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ABSTRACT 
Vector Quantization (VQ) is one of the lossy image compression 

techniques. VQ comprises of three different phases: Codebook 

Generation, Image Encoding and Image Decoding. The 

performance of VQ is mainly based on the codebook generation 

phase. In this paper, five different codebook generation 

techniques namely the Simple Codebook Generation (SCG), 

Ordered Codebook Generation (OCG), Codebook Generation by 

Sorting the Sum of Sib Vectors (CBSSSV), Codebook 

Generation with Edge Features (CBEF) and Codebook 

Generation with Cluster Density (CBCD) for Vector 

Quantization have been discussed and their performance in 

terms of number of iterations required to converge with respect 

to Peak Signal to Noise Ratio (PSNR) is compared when k-

Means Clustering technique is used to optimize the initial 

codebook that is created by any of the above techniques. Of 

these discussed techniques, the CBEF technique performs better.  

General Terms 

Vector Quantization, Image Compression 

Keywords 

Compression, codevector, training vector, clustering, MSE. 

1. INTRODUCTION 
Image compression is essential for applications such as TV 

transmission, video conferencing, facsimile transmission of 

printed material, graphics images, or transmission of sensing 

images obtained from satellites and reconnaissance aircraft [1].  

Image compression techniques deal with the reduction of data 

required to represent images. Compression of images also 

reduces the time required for images to be sent over the Internet. 

The image compression techniques are generally classified into 

two major types namely, the lossy compression techniques and 

lossless compression techniques.  

Vector Quantization is one of the lossy image compression 

techniques. It is theoretically proved that VQ is more efficient 

than scalar quantization [2]. The VQ algorithms for reducing the 

transmission bit rate or the storage have recently been 

extensively investigated for speech and image signals [3] and 

[4]. 

 The design of an efficient VQ encoder involves global 

codebook generation by selecting a good clustering algorithm 

and using appropriate features extracted from the training data 

set [5]. VQ has been successfully used in various applications 

involving VQ-based encoding and recognition [6]. VQ 

techniques have been used for a number of years for data 

compression. With its relatively simple structure and 

computational complexity, VQ has received great attention in 

the last decade.  VQ comprises of three stages: 1. Codebook 

Generation, 2. Image Encoding and 3. Image Decoding. 

Codebook Generation is the key component of VQ. The 

performance of the VQ mainly depends on the quality of the 

codebook. LBG (Linde, Buzo, Gray) [7] is the most widely 

referred VQ method for designing a codebook. There are several 

known methods for generating a codebook.  

In normal VQ, the input image is divided in to small blocks of 

size 4 x 4 pixels. These blocks are converted into vectors of size 

k-dimension (k = 4 x 4). These vectors are called training 

vectors and the set of training vectors is called training set of 

size N vectors.  N is computed using the equation (1).  

                            N= (m x m)/16             (1) 

where 16 is the size of the vector. A codebook of size M (M<N) 

is generated by selecting M codevectors from the training set. 

These codevectors act as the representative vector for the whole 

training set. In image encoding, all the input blocks are 

compared against the codevectors and whichever codevector is 

closest to the input block, the corresponding index is stored or 

transmitted. In the decoding stage, the corresponding codevector 

of the index is coded to get the reconstructed image. The 

difference between the input image and the reconstructed image 

is the Mean Square Error (MSE) and is computed using the 

equation (2). The Peak Signal to Noise Ratio is the inverse of 

MSE and gives the quality of the reconstructed image. PSNR is 

computed using the equation (3). 
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The efficiency of VQ mainly depends on the quality of the 

codebook. There are various techniques existing to generate 

initial codebooks for VQ. The performance of the codebook 

generation techniques is measured in terms of time taken to 

generate the codebook and the quality of the reconstructed 

images using the codebooks. When MSE is less, the quality is 

high. The initial codebook thus generated using any of the 

existing techniques is optimized using Generalized Lloyd 

Algorithm (GLA) otherwise called k-Means Clustering 

algorithm. When optimized, the MSE obtained with the initial 

codebook will further be reduced. The initial MSE and the 

improved MSE of all the discussed methods are compared. 

