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ABSTRACT 

Prediction in shopping cart uses partial information about the 

contents of a shopping cart for the prediction of what else the 

customer is likely to buy. In order to reduce the rule mining cost, 

a fast algorithm generating frequent itemsets without generating 

candidate itemsets is proposed. The algorithm uses Boolean 

vector with relational AND operation to discover frequent 

itemsets and generate the association rule. Association rules are 

used to identify relationships among a set of items in database. 

Initially Boolean Matrix is generated by transforming the 

database into Boolean values. The frequent itemsets are 

generated from the Boolean matrix. Then association rules are to 

generated from the already generated frequent itemsets. The 

association rules generated form the basis for prediction. The 

incoming itemset i.e the content of incoming shopping cart will 

also be represented by a Boolean vector and AND operation is 

performed with each transaction vector to generate the 

association rules. Finally the rules are combined to get the 

predictions. Dempster‟s rule of combination (DRC) is used to 

combine the evidences. Finally the predicted items are suggested 

to the user.  

Keywords 

Association Rule Mining. Boolean Vector, Prediction, Basic 

Belief Assignment, Demster Shafer Theory of Rule 

Combination. 

1. INTRODUCTION 

1.1 Data Mining 
Data Mining refers to extracting or mining information from 

large amounts of data. Data mining has attracted a great deal of 

attention in the information industry and in society as a whole in 

recent years, due to the wide availability of huge amounts of 

data and the imminent need for turning such data into useful 

information and knowledge.  

Data mining, “the extraction of hidden predictive information 

from large databases”, is a powerful new technology with great 

potential to help companies focus on the most important 

information in their data warehouses. Data mining tools predict 

future trends and behaviors, allowing businesses to make 

proactive, knowledge-driven decisions. 

The automated, prospective analysis offered by data mining 

move beyond the analysis of past events provided by 

retrospective tools typical of decision support systems. Data 

mining tools can answer business questions that traditionally 

were too time consuming to resolve. They scour databases for 

hidden patterns, finding predictive information that experts may 

miss because it lies outside their expectations. 

Most companies collect and refine massive quantities of data. 

Data mining techniques can be implemented rapidly on existing 

software and hardware platforms to enhance the value of 

existing information resources and can be integrated with new 

products and systems as they are brought on-line. When 

implemented on high performance client/server or parallel 

processing computers, data mining tools can analyze massive 

databases to deliver answers to many questions. 

The information and knowledge gained can be used for 

application ranging from market analysis, fraud detection, and 

customer retention, to production control and science 

exploration. Data Mining plays an important role in online 

shopping for analyzing the subscribers‟ data and understanding 

their behaviors and making good decisions such that customer 

acquisition and customer retention are increased which gives 

high revenue.                              

1.2 Association Rule Mining 
Association Rule Mining [1] is a popular and well researched 

ethod for discovering interesting relations between variables in 

large databases. Association rules are statements of the form 

{X1, X2, …, Xn} => Y meaning that if all of X1, X2,… Xn is 

found in the market basket, and then we have good chance of 

finding Y. the probability of finding Y for us to accept this rule 

is called the confidence of the rule. Normally rules that have a 

confidence above a certain threshold only will be searched. In 

many situations, association rules involves sets of items that 

appear frequently. For example, a good marketing strategy 

cannot be run involving items that no one buys. Thus, much data 

mining starts with the assumption that sets of items with support 

are only considered. 

The discovery of such associations can help retailers develop 

marketing strategies by gaining insight into which items are 

frequently purchased together by customer and which items 

bring them better profits when placed with in close proximity. 

The two types of finding association between products existing 

in a large database are Boolean [7] and Quantitative. Boolean 

association rule mining finds association for the entire dataset. 

Quantitative association rule mining finds association for the 

clusters formed from the dataset. 

1.3 Prediction 
Data mining automates the process of finding predictive 

information in large databases. Questions that traditionally 
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required extensive hands-on analysis can now be answered 

directly from the data quickly. 

The primary task of association mining is to detect frequently 

co-occurring groups of items in transactional databases. The 

intention is to use this knowledge for prediction purposes. 

Early attempts for prediction used classification [8] and 

performance was favourable. In this project, any item is allowed 

to be treated as a class label its value is to be predicted based on 

the presence of other items. Put another way, knowing a subset 

of the shopping cart‟s contents, we want to “guess” (predict) [1] 

the rest. Suppose the shopping cart of a customer at the checkout 

counter contains bread, butter, milk, cheese, and pudding. Could 

someone who met the same customer when the cart contained 

only bread, butter, and milk, have predicted that the person 

would add cheese and pudding?  

