
International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

20

FDynamicAutoRED: An Algorithm to Stabilize the
Queue in Internet Routers

K.Chitra

 D.J.Academy for Managerial Excellence
Coimbatore, Tamil Nadu, India

Dr.G.Padmavathi
Avinashilingam University for Women

Coimbatore, Tamil Nadu, India

ABSTRACT

Internet Routers face the problem of congestion due to the

increased use of Internet. Active Queue Management algorithm

is a solution to the problem of congestion control in the Internet

routers. As data traffic is bursty in routers, burstiness must be

handled without comprising the high link utilization and low

queuing delay. Congested link causes many problems such as

large delay, unfairness among flows, underutilization of the link

and packet drops in burst. RED based AQMS use only queue

length as congestion indicator to indicate congestion. An AQM

scheme is proposed that considers the advantages of this Queue

length based AQMs and uses the flow information to satisfy the

QOS requirements of the network. This proposed scheme aims

to provide good service even under unresponsive load, offers

stabilised queue with reduced queue oscillation and controlled

packet drop rate.

General Terms

Packet Switched Networks, Congestion Control et. al.

Keywords

Packet Drop Probability, Fairness, Average Queue Size

1. INTRODUCTION
Research activities have become an on going process with the

origin of various congestion avoidance mechanisms in Internet

to improve the performance of Internet traffic. The introduction

of these mechanisms has indicated the inefficiency of each of

the AQMs in heavy traffic network. The various existing

AQMs detect congestion based on different factors and calculate

the packet dropping probability. Based on the various factors

used in AQMs, the degree of congestion varies and its

performance also varies.

Floyd et al proposed the first RED [1] AQM in 1993 with the

objective of preventing congestion with reduced packet loss.

This AQM alleviates congestion by detecting incipient

congestion early and delivering congestion notification to the

source to reduce its transmission rates avoiding overflow from

occurring. But the appropriate selection of the RED parameters

defines the success of RED. So RED AQM faces a major

drawback implemented in the network link. Incase of heavy

traffic, RED AQM also leads to global synchronization, lock-out

problem and unstable queue size if parameters not properly

tuned. In order to overcome parameter tuning problem in RED,

AdaptiveRED was proposed. It adaptively tuned the values of

maxp to keep the target queue length within a target range

between minth and maxth. The AQM automatically set wq based

on the link speed, and maxp in response to measured queue

length. This reduced the RED’s parameter sensitivity. Further in

improving RED and AdaptiveRED AQMs, AutoRED technique

was implemented in them. The AutoRED technique uses the

concept of dynamic wq which varies based on multiple

characteristics of the network.

The queue-based AQM schemes use average queue-length or

instantaneous queue length as a congestion indicator to calculate

packet drop probability. The YELLOW AQM [2] proves that the

packet drop probability just does not depend only on the queue

length rather can be calculated using the congestion indicator

like input rate that helps in identifying the real congestion in the

queue. In case of the rate-based AQM AVQ, it maintains a

virtual queue whose capacity is less than the actual capacity of

the link. However it is difficult to achieve faster response time

and high link utilisation using a constant value γ. In improving

this method for setting the value for γ, SAVQ [3] is proposed.

SAVQ stabilizes the dynamics of queue maintaining high link

utilization.

In REM, both queue length and load is used as congestion

indicators. The BLUE algorithm resolves some of the problems

of RED by employing two factors: packet loss from queue

congestion and link utilization. It maintains a single probability

pm to mark or drop packets. If the buffer overflows, BLUE

increases pm to increase the congestion notification and is

decreased to reduce the congestion notification rate in case of

buffer emptiness. This scheme uses link history to control the

congestion. In case of large queue, RED has continuous packet

loss followed by lower load that leads to reduced link utilization.

Another possibility is that the heavy load tends to vary in an

Internet router resulting in a queue oscillation. Router must take

care of the above problem. The buffer in the routers is to be used

effectively by using an efficient Active Queue Management

Mechanisms. Active Queue Management prevents congestion

and provides quality of service to all users. A router

implementing RED AQM maintains a single queue that drops an

arriving packet at random during periods of congestion. RED

suffers from lockout and global synchronization problems when

parameters are not tuned properly.

