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ABSTRACT 

Let G = (V, E) be a simple graph. Let S be a maximum 

independent set of G. A subset T of                                               

S is called a forcing subset if T is contained   in no other 

maximum independent subset in G.  The independent forcing                                 

number of S denoted by fI(G, S)  is the cardinality of a minimum 

forcing  subset of S. The independent forcing number of G is the 

minimum of the independent forcing number of S, where S is a 

maximum independent subset in G. The independent forcing 

spectrum of G denoted by SpecI(G) is defined as the set 

SpecI(G) = {k :  there exists a maximum independent set S of G 

such that fI(G, S)  = k}. In this paper, a study of  SpecI(G) is 

made..   

Keywords 

Forcing domination number of a graph, Forcing spectrum of a 

graph and Forcing independent spectrum of a graph. 

1. INTRODUCTION 
The forcing sets in a graph are a very interesting concept. In the 

management of an institution, the executive committee consists 

of senior members who have adequate rapport with other 

members of the institution. Some members of the executive 

committee may sit in other important committees also. 

Sometimes, restrictions are imposed on members that they can 

be part of exactly one committee. This precisely leads to the 

concept of forcing set. A subset of a minimum dominating set S 

is called a forcing subset with respect to S if this subset is 

contained in no other minimum dominating set of G.Many 

authors have studied this forcing concept with respect to several 

parameters like domination ,matching ,geodetic domination, 

chromatic partition, etc. This chapter studies the forcing concept 

with respect to maximum independence. A subset of a maximum 

independent set may be contained in other maximum 

independent sets also. For example, in C5 ,every vertex is 

contained in at least two maximum independent sets. The natural 

curiosity is to study such subsets which are constrained to 

remain only in one maximum independent set which is forced to 

remain only in that set. We consider only finite ,simple and 

undirected graphs G=(V,E).[2]Gary Chartered, Gavlas and 

Robert C.Vandell introduced the concept of Forcing domination 

number of a graph. 

 

 

1.1 Definition 

[2] A subset T of a minimum dominating set S is a forcing 

Subset for S if S is the unique minimum dominating set 

containing T. S is called the forcing dominating set of T. The 

minimum cardinality among the forcing subsets of S is called 

the forcing domination number of S and is denoted by f(S, γ 

(G)). The minimum forcing domination number among the   

minimum dominating sets of G is denoted by f(G, γ). That is 

f(G, γ) = min f(Si, γ) , where Si
’ s are the minimum dominating 

set of   G.  Cleary, for any graph G,  f(G, γ) ≤ γ (G). 

1.2 Defintion 

 [1] Let G be a simple graph. The forcing spectrum of G denoted 

by Spec γ(G) is defined as the set Spec γ(G) = {k: there exists a 

minimum dominating set S of G such that f(S, γ(G)) = k}. 

The above two concepts are extended in the context of 

maximum independent sets. 

1.3 Definition 

Let S be a maximum independent set of G. A subset T of S is 

called a forcing subset if T   is contained in no other maximum 

independent subset in G. The independent forcing number of S 

denoted by  fI(G, S)  is the cardinality of a minimum forcing 

subset of S. The independent forcing number of G is the 

minimum of the independent forcing number of S, where S is a 

maximum independent subset in G. The independent forcing 

spectrum of G denoted by SpecI(G) is defined as the set 

SpecI(G) = {k : there exists a maximum independent set S of G 

such that  fI(G, S) = k}. 

1.4 Example 
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The maximum independent sets of G are {6,7,8,2,4}(say S1), 

{6,7,8,2,5} (say S2) and {6,7,8,3,5}(say S3). In S1, 4 is the only 

one vertex which is not contained in any other maximum 

independent set. Hence the specturum of S1 = {1}. In S2, {2,5} 

is the subset of minimum cardinality which is not contained in 

any other maximum independent set. Hence the spectrum of    S2 

= {2}. In S3, 3 is the only one vertex which is not contained  in 

any other maximum independent set. Hence the spectrum of     

S3 = {1}. Hence SpecI(G) = {1,2}. 