It is important to understand that allowing any item to be treated 

as a class label presents serious challenges as compared with the 

case of just a single class label. The number of different items 

can be very high, perhaps hundreds, or thousand, or even more. 

To generate association rules for each of them separately would 

give rise to great many rules with two obvious consequences: 

first, the memory space occupied by these rules can be many 

times larger than the original database (because of the task‟s 

combinatorial nature); second, identifying the most relevant 

rules and combining their sometimes conflicting predictions 

may easily incur prohibitive computational costs. In this work, 

both of these problems are solved by developing a technique that 

answers user‟s queries (for shopping cart completion) in a way 

that is acceptable not only in terms of accuracy, but also in terms 

of time and space complexity. 

This paradigm can be exploited in diverse applications. For 

example, in the each “shopping cart” contained a set of 

hyperlinks pointing to a Web page; in medical applications, the 

shopping cart may contain a patient‟s symptoms, results of lab 

tests, and diagnoses; in a financial domain, the cart may contain 

companies held in the same portfolio.   

In all these databases, prediction of unknown items can play a 

very important role. For instance, a patient‟s symptoms are 

rarely due to a single cause; two or more diseases usually 

conspire to make the person sick. Having identified one, the 

physician tends to focus on how to treat this single disorder, 

ignoring others that can meanwhile deteriorate the patient‟s 

condition. Such unintentional neglect can be prevented by 

subjecting the patient to all possible lab tests. However, the 

number of tests one can undergo is limited by such practical 

factors as time, costs, and the patient‟s discomfort. A decision-

support system advising a medical doctor about which other 

diseases may accompany the ones already diagnosed can help in 

the selection of the most relevant additional tests. 

1.4 Existing Approach 
The existing system uses flagged Itemset trees for rule 

generation purpose. An itemset tree, T, consists of a root and a 

(possibly empty) set, {T1; . . . ;Tk}, each element of which is an 

itemset tree. The root is a pair [s, f(s)], where s is an itemset and 

f(s) is a frequency. If si denotes the itemset associated with the 

root of the ith subtree, then s is a subset of si; s not equal to si, 

must be satisfied for all i. The number of nodes in the IT-tree is 

upper-bounded by twice the number of transactions in the 

original database.  

Note that some of the itemsets in IT-tree [4] are identical to at 

least one of the transactions contained in the original database, 

whereas others were created during the process of tree building 

where they came into being as common ancestors of transactions 

from lower levels. They modified the original tree building 

algorithm by flagging each node that is identical to at least one 

transaction. These are indicated by black dots. This is called 

flagged IT-tree [4].  

 

Here is an example for an IT-tree [4]. 

The flagged IT-tree of the database 

D = { [1, 4] , [2, 5] , [1, 2, 3, 4, 5] , [1, 2, 4] , [2, 5] , [2, 4] is 

 

 

 

 

 

 

 

Fig.1.1. Example IT-Tree 

Here some items in this tree are flagged to represent them as 

weak entity so that they are not carried for the next stage of 

processing. 

The disadvantages of existing approach are 

 Time taken to construct IT-Tree [4] is more when 

compared to Boolean matrix method. 

 This method requires more memory for processing. 

 

1.5 Dempster’s Rule of Combination  
Dempster‟s rule of combination (DRC) [6] is used to combine 

the discovered. When searching for a way to predict the 

presence of an item in partially observed shopping carts, 

association rules are used. However, many rules with equal 

antecedents differ in their consequents and some of these 

consequents contain the desired item to be predicted, others do 

not. The question is how to combine (and how to quantify) the 

potentially conflicting evidences. DRC [6] is used for this 

purpose. Finally the predicted items are suggested to the user. 

2. SYSTEM DESIGN 
 Any project developed today is said to be good only if it has 

some basic characteristics such as modularity, loose coupling 

and high cohesion. A component is classified as good quality 

only if it is modular, loosely coupled and has high cohesion i.e., 

each component should be independent of the other and each 

1 2 

f=3 f=3 

 1, 4  2,4 1, 2  2,5 

 1,2,3,4,5  1,2,4 

f=1 f=1 

f=1 f=1 

f=2 f=2 
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component must be focused only on its particular purpose. 

Finally the component should be modular so that the 

development of the components is understandable, can easily be 

enhanced in the future and also easy to locate and correct errors 

without affecting the other components involved in the project. 