Adpative RED [4], AutoRED with RED [5] tries to improve the

parameter tuning problem in RED. While AQMS like PD-RED

[6], MRED [7], DS-RED [8] tries to improve the performance

compared to RED. The problem of unfairness and Queue

oscillation still existed in these AQMs.

RED based AQMs use only Queue Length as congestion metircs

to detect congestion. Some AQMs techniques were introduced

that used Input Rate as congestion indicators besides using

average queue size. REM AQM [9] was proposed that used both

congestion indicators queue size and input rate to detect

congestion where as BLUE [10] uses link history and packet

loss as congestion indicator to compute the packet drop

probability.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

21

The objective of this paper is to propose an algorithm that

reduces queue oscillation in Queue based algorithm. The

proposed AQM is implemented in AutoREDwithRED of its

simplicity, easy implementation and to bring in the advantages

of Queue based algorithm. The proposed AQM is implemented

in this to bring in advantages of Queue based algorithm and to

remove the parameter tuning problem. This algorithm is simple

to implement, stabilises the queue size and improves the

performance of the routers. The rest of the paper is organized as

follows: Section 2 explains the background study that includes

the various AQM algorithms and its drawback. In Section 3, the

concepts regarding the proposed algorithm are discussed. In

section 4, the simulation is carried out with discussion of results.

Our conclusions are presented in section 5.

2. BACKGROUND

Research activities have become an on going process with the

origin of various congestion avoidance mechanisms in Internet

to improve the performance of Internet traffic. The introduction

of these mechanisms has indicated the inefficiency of each of

the AQMs in heavy traffic network. The various existing

AQMs detect congestion based on different factors and calculate

the packet dropping probability. Based on the various factors

used in AQMs, the degree of congestion varies and its

performance also varies.

Floyd et al proposed the first RED AQM in 1993 with the

objective of preventing congestion with reduced packet loss.

This AQM alleviates congestion by detecting incipient

congestion early and delivering congestion notification to the

source to reduce its transmission rates avoiding overflow from

occurring. But the appropriate selection of the RED parameters

defines the success of RED. So RED AQM faces a major

drawback implemented in the network link. Incase of heavy

traffic, RED AQM also leads to global synchronization, lock-out

problem and unstable queue size if parameters not properly

tuned. In order to overcome parameter tuning problem in RED,

AdaptiveRED was proposed. It adaptively tuned the values of

maxp to keep the target queue length within a target range

between minth and maxth. The AQM automatically set wq based

on the link speed, and maxp in response to measured queue

length. This reduced the RED’s parameter sensitivity. Further in

improving RED and AdaptiveRED AQMs, AutoRED technique

was implemented in them. The AutoRED technique uses the

concept of dynamic wq which varies based on multiple

characteristics of the network.

The queue-based AQM schemes use average queue-length or

instantaneous queue length as a congestion indicator to calculate

packet drop probability. The YELLOW AQM proves that the

packet drop probability just does not depend only on the queue

length rather can be calculated using the congestion indicator

like input rate that helps in identifying the real congestion in the

queue. In case of the rate-based AQM AVQ [11], it maintains a

virtual queue whose capacity is less than the actual capacity of

the link. However it is difficult to achieve faster response time

and high link utilisation using a constant value γ. In improving

this method for setting the value for γ, SAVQ is proposed.

SAVQ stabilizes the dynamics of queue maintaining high link

utilization.

In REM, both queue length and load is used as congestion

indicators. The BLUE algorithm resolves some of the problems

of RED by employing two factors: packet loss from queue

congestion and link utilization. It maintains a single probability

pm to mark or drop packets. If the buffer overflows, BLUE

increases pm to increase the congestion notification and is

decreased to reduce the congestion notification rate in case of

buffer emptiness. This scheme uses link history to control the

congestion.

