
International Journal of Computer Applications (0975 – 8887)

Volume 21– No.5, May 2011

35

Predicting Missing Items in Shopping Carts
using Fast Algorithm

Srivatsan. M

Sri Venkateswara
College of Engineering,

Chennai- 602105

Sunil Kumar. M
Sri Venkateswara

College of Engineering,
Chennai- 602105

Vijayshankar. V
Sri Venkateswara

College of Engineering,
Chennai- 602105

Leela Rani P
Assistant Professor
Sri Venkateswara

College of Engineering,
Chennai- 602105

ABSTRACT

Prediction in shopping cart uses partial information about the

contents of a shopping cart for the prediction of what else the

customer is likely to buy. In order to reduce the rule mining cost,

a fast algorithm generating frequent itemsets without generating

candidate itemsets is proposed. The algorithm uses Boolean

vector with relational AND operation to discover frequent

itemsets and generate the association rule. Association rules are

used to identify relationships among a set of items in database.

Initially Boolean Matrix is generated by transforming the

database into Boolean values. The frequent itemsets are

generated from the Boolean matrix. Then association rules are to

generated from the already generated frequent itemsets. The

association rules generated form the basis for prediction. The

incoming itemset i.e the content of incoming shopping cart will

also be represented by a Boolean vector and AND operation is

performed with each transaction vector to generate the

association rules. Finally the rules are combined to get the

predictions. Dempster‟s rule of combination (DRC) is used to

combine the evidences. Finally the predicted items are suggested

to the user.

Keywords

Association Rule Mining. Boolean Vector, Prediction, Basic

Belief Assignment, Demster Shafer Theory of Rule

Combination.

1. INTRODUCTION

1.1 Data Mining
Data Mining refers to extracting or mining information from

large amounts of data. Data mining has attracted a great deal of

attention in the information industry and in society as a whole in

recent years, due to the wide availability of huge amounts of

data and the imminent need for turning such data into useful

information and knowledge.

Data mining, “the extraction of hidden predictive information

from large databases”, is a powerful new technology with great

potential to help companies focus on the most important

information in their data warehouses. Data mining tools predict

future trends and behaviors, allowing businesses to make

proactive, knowledge-driven decisions.

The automated, prospective analysis offered by data mining

move beyond the analysis of past events provided by

retrospective tools typical of decision support systems. Data

mining tools can answer business questions that traditionally

were too time consuming to resolve. They scour databases for

hidden patterns, finding predictive information that experts may

miss because it lies outside their expectations.

Most companies collect and refine massive quantities of data.

Data mining techniques can be implemented rapidly on existing

software and hardware platforms to enhance the value of

existing information resources and can be integrated with new

products and systems as they are brought on-line. When

implemented on high performance client/server or parallel

processing computers, data mining tools can analyze massive

databases to deliver answers to many questions.

The information and knowledge gained can be used for

application ranging from market analysis, fraud detection, and

customer retention, to production control and science

exploration. Data Mining plays an important role in online

shopping for analyzing the subscribers‟ data and understanding

their behaviors and making good decisions such that customer

acquisition and customer retention are increased which gives

high revenue.

1.2 Association Rule Mining
Association Rule Mining [1] is a popular and well researched

ethod for discovering interesting relations between variables in

large databases. Association rules are statements of the form

{X1, X2, …, Xn} => Y meaning that if all of X1, X2,… Xn is

found in the market basket, and then we have good chance of

finding Y. the probability of finding Y for us to accept this rule

is called the confidence of the rule. Normally rules that have a

confidence above a certain threshold only will be searched. In

many situations, association rules involves sets of items that

appear frequently. For example, a good marketing strategy

cannot be run involving items that no one buys. Thus, much data

mining starts with the assumption that sets of items with support

are only considered.

The discovery of such associations can help retailers develop

marketing strategies by gaining insight into which items are

frequently purchased together by customer and which items

bring them better profits when placed with in close proximity.

