
International Journal of Computer Applications (0975 – 8887) 

Volume 21– No.4, May 2011 

27 

Optimal Therapeutic Control Modeling for Immune 

System Response 

Pramila Bajpai  

Department of Applied 
Sciences, Vidya College of 

Engineering, Meerut.  

 

 

Ashish Chaturvedi 

Director, Kishan Institute of 

Engg & Technology, Meerut.  

 

A. P. Dwivedi 

Director, MCA, Radha Govind 
Engineering College, Meerut.

ABSTRACT 

Paper demonstrates the stochastic optimal control model to 

enhance immune system response. Immune system response can 

be amplified by agents that kill the pathogen, which stimulates 

the production of antibodies and implies the enhancement in the 

health of the organ. Imperfect measurements of the dynamic 

state degrade the precision of feedback adjustments to therapy; 

however, optimal state estimation allows the feedback strategy 

to be implemented with incomplete measurements and 

minimizes the expected effects of measurement error. The 

stochastic approach with genetic computing is evaluated to 

minimize the mutiobjective treatment cost function. 

Key words:  Immune system response, stochastic optimal 

control, Multi-objective cost function. 

1. INTRODUCTION 

Numerous reactive (protective) dynamic responsive mechanisms 

takes part to control the uncontrolled growth of pathogens when 

some infectious microbes strikes to the biological system. First, 

the resistant system of the body provides a unplanned response 

to the microbes, by killing pathogen if it can be, inducing 

inflammation and vasodilatation that aids the defense, causing 

blood coagulation that slows the spread of infection to other 

parts of the body, and raising the alarm for more complete 

response. In the process, a humoral response is initiated, 

signaling the presence of extracellular “non-self’ organisms. 

This causes to activate Blood cells to convert in plasma cells 

that are specific to the intruders’ antigens. The plasma cells 

produce antibodies that bind to the antigens, mediating the 

destruction of pathogens by various modalities [3–5]. The 

adaptive immune system provides a strategic response that is 

tailored to the primary attack, producing B and T cells, as well 

as a host of molecules, that defeat specific intracellular 

pathogens by binding to infected cells and either killing them 

outright, inducing programmed cell death, or signaling other 

cells to finish the job. Inherent, humoral, and adaptive immune 

responses can be coupled. Many models of immune response to 

infection have been already in literature [6], with recent 

emphasis on the human-immunodeficiency virus [7-8]. Norbert 

Wiener and Richard Bellman appreciated and anticipated the 

application of mathematical analysis to treatment in a broad 

sense can be seen in [9-10], and Swan surveyed early optimal 

control applications to biomedical problems. This can be seen in 

[11]. Optimal control theory was depicted as an organizing 

principle for natural immune system behavior in [12], and it is 

applied to HIV treatment in [13]. Intuitive control approaches 

are presented in [14]. The dynamics of drug response 

(pharmacokinetics) are modeled in [15], and control theory is 

applied to drug delivery is discussed in [16]. 

First, we evaluated remedial treatments with differing 

hypotheses about the initial pathogen concentration. If the initial 

concentration is known precisely [1], the optimizing control 

history maximizes efficacy of the drug while minimizing its side 

effects and cost. For the second study [2], a feedback strategy 

based on a linear perturbation model of response dynamics is 

derived to account for variations induced by unknown initial 

infection. The therapy is modified as a function of the difference 

between the optimal and observed dynamic states over the entire 

treatment period, assuming that the difference is measured 

without error. This paper deals a linear-optimal state evaluator in 

the feedback therapy to minimize the effects of measurement 

error. However, we are using the model of immune response that 

was employed in [1, 2].  

2. EVOLUTIONARY COMPUTING: 

GENETIC ALGORITHMS & MULTI-

OBJECTIVE GENETIC ALGORITHMS 

The concept of GA was developed by Holland and his 

colleagues in the 1960s and 1970s [17]. GA are inspired by the 

evolutionist theory explaining the origin of species. In nature, 

weak and unfit species within their environment are faced with 

loss by natural selection. The strong ones have greater 

opportunity to pass their genes to future generations via 

reproduction. In the long run, species carrying the correct 

combination in their genes become dominant in their population. 