SRED in [12] pre-emptively discards packets with a load-

dependent probability when a buffer in a router is congested. It

stabilizes its buffer occupancy at a level independent of the

number of the active connections. SRED does this by estimating

the number of active connections. It obtains the estimate without

collecting or analysing state information. SRED keeps the buffer

occupancy close to a specific target and away from overflow or

underflow. In SRED the buffer occupancy is independent of the

number of connections while in RED the buffer occupancy

increases with the number of connections. The hit mechanism is

used to identify misbehaving flows without keeping per-flow

state. Stabilised RED overcomes the scalability problem but

suffers from low throughput. GREEN [13] algorithm uses flow

parameters and the knowledge of TCP end-host behavior to

intelligently mark packets to prevent queue build up, and

prevent congestion from occurring. It offers a high utilization

and a low packet loss. An improvement of this algorithm is that

there are no parameters that need to be tuned to achieve optimal

performance in a given scenario. In this algorithm, both the

number of flows and the Round Trip Time of each flow are

taken into consideration to calculate the congestion-notification

probabilities. The marking probability in GREEN is generally

different for each flow because it depends on characteristics that

are flow specific.

3. PROPOSED ALGORITHM

The proposed algorithm is motivated by the need for a stable

operating point for the queue size and fair bandwidth allocation

irrespective of the dynamic traffic and congestion characteristics

of the n flows. The unstable queue size results in high queue

oscillation due to the parameter tuning problem in queue based

AQMs. Motivation is to identify a scheme that penalizes the

unresponsive flows with the stable queue size with controlled

packet drop rate.

The proposed algorithm - FDynamicAutoRED enforces the

concept of queue-based and uses the flow information. It is

desirable for AQM schemes to act without storing a lot of

information otherwise it becomes an overhead and non-scalable.

An algorithm is proposed that modifies the Queue based

AutoREDwithRED algorithm to penalize the unresponsive

flows. As in Fig. 1, this algorithm calculates the average queue

size of the buffer for every packet arrival. It also indicates two

thresholds on the buffer, a minimum threshold minth and a

maximum threshold maxth. Average queue size Qave is compared

with these thresholds for every arriving packet.

If average queue size is less than minth, every arriving packet is

queued. If average queue size is greater than maxth, every

arriving packet is dropped. This results in queue size below

maxth. When the average queue size is greater than minth, every

arriving packet is compared with a randomly selected packet

from the queue for their flow id. If they have the same flow id,

both are dropped otherwise if average queue size is less than

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

22

maxth then the packet is dropped with the probability otherwise

the new packet is dropped.

In this proposed algorithm, the arriving packet is dropped with a

probability depending on the average queue size. This algorithm

uses AutoRED technique where wq is dynamic in nature

compared to a constant wq in RED. To achieve good throughput

and reasonable average queue length with RED based algorithm

requires careful tuning of wq. Incase if too small a value of wq,

performance is in terms of queuing delay and too large a value

leads to decreased throughput. The dynamic value of wq adapts

itself to the varying nature of the congestion and traffic.

Figure 1 Pseudocode of FDynamicAutoRED

wq is redefined as in [5].and results in reduced instantaneous

queue oscillation. The definition of weighting parameter wq is

written as a product of three characteristics as follows:

 (1)t t tT p p

, 1

, 1

2(5.923 ())

ln(5.923 ())

t avg t

t

t avg t

Q Q
J

Q Q

1

tK
bs

The first characteristic Tt represents the dynamic status of the

congestion in the network. It signifies the probability with which

the system can lead to congestion with the information available

at time t and is a time dependent function.

,

,

, 1

2(5.923 ()) 1
(1)

ln(5.923 ())

t avg t

q t t t

t avg t

Q Q
w p p

Q Q bs

where

wq,t = Newly defined time dependent weighing function

Qt =Instantaneous queue size at time t

Qavg,t-1 = Average queue size at time t-1

Qavg,t = Average queue size at time t

Pt =Probability that the network can lead to congestion

at time t

bs = Buffer size

The second characteristic Jt projects the current status of traffic

in the network at time t and it is also a time dependent function.

The third characteristic Kt is time independent parameter and it

allows normalization of instantaneous queue size changes with

respect to the buffer size. Therefore these three characteristics

are used to incorporate the dynamic changes in the congestion

and traffic in the calculation of average queue size.