The following sections deals with how this system is designed, 

the modules involved and overall architecture diagram of the 

system which shows the modules present in the system. 

2.1 Shopping Cart Prediction Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.1. Shopping cart prediction architecture 

Fig.4.1. shows the shopping cart prediction architecture in which 

the Boolean Matrix is generated by transforming the database 

into Boolean values. The frequent itemsets are generated from 

the Boolean matrix. At this stage we need the Support value. 

Then association rules are to generated from the already 

generated frequent itemsets. It takes minimum confidence from 

the user and discovers all rules with a fixed antecedent and with 

different consequent. The association rules generated form the 

basis for prediction.  

We assign BBA [2] value to each association rule generated. 

This gives more weight to rules with higher support masses are 

assigned based on both their confidence and support values. 

The incoming itemset i.e the content of incoming shopping cart 

will also be represented by a Boolean vector and AND operation 

is performed with each transaction vector to generate the 

association rules. Finally the rules are combined to get the 

predictions. 

Dempster‟s rule of combination (DRC) [6] is used to combine 

the evidences. When searching for a way to predict the presence 

or absence of an item in a partially observed shopping cart s, we 

wanted to use association rules.  

However, many rules with equal antecedents differ in their 

consequents—some of these consequents contain the desired 

item to be predicted, others do not. The question is how to 

combine (and how to quantify) the potentially conflicting 

evidences. DRC [6] is used for this purpose. Finally the 

predicted items are suggested to the user. 

 

3. IMPLEMENTATION 
This topic consists of detailed description of each and every 

module with its advantages and data and execution flow of each 

module with algorithm. It helps to understand each and every 

module of the project more deeply and clearly. Each description 

consists of the basic concept of the module, input and also the 

excepted output. 

3.1 Modules 
The project has been divided into various modules and each 

module has been completed within a scheduled time line. The 

following are the modules of the project are boolean matrix 

generation,Frequent itemset generation, Association rule 

generation, BBA and decision making. 

3.2 Boolean Matrix Generation 
This module is to convert the data‟s in the database and the 

incoming instance to database into Boolean value (either 0‟s or 

1‟s). If an item is present in the transaction it is marked with the 

Boolean value 1 else the item is marked as 0. Raw database 

“rdb” [7] is a m x n matrix where „m‟ is the number of 

transactions and „n‟ is the number of attributes. By using above 

mentioned rule the Raw database in converted into Boolean 

database “bdb” [8] (rdb [i, j] => bdb [i, j] where „i‟ represent the 

rows and „j‟ represent the columns).  

The algorithm used is given here. 

 for all i<=m do 

 for all j<=n do 

 if jth item is present in ith row 

 set rdb[i,j] =1 

 else 

 set rdb[i,j] =0 

 end do 

 end do 

 

The example input database given to this stage is shown 

here. The database contains eight transactions and seven items.  

In real world this will be of large size but this is used for 

illustration purpose. 

 

Table.3.1. Example Input Database 

Table 

ID Field1 Field2 Field3 Field4 Field5 Field6 Field7 

7 N N N N N N Y 

8 Y Y N N Y Y N 

9 Y Y N N Y y Y 

Data 
Boolean Matrix 

Generation 

Frequent Itemset 

Generation 

Association Rule 

Generation 

Incoming 

Instance 

Selection criteria 

(Supp/conf 

thresholds) 

Decision Making 

(Dempster‟s combination) 

BBA and Rule 

Selection 

Prediction 
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Table 

ID Field1 Field2 Field3 Field4 Field5 Field6 Field7 

10 N N Y Y Y y N 

11 N N N Y Y y N 

12 Y Y N N N y Y 

13 N N Y Y Y y Y 

14 N N Y Y Y y Y 

15 N N Y Y Y y N 

 

Table.3.1 shows that If an item is contained in a transaction, the 

corresponding attribute value will be „Y‟, otherwise the value 

will be „N‟.The output of this module will be the Boolean 

matrix, which will look as this. 
1    1    0    0    1    1    0 

1    1    0    0    1    1    1 

0    0    1    1    1    1    0 

0    0    0    1    1    1    0 

1    1    0    0    0    1    1 

0    0    1    1    1    1    1 

0    0    1    1    1    1    1 

0    0    1    1    1    1    0 

          

If an item is contained in a transaction, the corresponding 

attribute value will be 1; otherwise the value will be 0. 
 