Sometimes, during the slow process of evolution, random 

changes may occur in genes. If these changes provide additional 

advantages in the challenge for survival, new species evolve 

from the old ones. Unsuccessful changes are eliminated by 

natural selection. In a population-based approach, GA are one of 

the best tool to solve multi-objective optimization problems 

[27].  

A generic single-objective GA can be modified to find a set of 

multiple non-dominated solutions in a single run. The ability of 

GA to simultaneously search different regions of a solution 

space makes it possible to find a diverse set of solutions for 

difficult problems with non-convex, discontinuous, and multi-

modal solutions spaces. The crossover operator of GA may 

exploit structures of good solutions with respect to different 

objectives to create new non-dominated solutions in unexplored 

parts of the Pareto front. In addition, most multi-objective GA 

do not require the user to prioritize, scale, or weigh objectives. 
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Therefore, GA have been the most popular heuristic approach to 

multi-objective design and optimization problems. Jones et al. 

[18] reported that 90% of the approaches to multi-objective 

optimization aimed to approximate the true Pareto front for the 

underlying problem. A majority of these used a metaheuristic 

technique, and 70% of all metaheuristics approaches were based 

on evolutionary approaches.  

The first multi-objective GA, called vector evaluated GA (or 

VEGA), was proposed by Schaffer [19]. Afterwards, several 

multi-objective evolutionary algorithms were developed 

including Multi-objective Genetic Algorithm (MOGA) [20], 

Weight-based Genetic Algorithm (WBGA) [21], Random 

Weighted Genetic Algorithm (RWGA) [22], Rank-Density 

Based Genetic Algorithm (RDGA) [23], Dynamic Multi-

objective Evolutionary Algorithm (DMOEA) [24] etc.  

3. MATHEMATICAL MODELING OF 

IMMUNE SYSTEM RESPONSE 

We are considering here, the mathematical model as employed 

in [1, 2] which is the idealize model of a generic humoral 

immune response. The model consisting of four components: the 

concentration of a foreign pathogen (y1), concentration of 

plasma cells (y2), concentration of antibodies that bind to the 

antigen (y3) and a measure of the health of an organ (y4) that 

may be damaged in infection attack. The model presented in [1, 

2] has not been accounted for therapy. We have modified the 

original model by adding active and passive immunotherapeutic 

control agents, i  (Active immunotherapy strengthens natural 

immune response, as by enhancing plasma cell and antibody 

production, while passive immunotherapy addresses the effects 

of infection directly, as in killing the pathogen or healing the 

infected organ) and an exogenous input, i , to the model: 

pathogen killer ( 1 ), plasma cell booster ( 2 ), antibody 

booster ( 3 ), and organ healing booster ( 4 ). The dynamic 

system can be represented by the following set of ordinary 

differential equations: 

1111312111 )( qyypqy 


   (1) 

22222313224212 )()( qyypyypypy 





(2) 

333133322313 )( qyyppypy 


 
 (3) 

444421414 ( qypypy     
(4) 

The parameters used for this study are:  
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Figure 2 shows typical uncontrolled response to increasing 

levels of pathogen concentration at the start of the time domain. 

We may assume some initial period of microbial infection and 

growth prior to beginning the simulated immune response at 

zero time. 

4. STOCHASTIC OPTIMAL 

THERAPEUTIC CONTROL MODEL & 

ITS SOLUTION WITH GA 

The optimal therapeutic protocol is derived by minimizing a 

treatment cost function, TH that punishes large values of 

pathogen concentration, poor organ health, and excessive 

application of therapeutic agents. This multi-objective, positive-

definite scalar cost function of many variables allows tradeoffs 

between important factors to be adjusted through the relative 

weighting of individual components.  Systematic responses tend 

to reinforce each other while conflicting responses compete in 

the development of an optimal regimen. The cost function is 

evaluated over the fixed time interval [ti, tf] and can be given as, 
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The cost-function elements are squared to amplify the effects of 

large variations and to de-emphasize contributions of small 

variations. Each squared element is multiplied by a coefficient 

(aii, bii, or cii) that establishes the relative importance of the 

factor in the treatment cost. These coefficients could reflect 

financial cost of treatment, or they could represent physiological 

‘cost’ such as virulence, toxicity, or discomfort. The resulting 

treatment protocol balances speed, efficacy, and cost of 

treatment against implicit side effects.  