The remaining paper is organized as follows: In section 2, 

various codebook generation methods are discussed. In section 

4, the k-Means clustering is explained and the initial codebooks 

that are generated using the methods discussed in section 3 are 

improved using k-Means clustering method and the results 

obtained are discussed in Section 4. The conclusion is given in 

Section 5 and the references are given in section 6.  

2.  THE CODEBOOK GENERATION 

METHODS 

2.1.   Simple Codebook Generation 
In simple codebook generation, the training vectors at every nth 

position are selected to form the codebook. The value of n is 

computed using the equation (4).  

                                          n = N/M                                        (4) 

where, M is the size of the desired codebook to be generated.  In 

SCG, the codevectors are selected randomly. Hence there are 

chances for more than one codevector to be closer. 

2.2. Ordered Codebook Generation (OCG)  
An enhanced form of SCG is the ordered codebook generation 

technique [8]. In this method, the training vectors are sorted in 

ascending order based on the sum of the components 

(magnitude) of the vectors. The magnitude of the vector is 

computed using the equation (5). 
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where 1 <= i <= N, and xj is the j
th

 component of the vector. 

After sorting, the training vectors at every nth position are 

selected to form the codebook. In this method, the training 

vectors are uniformly distributed and there are no chances for 

the closest codevectors to occur in the codebook and improves 

the quality of the codebook. 

2.3. Codebook Generation by Sorting the 

Sum of Sub Vectors (CBSSSV) 

CBSSSV method [9] is an enhancement done to the OCG 

method. When the training vectors are sorted based on their 

magnitudes as in OCG, there are chances for different training 

vectors to give same magnitude.  

For example, we have taken two training vectors {165, 170, 169, 

35, 166, 166, 173, 101, 162, 164, 170, 166, 161, 165, 165, 172} 

and {126, 21, 46, 104, 244, 228, 150, 92, 197, 199, 153, 107, 

248, 250, 163, 142} from the image cameraman. If we compute 

the magnitude for both the vectors using the equation (4), the 

values will be 2470 and 2470 respectively. The difference 

between the vectors is 0. When we sort the training vectors in 

ascending order based on the sum values, both the training 

vectors will be in adjacent locations. As in OCG, if we select the 

training vectors for codebook from every nth position, there are 

chances for missing one of the vectors. But when we look at the 

intensity values of both the vectors, the corresponding elements 

are entirely different.   

Hence the above proposed method is adopted. In this method, 

the sum values of the sub vectors are taken rather than the sum 

of the whole vector. Now the sum values of the above two 

vectors will be  

539-606+662-663= -68 

297-714+656-803= -564 

The absolute difference between both the vectors now is 496 (-

68-(564)). Hence these two vectors will be far away to each 

other in the sorted list. Hence there is less number of chances for 

missing one of the vectors while generating the codebook.  

2.4. Codebook Generation with Cluster 

Density 

In this method [10], the number of closest codevectors for each 

training vector is identified and is stored as the corresponding 

cluster density. The cluster densities for all training vectors are 

computed and are sorted in descending order. From the sorted 

list, the top M training vectors with higher cluster densities are 

identified and grouped as codebook. The closest codevector is 

identified by calculating the distance between the codevector 

and the training vector using the equation (6). 
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where d(X, Yi) is the minimum, X being the current vector and 

Yi refers to all other vectors.  

2.5. Codebook Generation with Edge 

Features (CBEF)  
With the above methods, the reconstructed images have ragged 

edges. To overcome this problem, in CBEF method [11], the 

training vectors are classified into two categories namely the 

edge blocks and shade blocks.  The high detail blocks are called 

edge blocks and the low detail blocks are called the shade 

blocks. To identify whether a block is a high detail one or low 

detail one, the mean x is computed using the equation (8).  
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The sum of the difference between the individual components 

and the mean is computed using the equation (9).  
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The value SD is compared against a threshold value and if 

greater, the block is a high detail block or an edge block. If less, 

it is a low detail block or shade block. After classifying all the 

blocks into edge or low detail blocks, the codebook is first 

populated with the edge blocks, and then to fill the gap, the 

shade blocks are selected in random. This method enables to 

have smooth edges. The codebook thus generated using the 

above techniques can be optimized to give better performance in 

terms of MSE using the k-Means Clustering technique. 