In this proposed AQM, maxth of the queue size is not constant

and it varies depending on the congestion in a traffic. Based on

the level of congestion of traffic in a network at a particular

instant time, maxth of the queue is either incremented or

decremented. As the probability of packet drop depends also on

maxth, the value of maxth is kept dynamically varying based on

the congestion level.

The level of congestion varies and is indicated depending on the

following criteria:

 Pt (Probability of congestion)

 Qt (Instantaneous queue size) and Imaxth

(Initialmaxthresh)

 Curmaxth (Currentmaxthresh) and Imaxth

Initialmaxthresh)

If (Pt < 0.550) and (Qt < Imaxth) and (Curmaxth > Imaxth), then

Reinitialise Curmaxth to Imaxth. This indicates a low congestion or

no congestion in the network so Curmaxth can be reinitialized.

The value of maxth will not affect the probability of packet drop

in case of no congestion.

If (Pt between 0.550 and 0.880) and (Qt >= Imaxth) and

(Currentmaxth == Initialmaxth), then Increment Curmaxth. This

indicates initial stages of heavy congestion in the network so

Curmaxth is incremented to control the probability of packet drop.

A higher value of maxth in the initial stages of heavy congestion

will result in reduced probability of packet drop.

Incase of very heavy congestion, maxth will not affect the

probability of packet drop because any value of maxth will lead

Initially Imaxth= Curmaxth = maxth

For every packet arrival {

Calculate Pt

Calculate wq

If (Pt < 0.550) && (Qt < Imaxth) && (Curmaxth > Imaxth)

Reinitialise Curmaxth to Imaxth

Else if (Pt > 0.550) && (Pt < 0.880) && (Qt < Imaxthresh)

&& (Curmaxthresh> Imaxthresh)

 Increment Curmaxth

Calculate Qave

if (Qave < minth)

 Forward the new packet

Else

Select randomly a packet from the queue for their

flow id

Compare arriving packet with a randomly selected

packet.

 If they have the same flow id

 Drop both the packets

 Else

 if (Qave <= maxth)

 Calculate the dropping probability pa

 Drop the packet with probability pa

 Else

 Drop the new packet

}

Variables:

Qave : average queue size

pa :current packet-marking probability

Qt : Instantaneous queue size at time t

pb : temporary marking or dropping probability

wq : queue weight

maxth : maximum threshold for queue

Pt : Probability that the network can lead to

congestion at time t

maxp :maximum dropping probability

Fixed parameters:

minth : minimum threshold for queue

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

23

to packet drop. The value of maxth will be vital only in case of

initial stages of heavy congestion and not during no congestion

or very heavy congestion. The packet drop probability will be

controlled based on the value of maxth. In this proposed

algorithm, maxth is set based on the probability of congestion at

time t in network and the occurrence of congestion at time (t-1).

So calculating average queue size and packet drop probability

are not dependent on well tuning of the parameters as in RED.

This algorithm will work fine as the parameters are well tuned

automatically and parameterized. In such a case, the proposed

algorithm reduces the problem of parameter tuning.

To calculate pa, pb:

 pb= (avg-minth) / (maxth – minth)

 pa= pb / (1- count . pb)