1.5 Remark 

If G has a unique maximum independent set, then  

SpecI(G) = {0}. 

Specl(G) for some standard graphs 

 1. SpecI (Kn) = {1}. 

 2. SpecI (

−

nK ) = {0}. 

3. SpecI(K(1,n)) = {0}. 

4. SpecI(K(m,n)) =  





=

≠

n m  {1},

nm   {0},
 

5. SpecI(Cn) =  





odd isn  if{2},

even isn  if },1{
 

6. SpecI(Dm,n) = 0, where m < n. 

7. SpecI(Pn) = 









≠

=

4n andeven  is   },1{

odd isn   if {0},

4  },2{

nif

nif

 

8. SpecI(Wn) =  





even isn  if{2},

odd  isn  if },1{
 

2.1 Theorem 

 Let G be a graph with  SpecI(G) = A.  Then for any integer k, 

there exists a graph H with SpecI(H) = {x + k : x є A}. 

Proof 

Let H = G U kC4.  SpecI(H) = {x + k : x є A}. Let S = {u1, u2. . . 

ur} be a maximum independent set of G whose forcing 

independent number is x. Let vi1 , vi2 , vi3 , vi4 be the vertices of 

i-th copy of C4 in the cyclic order. Then S U {vi1 , vi3 : 1 ≤  i ≤ 

k} is a maximum independent set of H, for which   the minimum 

forcing set is {uj1 , uj2 , . . . , ujx, vi : 1 ≤ i  ≤ k}, where {uj1 , uj2 , . 

. . , ujx} is an independent forcing set of S of minimum 

cardinality. 

2.1 Theorem 

There exists a graph G in which ∈)(0 Gβ SpecI(G). 

Proof 

Let H be any connected graph. Let G = H ◦ K1. Let | V (H) | = n. 

Let T = {v1, v2. . . vn} be    the set of all pendant vertices of G. 

Consider any proper subset T1 = {vi1 , vi2 , . . . , vij} of T. (j < n).  

Let vj  є  T − T1.Then T2 = {v1, . . . , vj−1, uj , vj+1, . . . , vn} is a 

maximum independent subset of G where uj is the support of vj 

in G. Thus T1 is not in a forcing subset of T. Therefore T is the 

only independent forcing subset of T.  

Therefore  fI(G, T) = n = )(0 Gβ . 

2.2 Observation 

There exists a graph G for which SpecI(G) = {1, )(0 Gβ )}. 

For example, SpecI(Kn oK1) = {1, n}. 

2.3 Observation 

For any positive integer 'a', there exists a graph G with  

SpecI(G) = {a, a + 1} . For example, take G = P4  U (a − 1)C4. 

2.4 Definition 

Let k, n be two positive integers, such that 2 ≤ k ≤n. Let M  be a 

set with n elements. The Kneser graph H(n, k) is defined as the 

graph  whose vertex set V is the set of all subsets of a n -set of 

cardinality k and two vertices of H(n, k) are adjacent if and only 

if the corresponding sets are  disjoint.  

2.4 Theorem 

0β (H(n, 2)) = n − 1 and SpecI (H(n, 2)) = {2}                  

Proof 

Let S = {1, 2, . . . , n}. Then V(H(n, 2)) = {(xi, xj) : xi, xj Є S, xi 

≠ xj}. For any x Є S, T = {(x, y) : y Є S, y ≠ x} is an 

independent set in H(n, 2). Therefore β0(H(n, 2)) ≥ |T| = n − 1. 

Let T be any independent set of  (H(n, 2)). Suppose (x, y) Є T. 

Then (u, v) ∉  T, for all u, v  ∉   {x, y}. There  are (n−2)-
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elements in S−{x, y}. Thus (n−2)C2 vertices in H(n, 2) can not 

be in T. Therefore |T| ≤ nC2 − 
( )( )

2

32 −− nn
= 2n − 3. Let (x, y) Є 

T. Then any element of T is either (x, z) or (y, z). Let (x, z) Є T.                   

Case(i): Suppose (y, z) Є T. Then |T| = 3. 