The two types of finding association between products existing

in a large database are Boolean [7] and Quantitative. Boolean

association rule mining finds association for the entire dataset.

Quantitative association rule mining finds association for the

clusters formed from the dataset.

1.3 Prediction
Data mining automates the process of finding predictive

information in large databases. Questions that traditionally

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.5, May 2011

36

required extensive hands-on analysis can now be answered

directly from the data quickly.

The primary task of association mining is to detect frequently

co-occurring groups of items in transactional databases. The

intention is to use this knowledge for prediction purposes.

Early attempts for prediction used classification [8] and

performance was favourable. In this project, any item is allowed

to be treated as a class label its value is to be predicted based on

the presence of other items. Put another way, knowing a subset

of the shopping cart‟s contents, we want to “guess” (predict) [1]

the rest. Suppose the shopping cart of a customer at the checkout

counter contains bread, butter, milk, cheese, and pudding. Could

someone who met the same customer when the cart contained

only bread, butter, and milk, have predicted that the person

would add cheese and pudding?

It is important to understand that allowing any item to be treated

as a class label presents serious challenges as compared with the

case of just a single class label. The number of different items

can be very high, perhaps hundreds, or thousand, or even more.

To generate association rules for each of them separately would

give rise to great many rules with two obvious consequences:

first, the memory space occupied by these rules can be many

times larger than the original database (because of the task‟s

combinatorial nature); second, identifying the most relevant

rules and combining their sometimes conflicting predictions

may easily incur prohibitive computational costs. In this work,

both of these problems are solved by developing a technique that

answers user‟s queries (for shopping cart completion) in a way

that is acceptable not only in terms of accuracy, but also in terms

of time and space complexity.

This paradigm can be exploited in diverse applications. For

example, in the each “shopping cart” contained a set of

hyperlinks pointing to a Web page; in medical applications, the

shopping cart may contain a patient‟s symptoms, results of lab

tests, and diagnoses; in a financial domain, the cart may contain

companies held in the same portfolio.

In all these databases, prediction of unknown items can play a

very important role. For instance, a patient‟s symptoms are

rarely due to a single cause; two or more diseases usually

conspire to make the person sick. Having identified one, the

physician tends to focus on how to treat this single disorder,

ignoring others that can meanwhile deteriorate the patient‟s

condition. Such unintentional neglect can be prevented by

subjecting the patient to all possible lab tests. However, the

number of tests one can undergo is limited by such practical

factors as time, costs, and the patient‟s discomfort. A decision-

support system advising a medical doctor about which other

diseases may accompany the ones already diagnosed can help in

the selection of the most relevant additional tests.

1.4 Existing Approach
The existing system uses flagged Itemset trees for rule

generation purpose. An itemset tree, T, consists of a root and a

(possibly empty) set, {T1; . . . ;Tk}, each element of which is an

itemset tree. The root is a pair [s, f(s)], where s is an itemset and

f(s) is a frequency. If si denotes the itemset associated with the

root of the ith subtree, then s is a subset of si; s not equal to si,

must be satisfied for all i. The number of nodes in the IT-tree is

upper-bounded by twice the number of transactions in the

original database.

Note that some of the itemsets in IT-tree [4] are identical to at

least one of the transactions contained in the original database,

whereas others were created during the process of tree building

where they came into being as common ancestors of transactions

from lower levels. They modified the original tree building

algorithm by flagging each node that is identical to at least one

transaction. These are indicated by black dots. This is called

flagged IT-tree [4].

Here is an example for an IT-tree [4].

The flagged IT-tree of the database

D = { [1, 4] , [2, 5] , [1, 2, 3, 4, 5] , [1, 2, 4] , [2, 5] , [2, 4] is

Fig.1.1. Example IT-Tree

Here some items in this tree are flagged to represent them as

weak entity so that they are not carried for the next stage of

processing.

The disadvantages of existing approach are

 Time taken to construct IT-Tree [4] is more when

compared to Boolean matrix method.