Though the dynamic varying nature of wq takes care of the

network characteristics it keeps the average queue length high

and in a unstable point in case of heavy traffic. This algorithm

overcomes this problem with the help of the flow based

information. So both wq and the flow information take care of

the unresponsive flows and misbehaving flows and brings in

stable and fair queuing. This is implemented by simple

comparison of the packet from incoming traffic and the packets

in the queue. Thus in a simple manner the packets of the

misbehaving flows are penalized. This is done as packets

belonging to non-adaptive or misbehaving flows are more likely

to be chosen for comparisons than the adaptive flows. Packets of

unresponsive flows are dropped more often than the adaptive

flows and well behaved flows. The value of maxth decides on the

packet drop. The threshold value of maxth should be set

sufficiently to increase the network power. In case of low

threshold value of maxth, the average queue size will remain too

low. If the average queue size is too low, then the output link

will be underutilized. When the network traffic is bursty then

average queue size can also be made bursty to improve link

utilization. Nextly increasing maxth – minth sufficiently large

avoids global synchronization. If the maxth – minth is too small,

then the computed average queue size will be regularly around

maxth. The dynamic varying nature of the parameters wq, maxth

and the flow information will try to keep the router congestion

controlled

4. EXPERIMENTATION
In this section, the packet-simulator ns-2 is used to simulate the

FDynamicAutoRED algorithm. In this simulation the network

topology in Figure 2 is with a single link of capacity 1Mbps that

drops packet according to the AQM algorithm. The congestion

link is in between the two routers R1 and R2. The link is shared

by n TCP flows and n UDP flows. End hosts are connected to

the routers using a 10Mbps link. All links have a small

propagation delay of 1ms so that the delay introduced is by the

buffer delay rather than the transmission delay. The maximum

window size of TCP is set to 300 such that it is not a limiting

factor for the flow’s throughput. The TCP flows are derived

from FTP sessions which transmit large size files. The UDP

hosts send packets at a constant bit rate of 0.08 Mbps. In the

simulation setup 32 TCP flows and 1 UDP flow is considered in

the network.

Figure 2 Network Topology

The minimum threshold minth in the FDynamicAutoRED

scheme is set to 100 and the maximum threshold maxth to be

twice the minth and the physical queue size is fixed at 300

packets.

In a dynamic varying mixture of traffic, the control parameter

wq alone does not help in achieving the stable operating point

for the queue size. As shown in Figure 4 dynamic varying

parameter wq maintains the average queue size and instability at

a higher level in case of AutoREDwithRED. Though

AutoREDwithRED keeps the average queue size at a stable

point for the traffic consisting of adaptive flows, but for

different conditions that included non-adaptive flows the

average queue size projects an oscillating behaviour. But this

algorithm shows a stable and a moderate average queue size

compared to other AQMs as in Figure 3. The average queue size

is neither too low nor high in this proposed AQM as compared

to other AQMs. A very high average queue size increases the

queuing delay. The average queue size should not be too low

which results in poor link utilization. This proposed algorithm

keeps the average queue size controlled at a moderate level

compared to other AQMs.

Figure 3 Average Queue Size / Std. Dev of other AQMs with

FDynamicAutoRED

RED and other AQMs are unable to penalize unresponsive

flows. As the packets dropped from each flow over a period of

time is almost the same. Consequently the misbehaving traffic

like UDP can take up a large % of the link bandwidth and starve

out TCP friendly flows as in Figure 4. FDynamicAutoRED

identifies and penalizes misbehaving flows effectively compared

to the existing AQMs as in Table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

24

Figure 4 CBR and TCP Utilisation of other AQMs with

FDynamicAutoRED

The Figure 5 and Table 2 indicates that other AQMs almost take

up the entire bandwidth for UDP flow though its actual CBR fair

share is very minimum. While CBR throughput is only 20% of

the bandwidth using this algorithm. So TCP utilization is almost

very minimum in case of other AQMs and when compared to

this algorithm shows a good fair utilization of 76%.

In case of packet drop rate shown in Table 3 and Figure 6, the

FDynamicAutoRED has a controlled drop compared to the other

AQMs due to the drop of the UDP. It tries to give a fair share by

Table 1 CBR and TCP Utilization of other AQMs with

FDynamicAutoRED

Table 2 Comparison of CBR Fair share and Throughput of

other AQMs with FDynamicAutoRED

Figure 5 Comparison of CBR Fair share and Throughput of

other AQMs with FDynamicAutoRED

dropping the UDP packets otherwise the UDP utilises the link to

the maximum without allowing the TCP packets. The packet

drop rate is controlled due to the increment/decrement in the

maxth that depends on the congestion characteristics. The queue

oscillation in queues does not prove as good performance of

AQMs in Internet routers. But this proposed AQM proves good

as it gives reduced queue oscillation. The queue stability of this

proposed algorithm is high compared to other AQMs.