Case(ii): Suppose (y, z) ∉   T. Then (y,w) ∉   T, for all w ≠ {x, 

y}. That is, T does not contain n − 2 elements. Therefore |T| ≤ 

(2n − 3) − (n − 2) = n − 1. Thus |T| ≤  max {3, n − 1}. Therefore 

β(H(n, 2)) ≤ n − 1. Therefore    β0(H(n, 2)) = n − 1. From the 

above, we get that the only maximum independent sets of  H(n, 

2) are {ur, ui : 1 ≤ i ≤ n, i ≠ r, ur fixed}.  

          Therefore, SpecI(H(n, 2)) =  {2}. 

2.5 Observation 

SpecI( Pm Pn) =  



 ≡

otherwise {1},

2) 1(modmn  if    , {0}   

Proof: 

If mn ≡1(mod 2), then PmPn contains a unique maximum 

independent set of cardinality  






2

mn .Therefore SpecI(PmPn) 

= {0}. If mn ≡ 0(mod 2), then PmPn contains exactly two 

maximum independent sets of cardinality 
2

mn
and each vertex is 

contained in a unique maximum independent set. Therefore 

SpecI(PmPn) = {1}. SpecI(PmPn) = {0}. 

2.6 Theorem 

Given any three positive integers a + 1, a + 2, a + 3, a ≥ 0, there 

exists a graph G with SpecI(G) = {a + 1, a + 2, a + 3}.                                

Proof: 

 

Consider the  graph  H= G U aC4, where a ≥0. Then SpecI(G) = 

{a + 1, a + 2, a + 3}.The maximum independent sets of G are 

S1={3,5,6,8,9},S2={4,5,6,7,9},S3={5,6,7,8,9}, 

fI(G,S1)=1,fI(G,S2)=2,fI(G,S3)=3 

Hence SpecIG={1,2,3}. 

2.7 Result 

Let G be the graph obtained by joining exactly two vertices one 

each from two vertex  disjoint complete graphs. Then SpecI(G) 

= {2}. 

Proof 

 Let Kn and Km be any two complete graphs with vertex sets {u1, 

u2, . . .,un} and {v1, v2, . . . , vm}  respectively. Join a vertex of 

Kn say ui, 1≤ i ≤ n with any one vertex of Km say vj,1≤  j ≤ m. 

Let the resulting graph be denoted by G. Now the maximum 

independent sets are {u1, vj},1 ≤ j ≤ m or {u2, vj},1 ≤ j ≤ m  or . . 

., {un, vj},1 ≤ j ≤ m or {ui, v1},1 ≤ i ≤ n or {ui, v2},1 ≤ i ≤ n,. . ., 

{ui, vm},  1 ≤ i ≤ n. Hence SpecI(G) = {2}. 

2.8 Definition 

From a graph G, by Mycielski’s construction, one can get a 

graph µ(G), with V (µ(G) = V ⋃ U ⋃ {w}, where: V = V (G) = 

{v1, v2, . .  ,vn};     U = {u1, u2, . . . , un} and E(µ(G)) = E(G) U 

{uiv : v Є NG(vi)} ⋃ {uiw    : 1 ≤ i  ≤    n}.  For each 0 ≤ i ≤ n,    

vi and ui are called the corresponding Vertices   of  µ(G). 

2.9 Theorem 

Let |V(G)|=n ≥3.Then ( )( ) ( ) ( ){ }GGVG 00 2|,|max βµβ >  

if and only if G is constructed as follows: Start with 

nK .Choose a subset S of vertices of  nK of cardinality s and a 

subset R of S of  cardinality r  ≤  s-3 such that r + s > n. Draw at 

least one edge from each vertex of V-S to the vertices of R 

.Draw edges such that ( )G0β < 
2

tn+
where t = r + s - n. 

Proof 

Let V(G)={u1,u2…un}  and V(µ(G))={u1,u2…un,u1’,u2’…un’,v}. 