 This method requires more memory for processing.

1.5 Dempster’s Rule of Combination
Dempster‟s rule of combination (DRC) [6] is used to combine

the discovered. When searching for a way to predict the

presence of an item in partially observed shopping carts,

association rules are used. However, many rules with equal

antecedents differ in their consequents and some of these

consequents contain the desired item to be predicted, others do

not. The question is how to combine (and how to quantify) the

potentially conflicting evidences. DRC [6] is used for this

purpose. Finally the predicted items are suggested to the user.

2. SYSTEM DESIGN
 Any project developed today is said to be good only if it has

some basic characteristics such as modularity, loose coupling

and high cohesion. A component is classified as good quality

only if it is modular, loosely coupled and has high cohesion i.e.,

each component should be independent of the other and each

1 2

f=3 f=3

 1, 4 2,4 1, 2 2,5

 1,2,3,4,5 1,2,4

f=1 f=1

f=1 f=1

f=2 f=2

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.5, May 2011

37

component must be focused only on its particular purpose.

Finally the component should be modular so that the

development of the components is understandable, can easily be

enhanced in the future and also easy to locate and correct errors

without affecting the other components involved in the project.

The following sections deals with how this system is designed,

the modules involved and overall architecture diagram of the

system which shows the modules present in the system.

2.1 Shopping Cart Prediction Architecture

Fig.2.1. Shopping cart prediction architecture

Fig.4.1. shows the shopping cart prediction architecture in which

the Boolean Matrix is generated by transforming the database

into Boolean values. The frequent itemsets are generated from

the Boolean matrix. At this stage we need the Support value.

Then association rules are to generated from the already

generated frequent itemsets. It takes minimum confidence from

the user and discovers all rules with a fixed antecedent and with

different consequent. The association rules generated form the

basis for prediction.

We assign BBA [2] value to each association rule generated.

This gives more weight to rules with higher support masses are

assigned based on both their confidence and support values.

The incoming itemset i.e the content of incoming shopping cart

will also be represented by a Boolean vector and AND operation

is performed with each transaction vector to generate the

association rules. Finally the rules are combined to get the

predictions.

Dempster‟s rule of combination (DRC) [6] is used to combine

the evidences. When searching for a way to predict the presence

or absence of an item in a partially observed shopping cart s, we

wanted to use association rules.

However, many rules with equal antecedents differ in their

consequents—some of these consequents contain the desired

item to be predicted, others do not. The question is how to

combine (and how to quantify) the potentially conflicting

evidences. DRC [6] is used for this purpose. Finally the

predicted items are suggested to the user.

3. IMPLEMENTATION
This topic consists of detailed description of each and every

module with its advantages and data and execution flow of each

module with algorithm. It helps to understand each and every

module of the project more deeply and clearly. Each description

consists of the basic concept of the module, input and also the

excepted output.

3.1 Modules
The project has been divided into various modules and each

module has been completed within a scheduled time line. The

following are the modules of the project are boolean matrix

generation,Frequent itemset generation, Association rule

generation, BBA and decision making.

3.2 Boolean Matrix Generation
This module is to convert the data‟s in the database and the

incoming instance to database into Boolean value (either 0‟s or

1‟s). If an item is present in the transaction it is marked with the

Boolean value 1 else the item is marked as 0. Raw database

“rdb” [7] is a m x n matrix where „m‟ is the number of

transactions and „n‟ is the number of attributes. By using above

mentioned rule the Raw database in converted into Boolean

database “bdb” [8] (rdb [i, j] => bdb [i, j] where „i‟ represent the

rows and „j‟ represent the columns).

The algorithm used is given here.

 for all i<=m do

 for all j<=n do

 if jth item is present in ith row

 set rdb[i,j] =1

 else

 set rdb[i,j] =0

 end do

 end do

The example input database given to this stage is shown

here. The database contains eight transactions and seven items.

In real world this will be of large size but this is used for

illustration purpose.

