOSED METHOD 

2.1. Local Form Factor (FF) in Image 
We define local form factor in an image as the ratio of r.m.s to 

average of pixels sequence ( N

Px ) within a region as:  
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where, and  are mean and standard deviation of  pixel 

values in the region respectively, 
p

is the p  norm of the pixel 

sequence, and N is the number of pixels. 

2.2. The Edge Strength from FF  
The form factor defined in (1) is not a normalized quantity. In 

this section we define inverse of square of FF as a normalized 

index to quantify the image feature like an edge. The 

normalization facilitates the adoption of universal thresholds for 

regions of different sizes. This index indicates the edge strength 

(ESI) at the centre pixel within a small region. Thus the ESI can 

be expressed as: 
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In any image two broad types of region like homogeneous, and 
non- homogeneous that contains edges, lines, corners etc. may 

exist. In homogeneous regions the variance is zero and hence the 

ESI is unity. The non uniform regions will result in ESI values 

less than unity. Thus the maximum value of ESI is 1. The 

minimum limit is reached when the ratio of variance to mean 

becomes largest. This is possible when the variance is the 

highest and mean is the lowest. A vector (element values within 

0 to 255) of all but one non-zero element satisfies the condition 

for the ratio to be minimum.  Thus the range of ESI is as follow 

– 

1
1

N
                                    (3) 

All 

 

values within its range do not represent an edge pixel. A 

coarse idea on the values of ESI for edge can be obtained from 

the relationship between

 

and entropy of a region. We find 

that ESI varies inversely with entropy. It can be expressed as in 

(4) for a Gaussian distribution [23]. 

2

2 (2 1)1

2

He

                                     (4) 

where H is the entropy of the region. The relation in (4) holds 

as entropy is logarithmically proportional to variance of signal 

concerned [23]. It follows that the extreme values of entropy 

produce extreme values of ESI. It is evident that a region with 

low entropy is completely uniform while the high entropy is 

associated with higher degree of irregularities in the region. 

Thus prominent edges cannot exist in the region with such 

extreme values of entropy or ESI.  Therefore the ESI values of 

an edge pixel will tend to lie mid way within its range. 

Statistical test results indicate the boundary of ESI for an edge 

as:  

0.5 edge

high                                           (5) 

where, high  is close to unity and limits the contrast level up to 

which edges (weak edges) are to be detected.  The range of ESI 

in (5) implies that an edge exists in a region where RMS value 

of pixels is less than 2 times of their average value. Fig. 1 

depicts the edge strength values for a step edge in 1-D (similar 

to different level of contrast in image). Here,  is computed 

within a moving window of constant size. It is apparent from the 

figure that the ESI falls within the range as in (5) in presence of 

an edge. 

2.3. ESI under Zero-mean Gaussian Noise 

This section analyses the application of ESI in images corrupted 

with zero-mean random Gaussian noise. From (1) and (2) we 

can express the ESI of a noisy image as   

2

2 2

g

g

g g

    (7) 

where g and 
2

g are the overall mean and variance of the 

region with noise. Replacing the terms in (7) by the means ( s

and 0n ), the variances (
2

s ,
2

n ) and the covariance (
2

ns
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) of the noise free image region and noise the relation between 

ESI of noise free image s and g can be found as 

1 1 1

g s n

                  (8) 

where  

2

2 22
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n ns

 is due to noise. Here the term 
2

ns  

(covariance) can be neglected as the noise is uncorrelated with 

the image.   

Thus                 
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SNR  is the Signal-to-Noise-Ratio 

(SNR) measured in linear scale. So from (2), (8) and (9) we get 
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From (10) it is inferred that the feature value of noise free image 

can directly be computed from the form factor of noisy image 

and the SNR.  

It is observed that the noise term in (9) lowers the minimum 

value of ESI. Thus it also affects the lower limit of the ESI for 

an edge and the change is dependent on the SNR value. 

However, noise compensation prevents this change and keeps 

the ESI range fixed. 

 

   Fig. 1: Range of  of edge points for step edge  

2.4. Estimation of SNR from Single Image 
For removal of the effect of noise on the ESI as observed in (10) 

an estimation of SNR is desirable. An autocorrelation based 

method can be applied for the purpose. In the present work we 

obtain the estimate of the SNR for a region following the 

method developed in [22]. It includes computation of mean and 

autocorrelation peak at origin of the image region which is 

contaminated by zero-mean Gaussian noise. The autocorrelation 

peak of the image without noise is estimated by first order 

neighborhood extrapolation method from two autocorrelation 

values nearest to its peak.  