Let ( )( ) tnGG +=µβ 0
where 2 ( )G0β  <  n +  t. Since 

|V(G)|  ≥  3,v does not belong to any 
0β set of ( )Gµ ,then 

S∩V(G) ≠ ф. Let S∩V(G) = r ≥1. Let S∩V’(G) = s≥1.Suppose 

S1= S∩V(G) and T’= S∩V’(G).Let T be the set of 

corresponding vertices of T’. Suppose T∩S1=ф. Then | 

T∪S1|=|T|+|S1|=|T’|+|S1|=s+r ≤ n(since T∪S1 is a subset of 

V(G)).Therefore  n+t ≤ n implies t≤0,a contradiction.  Suppose 

S1 is not contained in T. Let T = {ui1,ui2,…uir} where S1-T≠ Φ. 

Let without loss of generality u1 ∈ S1-T.Let W=T′ ∪{u′i1}. 

Therefore, W∪T is independent in µ(G) of cardinality r+s+1, a 

contradiction. Therefore, S1-T= Φ. That is, S1 ⊆T. Suppose  r ≥ 

s. r + s = n+t ≤  2r.That is , n + t ≤ 2 β0(G) (Since r ≤  β0(G)) ,a 
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contradiction, since  2 β0(G)  ≤  n + t. Therefore, r  <s. Thus, 

2 β0(G)   <  r+s < 2s. Therefore, β0 (G) < s implies       r ≤ β0(G) 

< s. Let T’= S ∩V’(G) = {u1’,u2’,…..us’}.Thus 

T={u1,u2,…..us}.Since S1 ⊆ T, let without loss of 

generality,S1={u1,u2,…..ur}, r < s. Let U = {ur+1,…us}. Then 

|U|=s-r. Let H be the sub graph of G induced by U. Every 

vertices of U is not adjacent to any vertex of S1, for otherwise, S 

will not be independent. Let  β0(<U>) = α ≥1. Therefore,    
β0(G) ≥  α+r. Therefore,  2β0(G) ≥ 2( α+r) <r+s implies 

α<
2

s r−
.But α≥1. Therefore, s-r > 2r ≥ 2. Therefore, s≥r+3. 

Therefore, |T-S1| ≥ 3.since r ≤ s-3,r + s = n + t gives r=n+t-s≤s-3. 

Therefore,n+t≤2s-3 implies 2s≥n+t+3. Therefore,s≥
2

n t s+ +
.But s 

≤ n. Therefore, 3
2

n t+ +  ≤ s ≤ n.Therefore, t + s ≤ n implies t ≤ n-

3.Thus n+t≤2n-3.Therefore, ( )( )0 2 3G nβ µ ≤ − .Choose 

any subset R′ of V′(G) such that |R′| = s and s ≤ n. Let R be the 

corresponding vertices of R′ in V(G).let X be a subset of R of 

cardinality r such that r + s= n+t, t ≥ 1.Since r ≤ s-3,there are at 

least three vertices in R-X. Let U=R-X and Y=V-R. There is no 

edge between Y and U. Every vertex of Y is adjacent to at least 

one vertex of R.  

     For : otherwise, if there exist a vertex y∈Y such that y is not 

adjacent to any vertex of R, then T′∪{y}∪R IS an independent 

set of ( )Gµ of cardinality  s + 1 + r , a  contradiction . Draw 

edges between R and U and between Rand Y such that β0(G) < 

2
n t+

. Then β(µ(G)> max {|V(G)|, 2β0(G)}. It is easily seen that 

the construction described in the theorem gives rise to a graph 

for which β(µ(G) > max{|V(G)|, 2β0(G)} and if this condition is 

satisfied then G comes out from K �n in the manner in which the 

construction is done. Hence  the theorem. 

2.10 Theorem 

Let n = 10. To construct a graph G of order 10 such that β0 (µ 

(G))=12 and β0(G)=5.consider K �10 with V(K10)={u1,u2,…u10}. 

let R = {u1,u2,…u8} and X = {u1,u2,u3,u4.} .U=R-

X={u5,u6,u7,u8}.Y=V-R={u9,u10}.Draw at least one edge from 

each of u9,u10 to R. Draw  edges  between X and U and among 

U such that β0 of the resulting graph is 5. Then 

{u1′,u2′,…u8′,u1,u2,u3,u4} is a maximum independent set of  

µ(G). β( µ (G))=12 >  max{ |V(G)| , 2β0(G) }. 