Table 3 Comparison of Packet Drop Rate of other AQMs

with FDynamicAutoRED

Figure 6 Comparison of Packet Drop Rate of other AQMs

with FDynamicAutoRED

In %

CBR utilization TCP utilization

VQ 97.053714 0.646857

REM 88.578286 2.395429

AutoREDwithRED 98.299429 1.702857

FDynamicAutoRED 20.254857 76.78514

RED 98.166857 1.830857

In Mbps

CBRFair

share CBR Throughput

VQ 0.03030303 0.970537

REM 0.03030303 0.885783

AutoREDwithRED 0.03030303 0.982994

FDynamicAutoRED 0.03030303 0.202548

RED 0.03030303 0.981669

AQMs Packet Drop Rate

FDynamicAutoRED 9.49

RED 9.87

AutoREDwithRED 9.77

REM 9.74

VQ 9.79

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.7, May 2011

25

5. CONCLUSIONS
This paper proposes an AQM scheme called

FDynamicAutoRED which aims to reduce queue oscillation

with controlled packet drop rate in case of mixture of traffic.

The adaptive flows are protected from non-adaptive flows in this

scheme. It is obtained without comprising high utilisation, low

queuing delay and controlled packet loss. It is achieved with

well dynamically tuned parameters and flow information. This

packet dropping scheme discriminates against the unresponsive

flows resulting in fair congestion indication. This proposed

AQM scheme inherits the advantages of these queue length

based AQM and uses flow information to satisfy the QOS

requirements of the network.

6. REFERENCES
[1] Floyd, S. and Jacobson, V. 1993. Random early detection

gateways for congestion avoidance. IEEE/ACM Trans.

Networking, vol. 1, pp. 397–413, Aug. 1993.

[2] Chengnian, L. Zhao, Guan, B. Yang, J. 2004. The Yellow

active queue management algorithm. Computer Networks,

November 2004

[3] Cheng-Nian, L. Zhao, B. Guan, X. 2005. SAVQ: Stabilized

Adaptive Virtual Queue Management Algorithm. IEEE

Communications Letters. January 2005

[4] Floyd, S. Gummadi, S. Shenkar, S. and ICSI. Adaptive RED:

An algorithm for Increasing the robustness of RED’s active

Queue Management. Berkely,CA [online]

http:www.icir.org/floyd/red.html

[5] Suthaharan, S. 2007. Reduction of queue oscillation in the

next generation Internet routers. Science Direct, Computer

Communication. 2007

[6] Jinsheng, S. King-Tim, K. Guanrong, C. Sukerman, S. M. S.

2003. PD – RED: To Improve Performance of RED. IEEE

COMMUNICATIONS LETTER. August 2003

[7] Jahoon, K. Byunghun, S. Kwangsue, C. Hyukjoon, L.

Hyunkook, K. 2001. MRED: A New Approach To Random

Early Detection. In 15th International Conference on

Information Networking. February 2001.

[8] Bing, Z. Mogammed, A. 2000 DSRED: An Active Queue

Management Scheme for Next Generation Networks. In

Proceedings of 25th IEEE conference on Local Computer

Networks LCN 2000. November 2000

[9] Athuraliya. S. Li, V. H. Low, S. H. and Yin, Q. 2001. REM:

Active queue management. IEEE Network Mag. vol. 15.

pp. 48–53. 2001.

[11] Kunniyur, S. Srikant, R. 2001. Analysis and design of an

adaptive virtual queue (AVQ) algorithm for active queue

management. In Proceedings of ACM SIGCOMM. San

Diego. 2001

[10] Feng, W. Kandlur, D. D. Saha D. 2005. The Blue active

queue management algorithms. IEEE/ACM Transactions

on Networking 2002.

 [12] Ott, T. J. Lakshman, T. V. and Wong, L. 1999. SRED:

Stablised RED. IEEE INFOCOMM. March 1999

[13] Feng, W. Kapadia, A. Thulasidasan, S. 2002. GREEN:

Proactive Queue Management over a Best-Effort Network.

IEEE GlobeCom. Taipei. Taiwan. November 2002