2.5. Algorithm for Proposed Methodology 
The steps of the algorithm are presented in the flow chart as in 

Fig. 2.The high is decided by the saliency of the weak edges to 

be detected. The edge index for noise free image is computed 

following (10) within a moving window of size 3 3 . 

The algorithm generates a noise compensated ESI-map of the 

image. The ESI values are supposed to attain minimum in the 

direction of lowest variance along the true edge. However, there 

may be spreading around it due to local moving windowed 

operations.  To remove this ESI map is passed through a Non-

Minimum Suppression (NMS) algorithm along the direction of 

lowest variance within the window (of size = 5 5 ) around 

each pixel. This retains the lowest of the ESI values generated 

from the multiple responses around the true edges. Finally edge-

thresholding as in (5) is applied to generate the edge map. 

3. EXPERIMENTS AND DISCUSSION 
In this section we have presented both the qualitative and the 

quantitative performance of the proposed algorithm. A number 

of standard images referred in different literature are considered 

for qualitative assessment [13-14], [15-18]. The images 

contaminated with different SNRs are subjected to the proposed 

algorithm. In the second phase of experiment we consider 

quantitative performance of our algorithm on randomly selected 

sixty images from Berkley Segmentation Dataset (BSDS) [24]. 

The Baddeley Error Metric (BEM) has been chosen as the 

quantitative performance measure. The relative performance has 

been evaluated with respect to Canny’s method as it has been 

accepted as some short of standard by several authors.  

3.1 Edge Map of Images without Noise 
In this subsection we have presented the results of our proposed 

method and those by Canny’s edge detector for the noise free 

images containing different type of edges and regions of varying 

contrast. 

In Fig. 3 we have considered a simple image that contains a 

small embedded. In this figure the intensity level of the square 

and surrounding regions are 0 and 1. This is considered to 

demonstrate the effectiveness of the proposed algorithm for a 

contrast level as low as 1 for gray scale images which are 

invisible to human eye too. The output from Canny’s method 

with default scale 1 is also presented for comparison. A little 

distortion can be seen in this edge map. The detection of weak 

edges is limited by the choice of the upper bound of edge 

strength index (ESI). It can be associated with local entropy 

which is inversely proportional to ESI. It is apparent that the 

entropy of an edge region will assume the mid values in the 

range. Similarly the ESI for edges also falls in the mid-way of 

its range. The image features such as edges assume a value 

within 0.5, high
. The upper limit of the feature value 

determines the contrast level across weak edge that can be 

detected by the method. Empirically, we can find out that high  

may be varied in the range of 0.85,0.9996 . 
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It can be observed that the above image contain only the step 

edges. There are many other types of edges such as gratings  and  

curved edges etc. [13].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Fig. 2: Flow chart of the algorithm 

 

 

 

  

(a)                      (b)                      (c) 

Fig. 3: (a). Original image with low contrast and lower pixel 

value, (b). Edge image by proposed method, (c) Edge image 

by Canny edge detector 

We have considered images as in Fig. 4(a) and Fig. 5(a) that 

contain such types of edges. Gratings in image (Fig. 4) may 

exist in practice due to various orientations of sources of light 

and those of imaging devices.  On the other hand in Fig. 5a a 

star like curved edge is present in a varying contrast region. We 

have shown the results obtained from Canny’s method in 

Fig. 4(b)-(d), Fig. 5(b)-(d) for different scales of the smoothing 

filter. In Fig. 4(e), Fig. 5(e), the edge maps by the proposed 

method without the non-minimum suppression (NMS) are 

presented. These figures show that our algorithm is capable of 

capturing all the required edges. However, widths of these edges 

are not of single pixel. Therefore, we apply NMS within 3 3

as well as 5 5  moving region to obtain edge-maps as 

presented in Fig. 4(f)-(g), Fig. 5(f)-(g).  