Being a population-based approach, GA are well suited to solve 

multi-objective optimization problems. The classical approach 

to solve a multi-objective optimization problem is to assign a 

weight wi  to each normalized objective function THi (y) so that 

the problem is converted to a single objective problem with a 

scalar objective function as follows, 
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where )(yHT i
  the is the normalized objective function 

)(yTH i and 1 iw . This approach is called the priori 

approach since the user is expected to provide the weights. 

Solving a problem with the objective function (7) for a given 

weight vector },.......,,,{ 321 kwwwww  yields a single 

solution, and if multiple solutions are desired, the problem must 

be solved multiple times with different weight combinations. 

The main difficulty with this approach is selecting a weight 

vector for each run. To automate this process; Hajela and Lin 

[21] proposed the WBGA for multi-objective optimization 

(WBGA-MO) in the WBGA-MO, each solution yi in the 

population uses a different weight vector 

},.......,,,{ 321 kwwwww  in the calculation of the 
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summed objective function (6). The weight vector wi is 

embedded within the chromosome of solution yi. Therefore, 

multiple solutions can be simultaneously searched in a single 

run. In addition, weight vectors can be adjusted to promote 

diversity of the population. 

Other researchers [22,25] have proposed a MOGA based on a 

weighted sum of multiple objective functions where normalized 

weight vector wi  is randomly generated for each solution yi 

during the selection phase at each generation. This approach 

aims to stipulate multiple search directions in a single run 

without using additional parameters. The general procedure of 

the RWGA using random weights is given as follows [25]: 

Procedure RWGA:  

E =external archive to store non-dominated solutions found 

during the search so far; 

 nE = number of elitist solutions immigrating from E to P in each 

generation. 

Step 1: Generate a random population. 

Step 2: Assign a fitness value to each solution tPy  by 

performing the following steps: 

Step 2.1: Generate a random number uk in [0,1] for each 

objective k, k =1,…..,K. 

Step 2.2: Calculate the random weight of each objective k as 





k

i

i

k

k u
u

w
1

1
. 

Step 2.3: Calculate the fitness of the solution as 
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Step 3: Calculate the selection probability of each solution 

tPy  as follows:  
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Step 4: Select parents using the selection probabilities calculated 

in Step 3. Apply crossover onthe selected parent pairs to create 

N offspring.Mutate offspring with a predefined mutation rate. 

Copy all offspring to Pt+1.Update E if necessary. 

Step 5: Randomly remove nE solutions from Pt+1 and add the 

same number of solutions from E to Pt+1. 

Step 6: If the stopping condition is not satisfied, set t =t + 1 and 

go to Step 2. Otherwise, return to E. 

The main advantage of the weighted sum approach is a 

straightforward implementation. Since a single objective is used 

in fitness assignment, a single objective GA can be used with 

minimum modifications. In addition, this approach is 

computationally efficient. The main disadvantage of this 

approach is that not all Pareto-optimal solutions can be 

investigated when the true Pareto front is non-convex. 

Therefore, multi-objective GA based on the weighed sum 

approach have difficulty in finding solutions uniformly 

distributed over a non-convex tradeoff surface [26].  

5. CONCLUSION 

The model presented here having active and passive 

immunotherapeutic control agents, and pathogen killer, plasma 

cell booster, antibody booster, and organ healing booster to 

model enhanced immune system response. For a strong enough 

attack, the combination of immune response and nominal 

therapy is insufficient, and the pathogen grows without bound, 

killing the organ. The therapeutic protocol must be adjusted to 

accommodate the change, either through continued reevaluation 

of the stochastic optimal policy or through a simpler mechanism 

for modifying the policy in proportion to deviations from the 

expected response history.  

 

Figure 1: Proposed generic humoral immune system model 
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Natural Antibody Growth on attack
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Figure 2: Pathogen and antibody response on microbial 

attack  
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Pathogens after treatment
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Antibody Development on treatment
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Figure 3 : shows the enhancement in immune system 

response after optimal therapy treatment. 
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