Table.3.1. Example Input Database

Table

ID Field1 Field2 Field3 Field4 Field5 Field6 Field7

7 N N N N N N Y

8 Y Y N N Y Y N

9 Y Y N N Y y Y

Data
Boolean Matrix

Generation

Frequent Itemset

Generation

Association Rule

Generation

Incoming

Instance

Selection criteria

(Supp/conf

thresholds)

Decision Making

(Dempster‟s combination)

BBA and Rule

Selection

Prediction

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.5, May 2011

38

Table

ID Field1 Field2 Field3 Field4 Field5 Field6 Field7

10 N N Y Y Y y N

11 N N N Y Y y N

12 Y Y N N N y Y

13 N N Y Y Y y Y

14 N N Y Y Y y Y

15 N N Y Y Y y N

Table.3.1 shows that If an item is contained in a transaction, the

corresponding attribute value will be „Y‟, otherwise the value

will be „N‟.The output of this module will be the Boolean

matrix, which will look as this.
1 1 0 0 1 1 0

1 1 0 0 1 1 1

0 0 1 1 1 1 0

0 0 0 1 1 1 0

1 1 0 0 0 1 1

0 0 1 1 1 1 1

0 0 1 1 1 1 1

0 0 1 1 1 1 0

If an item is contained in a transaction, the corresponding

attribute value will be 1; otherwise the value will be 0.

3.3 Frequent Itemset Generation
This module finds out the frequent item set from the existing

transaction based on the support value. It involves Join step and

Prune step. This module takes the input from the previous stage

and forms the frequent itemset from matrix table whose values

are 1 for transaction. This module also generates the Boolean

vector for the frequent item set along with support value.

Boolean vector takes the value „true‟ for the item present in the

itemset and takes the value „null‟ for the item not present in the

itemset.

The algorithm used is shown here. It has two steps as explained

above.

for each column ci of pdb

if sum(ci) >= new_support

f1 = ii

else delete ci from pdb

for each row rj of pdb

if sum(rj) < 2

delete rj from pdb

for (k=2;| fk-1|>k-1;k++)

{

 produce k-vectors combination for all columns of

bdb;

 for each k-vectors combination {ci1,ci2, ci3 … ,cik }

 {

 b= ci1 • ci2 •.…•cik

 if sum(b)>= new_support

 fk={ ii1, ii2,……,iik };

 }

 for each item ii in fk

 if | fk(ii)| < k

 delete the column ci according to item ii from bdb;

 for each row rj from bdb

 if sum(rj) < k+1

 delete rj from bdb;

 k=k+1

 }

 return f= f1 u f2 … u fk

The input given to this stage is the Boolean matrix

generated in previous module. This is the sample input that is

given for illustration. The support value is also given as input.

1 1 0 0 1 1 0

1 1 0 0 1 1 1

0 0 1 1 1 1 0

0 0 0 1 1 1 0

1 1 0 0 0 1 1

0 0 1 1 1 1 1

0 0 1 1 1 1 1

0 0 1 1 1 1 0

Support Value: 50

The output of this stage is the frequent itemsets generated from

Boolean matrix. Each frequent itemset generated is also

converted into a Boolean vector as shown in the table below.

Input configuration: 7 items, 8 transactions, minsup =

50.0%

Frequent 1-itemsets

[3, 4, 5, 6, 7]

Frequent 2-itemsets

[3 4, 3 5, 3 6, 4 5, 4 6, 5 6, 5 7, 6 7]

Frequent 3-itemsets

[3 4 5, 3 4 6, 3 5 6, 4 5 6, 5 6 7]

Frequent 4-itemsets

[3 4 5 6]

Table.3.2. Frequent itemsets generation output

Itemset Boolean Vector Support

3 [null, false, false, true, false, false, false, false] 0.5

4 [null, false, false, false, true, false, false, false] 0.625

5 [null, false, false, false, false, true, false, false] 0.875
6 [null, false, false, false, false, false, true, false] 1.0