3.3 Frequent Itemset Generation 
This module finds out the frequent item set from the existing 

transaction based on the support value. It involves Join step and 

Prune step. This module takes the input from the previous stage 

and forms the frequent itemset from matrix table whose values 

are 1 for transaction. This module also generates the Boolean 

vector for the frequent item set along with support value. 

Boolean vector takes the value „true‟ for the item present in the 

itemset and takes the value „null‟ for the item not present in the 

itemset.  

 

The algorithm used is shown here. It has two steps as explained 

above. 

for each column ci of pdb 

if sum(ci) >= new_support 

f1 = ii 

else delete ci from pdb   

for each row rj of pdb 

if sum(rj) < 2 

delete rj from pdb 

for (k=2;| fk-1|>k-1;k++) 

{      

 produce k-vectors combination for all columns of 

bdb;  

 for each k-vectors combination {ci1,ci2, ci3 … ,cik } 

 { 

 b= ci1 • ci2 •.…•cik 

 if sum(b)>= new_support 

 fk={ ii1, ii2,……,iik };  

 }   

 for each item ii in fk 

 if | fk(ii)| < k 

 delete the column ci according to item ii from bdb; 

 for each row rj from bdb 

 if sum(rj) < k+1 

 delete rj from bdb; 

 k=k+1 

 } 

 return f= f1 u f2 … u fk 

The input given to this stage is the Boolean matrix 

generated in previous module. This is the sample input that is 

given for illustration. The support value is also given as input. 
 

1    1    0    0    1    1    0 

1    1    0    0    1    1    1 

0    0    1    1    1    1    0 

0    0    0    1    1    1    0 

1    1    0    0    0    1    1 

0    0    1    1    1    1    1 

0    0    1    1    1    1    1 

0    0    1    1    1    1    0 

 

Support Value: 50 

 

The output of this stage is the frequent itemsets generated from 

Boolean matrix.  Each frequent itemset generated is also 

converted into a Boolean vector as shown in the table below. 

 

Input configuration: 7 items, 8 transactions, minsup = 

50.0% 

Frequent 1-itemsets 

[3, 4, 5, 6, 7] 

Frequent 2-itemsets 

[3 4, 3 5, 3 6, 4 5, 4 6, 5 6, 5 7, 6 7] 

Frequent 3-itemsets 

[3 4 5, 3 4 6, 3 5 6, 4 5 6, 5 6 7] 

Frequent 4-itemsets 

[3 4 5 6] 

 

Table.3.2. Frequent itemsets generation output 
--------------------------------------------------------------------------------------- 

Itemset       Boolean Vector              Support 

--------------------------------------------------------------------------------------- 
3 [null, false, false, true, false, false, false, false]   0.5 

4 [null, false, false, false, true, false, false, false]   0.625 

5 [null, false, false, false, false, true, false, false]   0.875 
6 [null, false, false, false, false, false, true, false]   1.0 

7 [null, false, false, false, false, false, false, true]   0.625 
3 4 [null, false, false, true, true, false, false, false]   0.5 

3 5 [null, false, false, true, false, true, false, false]   0.5 

3 6 [null, false, false, true, false, false, true, false]   0.5 
4 5 [null, false, false, false, true, true, false, false]   0.625 

4 6 [null, false, false, false, true, false, true, false]   0.625 

5 6 [null, false, false, false, false, true, true, false]   0.875 
5 7 [null, false, false, false, false, true, false, true]   0.5 

6 7 [null, false, false, false, false, false, true, true]   0.625 

3 4 5 [null, false, false, true, true, true, false, false]   0.5 
3 4 6 [null, false, false, true, true, false, true, false]   0.5 

3 5 6 [null, false, false, true, false, true, true, false]   0.5 

4 5 6 [null, false, false, false, true, true, true, false]   0.625 
5 6 7 [null, false, false, false, false, true, true, true]   0.5 

------------------------------------------------------------------------------------- 
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Table.3.2. shows the frequent itemsets along with the Boolean 

Vector generated from Boolean Matrix. User Support value is 

needed for this. If an item is present in the frequent itemset, it 

takes the value „True‟ in the Boolean Vector, otherwise the 

value will be „False‟. It involves Join step and Prune step. The 

frequent itemset generated should have desired support value. 
 

3.4 Association Rule Generation 
This module is used to generate association rules from the 

already generated frequent itemsets.The algorithm uses the fact 

that:  

“If there exists two rules A->C and A->{C U X} where X  

doesnt belongs to A U C then the confidence of the second 

cannot be larger than the first one”.  