 

2.11 Theorem 

Let G be a graph of  order n. Let ( )( )Gµβ0
 = max{2 β0(G),n} 

and let β0(G)=
2
n

.Then SpecI(µ(G))= SpecI(G)∪{α} where α is 

1 or 2.α is 1 iff there exists a vertex in G which is not contained 

in any maximum independent set. 

Proof:  

 Suppose  β0(G) =
2
n

(that is n is even).For any maximum 

independent set S of  G, S∪S’ is a maximum independent set of  

µ(G),where S’={x’:xaS}. Also V’ is a maximum independent 

set of  µ(G). Since β0(G)  =
2
n

, G≠ nK . Therefore there exists at 

least one edge in G.  

Case (i):  Any vertex in G is contained in a maximum 

independent set of G. Then any u' Є V'(µ(G)) is contained in two 

maximum independent sets of µ(G)  namely V' and I − {u} U 

{u'}, where I is the maximum independent set  containing u. 

Also, if u, v are adjacent in V, then u',v' are contained in the  

unique maximum independent set of µ(G), namely V'. Therefore 

the forcing number of V' is 2. 

Case (ii): There exists a vertex u in G which is not contained in 

a maximum independent set of G. Then u' is contained in a 

unique maximum independent set of µ(G), namely V'. Therefore 

the forcing number of V' is 1.Let I be any maximum 

independent set of µ(G) different from V'. Then I = S U S', 

where S is a maximum independent set of G. Any forcing 

independent subset of S in G is also a   forcing independent 

subset of I in µ(G). Any subset of S' is not a forcing 

ind/ependent subset of  I since S' is  contained in V'. Let T⊆  S 

and T 1⊆  S'. Suppose T U T 1  is a forcing independent subset of 

S U S' in µ(G). Then T is a forcing independent subset of S in G 

and hence a forcing independent subset of S U S' in µ(G). But |T| 

<  |T U T 1 |, a  contradiction . Therefore, the forcing 

independence number of S U S' in µ(G)  coincides with the 

forcing independence number of S Є G. Hence the theorem  

2.11 Theorem 

4 ∉ SpecI(C5 ο k1). 

Proof: 

Any maximum independent set of C5 ο k1is one of the following 

types 

(i)All pendant vertices. 

(ii)Single vertex from C5 and 4 pendant vertices attached to the 

other vertices of C5. 

(iii)Two vertices from C5 and 3 pendant vertices attached to the 

other vertices of C5. 

    The maximum independent set formed by type (i) has forcing 

independence number 5. The maximum independent set formed 

by type (ii) has forcing independence number 2. 
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The maximum independent set formed by type (iii) has forcing 

independence number 3.Therefore SpecI(C5 ο k1)={1,3,5}. 

Hence 4 ∉SpecI(C5 ο k1). 

2.12 Theorem 

SpecI(C(2n) ◦ K1) = {n, n + 1, . . . , (2n − 2), 2n}. 

Proof 

Consider C2n ◦ K1. Any β0-set of C2n ◦ K1 is one of the following 

types. 

    (i) All pendant vertices of  C2n ◦ K1. 

    (ii) k independent vertices from C2n and n − k pendant 

vertices attached to other vertices of C2n ,  (1 ≤ k ≤ n) . 

The maximum independent set formed by type(i) has forcing 

independence number 2n. The maximum independent set of 

type(ii) has forcing independence number 2n − (k + 1), if k ≤ n − 

1 and n if k = n.  

2.13 Remark 

SpecI(C(2n+1)  ◦ K1) = {n, n + 1, . . . , (2n − 1), (2n + 1)}. 

2.14 Remark 

|SpecI(Cn ◦ K1)| = 





2

n
 

2.15 Result 

Let G = G1 ∪  G2.. Then SpecI(G1 U G2) = {x : x = y + z, y Є 

SpecI(G1), z Є SpecI(G2)}. 