7 [null, false, false, false, false, false, false, true] 0.625
3 4 [null, false, false, true, true, false, false, false] 0.5

3 5 [null, false, false, true, false, true, false, false] 0.5

3 6 [null, false, false, true, false, false, true, false] 0.5
4 5 [null, false, false, false, true, true, false, false] 0.625

4 6 [null, false, false, false, true, false, true, false] 0.625

5 6 [null, false, false, false, false, true, true, false] 0.875
5 7 [null, false, false, false, false, true, false, true] 0.5

6 7 [null, false, false, false, false, false, true, true] 0.625

3 4 5 [null, false, false, true, true, true, false, false] 0.5
3 4 6 [null, false, false, true, true, false, true, false] 0.5

3 5 6 [null, false, false, true, false, true, true, false] 0.5

4 5 6 [null, false, false, false, true, true, true, false] 0.625
5 6 7 [null, false, false, false, false, true, true, true] 0.5

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.5, May 2011

39

Table.3.2. shows the frequent itemsets along with the Boolean

Vector generated from Boolean Matrix. User Support value is

needed for this. If an item is present in the frequent itemset, it

takes the value „True‟ in the Boolean Vector, otherwise the

value will be „False‟. It involves Join step and Prune step. The

frequent itemset generated should have desired support value.

3.4 Association Rule Generation
This module is used to generate association rules from the

already generated frequent itemsets.The algorithm uses the fact

that:

“If there exists two rules A->C and A->{C U X} where X

doesnt belongs to A U C then the confidence of the second

cannot be larger than the first one”.

The algorithm checks if a given set is a subset of another set or

not. To perform this operation each item in an itemset is

represented as an integer where a bit corresponding to as item is

set to 1.

For example, suppose a database with 8 attributes, itemset {1,2,

5} is represented as 38 as follows. 0 0 1 0 0 1 1 0

To check if set {2,5} is a subset of {1,2,5} we represent {2,5}

like above and is evaluated to 36. Now we perform AND

operation 38 & 36. The result is checked for equality with the

first itemset ({2, 5}). If they are equal then it is a subset

otherwise it is not. In this case the result is obvious. Similarly

difference of two sets is done during production of the rules.

This algorithm is capable of finding all association rules with a

fixed antecedent and with different consequents from the

frequent itemsets subject to a user specified minimum

confidence very quickly.

It takes minimum confidence from the user and discovers all

rules with a fixed antecedent and with different consequent. This

module also takes the frequent item set and the incoming

shopping cart instance to generate the association rule with the

corresponding support and confidence value.

The algorithm used is shown here.

 for all fk, fk ∈ F, 1<=k<=maxsize-1 do begin

rsup=support(fk)*miconf

found=0

for all fm, fm _ Fk +1<= m <=maxsize do begin

if (support(fm)>=rsup) then begin

if(fk ⊂ fm) then begin

found=found+1

conf=support(fm)/ support(fk)

generate the rule fk = (fm - fk) &= conf and

support=support(fm)

end if

else

if (found<2)

continue step1 with next k

else found=0

endif

endif

end do

end do

The input given to the rule generation process is the Boolean

vectors representing each transaction and also the contents of

incomplete shopping cart. This is shown in Table 5.3.

Table.3.3. Rule Generation Input

Itemset Boolean Vector Support

3 [null, false, false, true, false, false, false, false] 0.5

4 [null, false, false, false, true, false, false, false] 0.625

5 [null, false, false, false, false, true, false, false] 0.875

6 [null, false, false, false, false, false, true, false] 1.0

7 [null, false, false, false, false, false, false, true] 0.625
3 4 [null, false, false, true, true, false, false, false] 0.5

3 5 [null, false, false, true, false, true, false, false] 0.5

3 6 [null, false, false, true, false, false, true, false] 0.5
4 5 [null, false, false, false, true, true, false, false] 0.625