The algorithm checks if a given set is a subset of another set or 

not. To perform this operation each item in an itemset is 

represented as an integer where a bit corresponding to as item is 

set to 1. 

For example, suppose a database with 8 attributes, itemset {1,2, 

5} is represented as 38 as follows. 0 0 1 0 0 1 1 0 

To check if set {2,5} is a subset of {1,2,5} we represent {2,5} 

like above and is evaluated to 36. Now we perform AND 

operation 38 & 36. The result is checked for equality with the 

first itemset ({2, 5}). If they are equal then it is a subset 

otherwise it is not. In this case the result is obvious. Similarly 

difference of two sets is done during production of the rules. 

This algorithm is capable of finding all association rules with a 

fixed antecedent and with different consequents from the 

frequent itemsets subject to a user specified minimum 

confidence very quickly.  

It takes minimum confidence from the user and discovers all 

rules with a fixed antecedent and with different consequent. This 

module also takes the frequent item set and the incoming 

shopping cart instance to generate the association rule with the 

corresponding support and confidence value. 

The algorithm used is shown here. 

            for all fk, fk ∈ F, 1<=k<=maxsize-1 do begin 

rsup=support(fk)*miconf 

found=0 

for all fm, fm _ Fk +1<= m <=maxsize do begin 

if (support(fm)>=rsup) then begin 

if(fk ⊂ fm) then begin 

found=found+1 

conf=support(fm)/ support(fk) 

generate the rule fk = (fm - fk) &= conf and 

support=support(fm) 

end if 

else 

if (found<2) 

continue step1 with next k 

else found=0 

endif 

endif 

end do 

end do 

The input given to the rule generation process is the Boolean 

vectors representing each transaction and also the contents of 

incomplete shopping cart. This is shown in Table 5.3. 

Table.3.3. Rule Generation Input 

---------------------------------------------------------------------------------------

Itemset      Boolean Vector               Support 

---------------------------------------------------------------------------------------
3 [null, false, false, true, false, false, false, false]   0.5 

4 [null, false, false, false, true, false, false, false]   0.625 

5 [null, false, false, false, false, true, false, false]   0.875 

6 [null, false, false, false, false, false, true, false]   1.0 

7 [null, false, false, false, false, false, false, true]   0.625 
3 4 [null, false, false, true, true, false, false, false]   0.5 

3 5 [null, false, false, true, false, true, false, false]   0.5 

3 6 [null, false, false, true, false, false, true, false]   0.5 
4 5 [null, false, false, false, true, true, false, false]   0.625 

4 6 [null, false, false, false, true, false, true, false]   0.625 

5 6 [null, false, false, false, false, true, true, false]   0.875 
5 7 [null, false, false, false, false, true, false, true]   0.5 

6 7 [null, false, false, false, false, false, true, true]   0.625 

3 4 5 [null, false, false, true, true, true, false, false]   0.5 
3 4 6 [null, false, false, true, true, false, true, false]   0.5 

3 5 6 [null, false, false, true, false, true, true, false]   0.5 

4 5 6 [null, false, false, false, true, true, true, false]   0.625 
5 6 7 [null, false, false, false, false, true, true, true]   0.5 

------------------------------------------------------------------------------------- 

 

Enter confidence: 80 

Enter incoming shopping cart contents: 3 4 

 

Table.3.4. Rule Generation Output 
---------------------------------- 

Rule          Supp   conf 

---------------------------------- 
3 4 ->5      0.5       1.0 

3 4 ->6      0.5       1.0 

--------------------------------- 

Table.3.4. shows the output rules generated along with the 

support and confidence values. 
 

3.5 BBA And Decision Making 
 

3.5.1 PARTITIONED-SUPPORT 
In many applications, the training data set is skewed. Thus, in a 

supermarket scenario, the percentage of shopping carts 

containing, say canned fish, can be 5 percent, the remaining 95 

percent shopping carts not containing this item. Hence, the rules 

that suggest the presence of canned fish will have very low 

support while rules suggesting the absence of canned fish will 

have a higher support.  

