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ABSTRACT
Let G = (V, E) be a simple, finite, undirected graph. Let k, r be
positive integers. A set S  V (G) is called (k, r)-semi strongly
stable set if | (u) S|  k, for all u V (G). A partition of
V(G) into (k, r)-semi strongly stable sets is called (k, r)-semi
strong coloring of G. The minimum order of a (k, r)-semi
strong coloring of G is called (k, r)-semi strong chromatic
number of G and it is denoted by (G). The number

(G) is determined for various known graphs and some

bounds are obtained for it.

Keywords— (k, r)-semi strongly stable set, (k, r)-chromatic
number.

1. INTRODUCTION
Consider a network and a coloring scheme for the nodes. Two
nodes are compatible if they receive the same color. The usual
coloring scheme stipulates that adjacent nodes should not
receive the same color. Such a scheme is helpful in storage
problem of chemicals where two non compatible chemicals
(two chemicals which when placed nearby will cause danger)
cannot be stored in the same room. The chromatic number of
such a scheme will give the minimum number of storage
spaces required for keeping all the chemicals without any
problem.

In a Institution groups may exist. People in the same group
may have some common interest. People in different groups
may not be well disposed to each other. The affinity of people
within a group may be determined by the closeness between
the people and the number of people in the group. For example
we may say that a group may consist of at most k −1
persons who are within a prescribed mental distance from a
person. When we model this situation graphically, all the nodes
of the same group may be given the same color and different
groups are to be given different colors. Such a situation leads to
what is called (k, r)-coloring [14]. What we stipulate is that
given a node u utmost k − 1 nodes can receive the same color
as u provided they are at a distance utmost r from u.

There are many generalizations of chromatic number
existing in the literature [1-3] [6-9] [11]. The purpose of this
paper is to study yet another generalized coloring called (k, r)-
semi strong coloring of a given graph G.

We present in the beginning the preliminary notions and
results.

We consider only finite simple graphs. Let r  1 be an integer
and G = (V, E) be a graph.

The open r- neighborhood Nr(v) of a vertex v in a graph G is
defined by

(v) = {u: 0 < d (u, v) r}   and its closed r-neighbourhood

is [v] = (v)  {v} The r-degree degr(v) of v in G is

given by | (v)|, while (G) and (G) denote the
maximum and minimum r-degree among all the vertices of G,
respectively.

In this paper, (k, r)-Semi strong coloring is defined and new
results are proved .Dr. E. Sampath kumar and L. Pushpalatha
introduced the concept of semi strong coloring [13].

Definition: 1.2

A set S  V (G) is called (k, r) strongly stable set if  |
(u)  S|  k, for all    u  V(G).A set S  V (G) is called (k,
r)-semi strongly stable set if  | (u)  S|  k,  for all
uV(G).A partition of V (G) into (k, r)-semi strongly stable
sets is called (k, r)-semi strong coloring of G. The minimum
order of a (k, r)-semi strong coloring of G is called (k, r)-semi
strong chromatic number of G and  is denoted by ( G).

Result:1.3

Any graph admits a (k, r)-semi strongly stable partition
containing all singleton subsets of V(G). Therefore the
existence of is guaranteed.

Example:1.4

H

Let r=1, k=1. Let S = {1}.  Any singleton set is a (1, 1) - Semi
Strongly stable set.
Let r=1, k=2. Let S= {6, 2}.
Let r =1, k=3 .Let S= {1, 3, 5}.
Let r=2, k=1 .Let S= {1}. Any singleton set is a (1, 2) - Semi
Strongly stable set.

Let r=2, k=2 .Let S={1, 4}, {5, 2}, {3, 6}
Let r=2, k=3 .Let S={1, 3, 5}, {2, 4, 6}.
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Now let us find (k, r)-semi strong chromatic number for some
standard graphs.

1.5 (k, r)-semi strong chromatic number for some
standard graphs
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3. When 2  m  n
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Remark:1.6

1. If either r ≥ diam(G)  then (G)  = 




k
n

2. If  k  > (G) ,then (G) = 1.

Result 1.7

For any spanning subgraph H of G,     then (G) ≥

(H)

Proposition: 1.8

If (G)   is the maximum r-degree of a graph G, then ⌈
(G) / k ⌉ ≤ (G) Equality holds when K > (G) .

Proof:

Let v be a vertex of G with (G) = (G), then there

exists 





k

Gr )(
sets of neighbours of v having distinct colors.

Therefore  k /(G)r ≤ (G).

If k > (G), then (G) = 1 and  k /(G)r =1.

Hence the equality holds.

Proposition: 1.9

If (G) is the (k, r)-chromatic number of a

connected graph G, then (G) ≤ (G), if G

Proof:

It is well known that (G) ≤  k /(G)r + 1 [14].

Hence (G) – 1 ≤  k /(G)r ≤ (G).
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Proposition: 1.10
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Remark 1.11

If G =P2r or G=C2r (r ≥ 2), then χ(2r,r)(G) = χs
(2r,r)(G)

2. (k, r)-COMPLETE GRAPHS
In this section we introduce the definition of (k, r)-Complete
graph and develop some basic results.

For any fixed k, (G) ≤  kn / , where the equality

is reached when r is the diameter of the graph G. But there are
graphs for which (G) =  kn / .but r is less than the

diameter of the graph G.

These observations motivated the definition of (k, r)-
Complete graph.

Definition: 2.1

For a fixed k and r, a graph G is said to be (k, r)-Complete
graph iff (G) =  kn / .

The Cardinality of maximal (k, r)-Complete sub graph of G
is the (k, r)-clique number of G, denoted by (G).

Observation: 2.2

1. Any graph G is (k, d)-complete for all the values of k and r

2. A graph G is (k, r)-complete for all the values of k and r iff
G is Kn.

Theorem: 2.3

The following are equivalent for graphs G on n ≥ 3 vertices.

1. (G) =  kn / .

2. G is (k, r)-complete.

3. Either G is trivially (k, r)-complete or non-trivially (k, r)
complete.

Theorem: 2.4

For any graph G, k. (G) ≤ (G) ≤ (G)
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