4 6 [null, false, false, false, true, false, true, false] 0.625

5 6 [null, false, false, false, false, true, true, false] 0.875
5 7 [null, false, false, false, false, true, false, true] 0.5

6 7 [null, false, false, false, false, false, true, true] 0.625

3 4 5 [null, false, false, true, true, true, false, false] 0.5
3 4 6 [null, false, false, true, true, false, true, false] 0.5

3 5 6 [null, false, false, true, false, true, true, false] 0.5

4 5 6 [null, false, false, false, true, true, true, false] 0.625
5 6 7 [null, false, false, false, false, true, true, true] 0.5

Enter confidence: 80

Enter incoming shopping cart contents: 3 4

Table.3.4. Rule Generation Output

Rule Supp conf

3 4 ->5 0.5 1.0

3 4 ->6 0.5 1.0

Table.3.4. shows the output rules generated along with the

support and confidence values.

3.5 BBA And Decision Making

3.5.1 PARTITIONED-SUPPORT
In many applications, the training data set is skewed. Thus, in a

supermarket scenario, the percentage of shopping carts

containing, say canned fish, can be 5 percent, the remaining 95

percent shopping carts not containing this item. Hence, the rules

that suggest the presence of canned fish will have very low

support while rules suggesting the absence of canned fish will

have a higher support.

Unless compensated for, a predictor built from a skewed training

set typically tends to favor the “majority” classes at the expense

of “minority” classes. In many scenarios, such a situation must

be avoided.To account for this data set skewness, we propose to

adopt a modified support value termed partitioned-support.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.5, May 2011

40

The partitioned-support p_supp of the rule, r (a) -> r(c), is the

percentage of transactions that contain r (a) among those

transactions that contain r(c), i.e.,

p_supp = support(r (a) U r(c)) / support(r(c))

3.5.2 BBA:
In association mining techniques, a user-set minimum support

decides about which rules have “high support.” Once the rules

are selected, they are all treated the same, irrespective of how

high or how low their support. Decisions are then made solely

based on the confidence value of the rule. However, a more

intuitive approach would give more weight to rules with higher

support. Therefore, we use a novel method to assign to the rules

masses based on both their confidence and support values. This

weight value is called Basic Belief Assignment (BBA) [2].

We assign BBA value to each association rule generated.

 β = ((1+α2) x conf x p_supp) / (α2 x conf + p_supp);

 α € [0,1];

Dempster‟s rule of combination (DRC) [6] is used to combine

the evidences. When searching for a way to predict the presence

or absence of an item in a partially observed shopping carts, we

wanted to use association rules. However, many rules with equal

antecedents differ in their consequents—some of these

consequents contain the desired item to be predicted, others do

not. The question is how to combine (and how to quantify) the

potentially conflicting evidences. DRC [6] is used for this

purpose. Some illustrations used from DRC [6] are explained in

following paragraph.

We remove the overlapping rules while keeping the highest

confidence rule. If two overlapping rules have the same

confidence, the rule with the lower support is dropped. Finally

the best rule is selected by comparing the mass values. The

predicted item is then suggested to the user.

The input given to this stage is the set of rules generated along

with their support and confidence values as shown in Table 5.5.

Table.3.5. BBA and Decision Making Input

Rule Supp conf

3 4 ->5 0.5 1.0
3 4 ->6 0.5 1.0

Table.3.6. BBA and Decision Making Output

 Rule Supp Conf p_supp BBA

3 4 ->5 0.5 1.0 0.57142857142857140 0.9313986939084056
3 4 ->6 0.5 1.0 0.50 0.9105764493348661

Predicted Result: 5

Table 3.6 shows the output of this stage i.e, the calculated BBA

[6] values. The prediction made is also shown below the table.

3.6 Comparison
The performance of both the existing tree approach and the

proposed approach is analyzed with databases of different sizes.

The results found are very much surprising in the proposed

approach compared to the tree approach. The time of prediction

has decreased to a great extent compared to existing tree

approach.