 Proof: 

Let y Є SpecI(G1) and z Є  SpecI(G2). Let {u1, u2, . . . , ut} be a 

maximum  independent set of G1 with forcing independent 

number y and {v1, v2, . . . , vs} be a maximum independent set of 

G2 with forcing independence number z. Then   {u1, u2, . . . , ut, 

v1, v2, . . . , vs} is a maximum independent set of G1  U G2 with 

forcing independence number y +z. Therefore y +z Є SpecI(G1  

∪  G2).    

Any maximum independent set I of G1 U G2 is the union of 

maximum independent set I1 of G1 and a maximum independent 

set I2 of G2. That is I = I1 ∪ I2 . Let k be the forcing 

independence number of I. Any forcing independent subset of I1 

combined with any forcing independent set of I2 is a forcing 

independent set of I. Let I = {u1, u2, . . . , ut1 , v1, v2, . . . , vt2}, 

where u1, u2, .  . , ut1 Є I1 and v1, v2, . . . , vt2  Є I2. Let { ui1 , ui2 , 

. . . uir1 , vj1 , vj2 , . .. ,vjr2}  is a forcing independent subset of I of 

cardinality k. Clearly { ui1 , ui2 , . . .uir1 } is forcing in I1 and {vj1 

, vj2 , . .. , vjr2} is forcing in I2. Therefore k = r1 + r2,           where 

r1 Є SpecI(G1) and r2 Є SpecI(G2).  

2.16 Result 

SpecI(Cn) ∪  SpecI( nC ) = 









≥

≥

oddn  and 5 n  if {2}

evenn  4, n  if 2} {1,

3 =n  if 1} {0,

                                                 

Proof: 

 SpecI(Cn) = 





≥

≥

oddn  5,n  if {2}

3. =n  (or) 4 n  even, isn  if {1}
 

Let n ≥5. Then   )(0 nCβ  = 2.  Any vertex of nC  is contained 

in two maximum independent set of Cn. Therefore SpecI(Cn) = 

{2}.Also, SpecI( 4C ) = {2}. 

Hence SpecI(Cn) U SpecI( nC ) = 









≥

≥

oddn  and 5 n  if {2}

evenn  4, n  if 2} {1,

3 =n  if 1} {0,

 

2.17 Remark 

Given any positive integer k, there exists a graph G such that 

β0(G) − |SpecI(G)| = k.   For: β0 (C(2k+2)) = k + 1. |SpecI(C2k+2)| = 

1. 

2.18 Remark 

SpecI(G) ≤ β0(G) ≤ n− χ(G)+1( since χ(G) ≤ n− β0(G)+1). 

2.19 Theorem 

Let G1 and G2 be two simple graphs. Let without loss of 

generality, β0(G1) ≤ β0(G2). Then SpecI(G1 + G2) = SpecI(G2). 

 Proof:  

Since β0(G1 + G2) = max (β0(G1), β0(G2) and β0(G1) ≤ β0(G2), we 

have SpecI(G1 + G2) = SpecI(G2). 

2.20 Result 

β0(G) Є SpecI(G) if and only if there exists a maximum 

independent set I in G such that for every vertex u in I, there 
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exists a vertex u' ∉ I such that  (I --{u}) U u' is independent. 

Proof: 

Suppose there exists a β0-set I satisfying the hypothesis. Then 

given any proper subset J of I, there exists w ∈ I −J and for this 

w, there exists w' ∉  I such that I' = (I − {w}) U {w'} is a β0-set. 

Clearly J is contained in I as well as I'.  Therefore no proper 

subset of I is a forcing independent set of I. Therefore β0(G) Є 

SpecI(G). Conversely, let β0(G) Є SpecI(G).Then there exists a 

β0-set I such that any proper  subset of I is not a forcing 

independent set of I. Let u Є I. Then I −{u} is not a  forcing 

independent set of I. Therefore I −{u} is contained in a β0-set I'. 

Since |I − {u}| = β0− 1 and |I'| = β0, there exists u' Є I', u'  ∉ I 

such that (I − {u}) U {u'}=I'.  

2.21 Corollary 

If β0(G1) Є SpecI(G) and β0(G2) Є SpecI(G2), then β0(G1 U G2) Є 

SpecI(G1 U G2). 
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