 

Unless compensated for, a predictor built from a skewed training 

set typically tends to favor the “majority” classes at the expense 

of “minority” classes. In many scenarios, such a situation must 

be avoided.To account for this data set skewness, we propose to 

adopt a modified support value termed partitioned-support.  
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The partitioned-support p_supp of the rule, r (a) -> r(c), is the 

percentage of transactions that contain r (a) among those 

transactions that contain r(c), i.e.,  

 

p_supp = support(r (a) U r(c)) / support(r(c)) 
 

 

3.5.2 BBA: 
In association mining techniques, a user-set minimum support 

decides about which rules have “high support.” Once the rules 

are selected, they are all treated the same, irrespective of how 

high or how low their support. Decisions are then made solely 

based on the confidence value of the rule. However, a more 

intuitive approach would give more weight to rules with higher 

support. Therefore, we use a novel method to assign to the rules 

masses based on both their confidence and support values. This 

weight value is called Basic Belief Assignment (BBA) [2]. 

  

We assign BBA value to each association rule generated.  

 

          β = ((1+α2 ) x conf x p_supp ) / (α2 x conf + p_supp); 

          α € [0,1]; 

 

Dempster‟s rule of combination (DRC) [6] is used to combine 

the evidences. When searching for a way to predict the presence 

or absence of an item in a partially observed shopping carts, we 

wanted to use association rules. However, many rules with equal 

antecedents differ in their consequents—some of these 

consequents contain the desired item to be predicted, others do 

not. The question is how to combine (and how to quantify) the 

potentially conflicting evidences. DRC [6] is used for this 

purpose. Some illustrations used from DRC [6] are explained in 

following paragraph. 

 

We remove the overlapping rules while keeping the highest 

confidence rule. If two overlapping rules have the same 

confidence, the rule with the lower support is dropped. Finally 

the best rule is selected by comparing the mass values. The 

predicted item is then suggested to the user. 

 

The input given to this stage is the set of rules generated along 

with their support and confidence values as shown in Table 5.5. 

 

Table.3.5. BBA and Decision Making Input 
---------------------------------- 

Rule          Supp   conf 

---------------------------------- 

3 4 ->5      0.5       1.0 
3 4 ->6      0.5       1.0 

--------------------------------- 

 

Table.3.6. BBA and Decision Making Output 
--------------------------------------------------------------------------------------- 

 Rule      Supp    Conf      p_supp        BBA                

--------------------------------------------------------------------------------------- 

3 4 ->5   0.5       1.0     0.57142857142857140   0.9313986939084056 
3 4 ->6   0.5       1.0     0.50            0.9105764493348661 

--------------------------------------------------------------------------------------- 

Predicted Result: 5 

 

Table 3.6 shows the output of this stage i.e, the calculated BBA 

[6]  values. The prediction made is also shown below the table.  
 

3.6  Comparison 
The performance of both the existing tree approach and the 

proposed approach is analyzed with databases of different sizes. 

The results found are very much surprising in the proposed 

approach compared to the tree approach. The time of prediction 

has decreased to a great extent compared to existing tree 

approach. 

 

Table.3.7. Execution Time Comparison 
 

Number of 

Transactions 

Tree Approach Proposed Approach 

 Execution Time Execution Time 

100 48.7 0.797 

80 44.172 0.625 

60 42.031 0.578 

40 40.015 0.593 

20 38.721 0.547 

 

Table.3.7. shows the comparison of execution time between the 

existing tree approach and proposed approach for different 

transactions. 

 

3.7 Performance Evaluation 

The Fig.3.1. shows the performance evaluation graph which 

compares the performance of both the existing tree approach and 

proposed approach and displays the time taken to execute for 

different transactions in seconds. 

 

Fig.3.1. Performance Evaluation Graph 

4. CONCLUSION 
The fast algorithm generating frequent itemsets without 

generating candidate itemsets proposed performs well compared 

to existing approaches. The execution time is much improved as 

shown in performance testing. The algorithm used Boolean 

vector with relational AND operation to discover frequent 

itemsets and generate the association rule. Association rules 

formed the basis of prediction. The algorithm is applied in a 

demo shopping cart application. When user adds each item to 

the cart the algorithm is executed and the prediction is 

displayed.  
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The Advantages of proposed work are 
 

 The proposed algorithm doesn‟t generate the candidate 

itemsets. 

 It uses only a single pass over the database. 

 The memory consumed is also very less.  

 Processing speed is more when compared to rules 

generated using item set tree and DS theory. 
 

5. FUTURE ENHANCEMENT 
The method proposed in this project was tested with a demo 

shopping cart and the performance is found acceptable. But 

further improvements can be made to reduce the cost of rule 

generation process. Also new data structures can be proposed 

that will be more suitable to handle large number of itemsets as 

in shopping cart.  
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