Table.3.7. Execution Time Comparison

Number of

Transactions

Tree Approach Proposed Approach

 Execution Time Execution Time

100 48.7 0.797

80 44.172 0.625

60 42.031 0.578

40 40.015 0.593

20 38.721 0.547

Table.3.7. shows the comparison of execution time between the

existing tree approach and proposed approach for different

transactions.

3.7 Performance Evaluation

The Fig.3.1. shows the performance evaluation graph which

compares the performance of both the existing tree approach and

proposed approach and displays the time taken to execute for

different transactions in seconds.

Fig.3.1. Performance Evaluation Graph

4. CONCLUSION
The fast algorithm generating frequent itemsets without

generating candidate itemsets proposed performs well compared

to existing approaches. The execution time is much improved as

shown in performance testing. The algorithm used Boolean

vector with relational AND operation to discover frequent

itemsets and generate the association rule. Association rules

formed the basis of prediction. The algorithm is applied in a

demo shopping cart application. When user adds each item to

the cart the algorithm is executed and the prediction is

displayed.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.5, May 2011

41

The Advantages of proposed work are

 The proposed algorithm doesn‟t generate the candidate

itemsets.

 It uses only a single pass over the database.

 The memory consumed is also very less.

 Processing speed is more when compared to rules

generated using item set tree and DS theory.

5. FUTURE ENHANCEMENT
The method proposed in this project was tested with a demo

shopping cart and the performance is found acceptable. But

further improvements can be made to reduce the cost of rule

generation process. Also new data structures can be proposed

that will be more suitable to handle large number of itemsets as

in shopping cart.

6. REFERENCES

[1]. Kasun Wickramaratna, Miroslav Kubat and Kamal

Premaratne, “Predicting Missing Items in Shopping Carts”,

IEEE Trans. Knowledge and Data Eng., vol. 21, no. 7, july

2009.

[2]. M.Anandhavalli, Sandip Jain, Abhirup Chakraborti,

Nayanjyoti Roy and M.K.Ghose “Mining Association

Rules Using Fast Algorithm”, Advance Computing

Conference (IACC), 2010 IEEE 2nd International.

[3]. H.H. Aly, A.A. Amr, and Y. Taha, “Fast Mining of

Association Rules in Large-Scale Problems,” Proc. IEEE

Symp. Computers and Comm. (ISCC ‟01), pp. 107-113,

2001.

[4]. R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules,” Proc. Int‟l Conf.Very Large

Databases(VLDB ‟94), pp.487-499, 1994.

[5]. K.K.R.G.K. Hewawasam, K. Premaratne, and M.-L. Shyu,

“Rule Mining and Classification in a Situation Assessment

Application: A Belief Theoretic Approach for Handling

Data Imperfections,” IEEE Trans. Systems, Man,

Cybernetics, B, vol. 37, no. 6 pp. 1446-1459, Dec. 2007.

[6] Apriori Algorithm Reference URL:

http://www2.cs.uregina.ca/~dbd/cs831/notes/itemsets/items

et_prog1.html

[7] P. Bollmann-Sdorra, A. Hafez, and V.V. Raghavan, “A

Theoretical Framework for Association Mining Based on

the Boolean Retrieval Model,” Data Warehousing and

Knowledge Discovery: Proc. Third Int‟l Conf. (DaWaK

‟01), pp. 21-30, Sept. 2001.

[8] W. Li, J. Han, and J. Pei, “CMAR: Accurate and Efficient

Classification Based on Multiple Class-Association Rules,”

Proc. IEEE Int‟l Conf. Data Mining (ICDM ‟01), pp. 369-

376, Nov./Dec. 2001.

[9] M. Kubat, A. Hafez, V.V. Raghavan, J.R. Lekkala, and W.K.

Chen, “Itemset Trees for Targeted Association Querying,”

IEEE Trans. Knowledge and Data Eng., vol. 15, no. 6, pp.

1522-1534, Nov./Dec.2003.