In Fig. 4 it can be observed that Canny’s method produces 

multiple edges around the true edge even after non-maximum 

suppression. This is because the edges in the original image 

change their edginess from step to line for which the Canny 

detector may not be effective [13-14] even after extensive 

experiments to find possible improvements with change of 

scales. It is found that our algorithm finds a single edge for the 

same image as it only measures the local energy variation 

instead of the gradient measure. It should also be noted that the 

edges in such cases as well as for the other images may not be 

localized accurately as the smoothing scale is increased. On the 

other hand spurious edges are observed when the scale is 

reduced.  

3.2 Edge Map of Images with Noise 
Under practical situations, the performance of any edge 

detection algorithm is needed to be judged in presence of noise. 

We have added zero-mean Gaussian noise of different 

Signal-to-Noise Ratio (SNR) to the image as shown Fig. 5(a).  

Such a noisy image with 15 dB SNR is shown in Fig. 6(a). The 

results of the Canny’s as well as the proposed algorithm are 

shown in Fig. 6(b) to Fig. 6(h).  

In this case it can be noticed that Canny’s method produces 

higher false negative for all scale as well as higher localization 

error for the higher scale. The better performance of our 

algorithm can be attributed to the integral nature of the proposed 

edge index.  However, the index is not fully insensitive to such 

noises. So a noise compensation of the index is performed. The 

result is shown in Fig. 6(f)-(h). Since our method does not 

require any pre-smoother better localization of edge may be 

observed in the figures shown.  

Finally, from Fig. 5 - Fig. 6 we observe that the best results are 

obtained by Canny’s method with the scale of 1 and 0.75 

respectively. Thus scale of the smoother influence the output of 

the detector. We found consistently good results for our 

algorithm on the same images and noticed that the proposed 

method with 5 5 NMS produces better results than that of 

3 3NMS.  

3.3 Quantitative  Evaluation 

3.3.1 The Dataset 
An extensive analysis of the proposed algorithm has been 

performed on randomly selected sixty images from the Berkley 

Segmentation Dataset (BSDS) [24]. It consists of a wide range 

of natural images along with 5-9 binary edge maps for each of 

these images obtained by human subjects. These binary edge 

images can be considered as ground truth for comparison of the 

output of any edge detection algorithm [24-26]. The images in 

this dataset are of sizes 321 481and 481 321 . 

3.3.2 The Perfomance Index 

Literature suggests a) good detection, b) good localization, and 

c) single response to an edge as three criteria [1], [6], [13-14], 

[21], [27- 28] on the performance of edge detectors. Canny had 

shown that the first two criteria contradict each other [6], [21]. 

The third criterion is generally alleviated by employing 
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non-maximum suppression followed by a hysteresis 

thresholding. In the present algorithm we have used non 

minimum suppression as the ESI is inversely related to local 

energy. Therefore a performance index for edge detector is 

primarily concerned with the first two criteria. 

Studies suggest few indices generally employed to assess the 

performance of an edge detector with the available ground truth 

[18], [21], [25], [29-30]. These are as Misclassification Error, 

Pratt’s Figure of Merit (FOM), and Baddeley Error Metric 

(BEM). The misclassification error is related to finding the 

probability of incorrect classification for every pixel in an 

image. It is evident that this index may be incapable of capturing 

inaccuracies due to shape distortion of object boundaries. This 

leads to the edge localization error. A detail review on this index 

can be found in [30]. The Pratt’s FOM suffers from the above 

anomaly too. In addition to this the index is found to be 

insensitive to false negative error. The proper theoretical 

justification is also unavailable [21]. The BEM proposed in [21] 

has been considered in several research works for measuring 

errors in detection and localization. This index is devoid of the 

shortcomings prevailed in the earlier two [25], [31].  

The BEM is computed using Hausdorff distance for binary 

images [21]. The metric is expressed as follow -    
1

1
, ( ( , )) ( ( , ))

pp
p

w ref ref

x X

I I w d x I w d x I
N

  
(11) 

Where ( , )d x I is the shortest distance from x X to

I X  , ( )w t is a continuous function on 0, , concave and 

strictly increasing and 1 p . The transformation ( )w t is 

defined in [21] as ( ) min( , )w t t c  for a fixed 0c .  

The lower value of 
p

w indicates that I  is close to refI [21], [25-

26], [31]. In the present article we choose to use 
2

w  as the 

performance index for the proposed edge detector.

 

 

 

 

 

 

 

 
Fig. 4: (a). Original image with gratings, (b). Canny edge detection with σ = 0.75, (c) Canny edge detection with σ = 1, (d). Canny 

edge detection with σ = 3,  (e). Proposed edge detection without NMS, (f) Proposed edge detection with 3 3 NMS, (g) Proposed 

edge detection with 5 5 NMS 

 

 

 

 

 

 

 

 

Fig. 5: (a). Original image without noise, (b). Canny edge detection with σ = 0.75, (c) Canny edge detection with σ = 1, (d). Canny 

edge detection with σ = 1.5, (e). Canny edge detection with σ = 3, (f). Proposed edge detection without NMS, (g) Proposed edge 

detection with 3 3 NMS, (h) Proposed edge detection with 5 5 NMS 

a.    b.     c.    d.  

e.    f.     g.  

a.  b.  c.  d.  e.  

f.  g.  h.  
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Fig. 6: (a). Original image with noise of 15dB SNR, (b). Canny edge detection with σ = 0.75, (c) Canny edge detection with σ = 1, 

(d). Canny edge detection with σ = 1.5, (e). Canny edge detection with σ = 3, (f). Proposed edge detection without NMS, (g) 

Proposed edge detection with 3 3 NMS, (h) Proposed edge detection with 5 5 NMS 

 

 

 

 

 

 

 

 

Fig. 7: Overall average BEM on BSDS image dataset different noise condition for proposed method with 3×3 NMS, 5×5 NMS, 

Canny edge detector with different scale (σ). 

3.3.3 The Experiment 
The experimental procedure for quantitative evaluation of the 

edge detector on a given image I taken from the BSDS can be 

performed by the following algorithm-  

1) Compute binary edge map for a given image with and 

without noise following the algorithm depicted in Fig. 2. 

Here we choose weak edge detection limit as 

[0.8,1)high as 0.90. 

2) Compute 
2

w  by considering each of the human-made 

segmented image as reference and the generated edge 

map as test image using (11). Here the scale factor c is 

equal to
2 2321 481 578 . In this case the BEM 

in (11) lies within 0,1 . 

3) Average all the BEM to produce a single measure of 

performance of an edge detector for an image. 

Same performance indices are computed similarly on the same 

dataset for the Canny’s edge detector.  The average BEM over 

the whole dataset for the images without noise and those for 

noise level of SNR = 0, 4, 16, 20dB are shown in Fig. 7 for 

Canny’s method with different scales and the proposed 

algorithm with 3 3and 5 5  NMS.  

We find a consistent low BEM for the proposed algorithm as 

compared to the Canny edge detector. We have also investigated 

with increasing scale (
2 3 ) for Canny’s edge detector. 

However, it produces higher BEM. The results obtained for the 

Canny edge detector may be attributed by the uncertainty 

between the detection and localization of edges [6], [21]. On the 

other hand, the proposed algorithm does not use any pre-filter, 

instead a noise compensation is made in the feature image 

during post processing.  Thus it avoids the localization error. 

In the proposed algorithm the upper bound of ESI is set to 0.9. It 

can be noted that changes in the upper bound of the index may 

influence the results as it will either introduce or omit a few 

weak edges. The decision on the upper bound of the feature 

f.  g.  h.  

a.  b.  c.  d.  e.  
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index can be made based on the context i.e. how far we need to 

detect and localized the weak edges.   

Finally, we found form these measurements that our algorithm 

with 5 5 NMS produces best results on an average throughout 

the image data set. 

4. CONCLUSION 
A new and simple local energy measure called the form factor 

(FF) is introduced. Based on this measure a novel edge detection 

algorithm has been proposed. The edge strength computed as 

inverse of the square of FF. The novelty of this index can be 

summarized as below – 

 It is a dimensionless and normalized index. 

 The effect of noise can easily be alleviated using an 

estimation of SNR for zero-mean Gaussian noise.  

 It does not require any pre-smoothing. Thus the 

uncertainty between edge detection and localization is 

avoided and better accuracy can be achieved.    

 

The experimental validation proves its effectiveness for 

detection of edges in natural images under different noise 

conditions. In the current article a zero-mean Gaussian noise 

model has been considered. However, noise compensation for 

other noise models (such as multiplicative or speckle noise) can 

be explored further. 
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