3. K-MEANS CLUSTERING TECHNIQUE 
This technique is used to optimize the codebook that is initially 

created by any one of the above said techniques. The N training 

vectors are grouped into M clusters with the initial codevectors 

as the centroids of all the clusters. Pick up the centroid Yi(k), of 

any cluster. Find all the image blocks Xi that are closer to Yi 

than to any other Yj. i.e. find the set of all Xi (training vectors) 

that satisfy: 

             d(Xi, Yi) < d(Xi, Yj) for all j ≠ i,                (9) 

 

where the distance between the training vector Xi and the 

codevector Yi is computed as 

                       

∑
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Calculate the sum vector by adding all the training vectors Xi 

that are closer to Yi. The individual component of the sum 

vector is calculated by adding the corresponding components of 

all the training vectors of the same cluster as:  

                        

∑
=

=
c

i

ijij XSum
1                                    (11) 

where, c is the cluster strength. Now every component is divided 

by the cluster strength c to get the new centroid of the cluster.  

              Centroid = Sumij / ni ,    where i=1,2,….n           (12) 

The codevector Yi is replaced with the newly generated centroid 

to form the refined codebook. These steps are repeated till the 

codebooks of consecutive iterations converge. 

3.1.  k-Means Clustering Algorithm 
Step1: The training vectors are grouped into M clusters based 

on the distance between the codevectors and the training 

vectors using the equation (10) and (11). 

Step2: Compute the sum vector for every cluster by adding 

the corresponding components of all the training vectors 

that belong to the same cluster using the equation (12). 

Step3: Compute the centroid for each cluster by dividing the 

individual components of the sum vector by the cluster 

strength ni using the equation (12). 

Step4: Replace the existing codevector with the new centroid 

to form the revised codebook. 

Step5: Repeat the steps 1 through 4 till the codebooks of the 

consecutive iterations converge. 

4.  RESULTS AND DISCUSSION 
The algorithms are implemented using Matlab 7.0 on Windows 

Operating System. The hardware used is the Intel Core 2 Duo 

E7400@ 2.8 GHz Processor with 2 GB RAM. The experiments 

were conducted with standard images Baboon, Barbara, Boats, 

Bridge, Camera and Lena of size 256 x 256 pixels.  

Tables 1, 2, 3, 4 and 5 show the comparison of PSNR, the time 

taken for generating the initial codebook, the time taken for 

optimizing the codebook, the improved PSNR after optimization 

and the number of iterations required for the convergence of 

codebook during optimization for different images with different 

codebook sizes 128, 256 and 512.  

The terms used in the following tables refer to 

1. initTime    -  Time taken to generate the initial codebook 

2. initPSNR   -  Quality of the image reconstructed with the 

initial codebook 

3. impPSNR  -  Improved PSNR with the optimized codebook 

 

                   

Table 1: Comparison of PSNR and the number of iterations required for optimization by SCG method for different codebook sizes 

128, 256 and 512. 

CB Size Image Baboon Barbara Boats Bridge Camera Lena Average 

128 

initTime 0.00 0.00 0.00 0.015 0.015 0.016 0.01 

initPSNR 33.12 32.59 26.4 26.02 26.15 29.24 28.92 

Time 21.42 51.86 14.89 11.66 27.16 59.00 31.00 

ImpPSNR 36.11 35.97 30.35 28.12 29.19 32.94 32.11 

Iterations 103 248 72 56 131 284 149 
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256 

initTime 0.02 0.00 0.02 0.00 0.00 0.02 0.01 

initPSNR 34.36 34.31 28.33 26.90 26.80 30.66 30.23 

Time 83.56 103.05 60.16 24.14 75.59 203.25 91.63 

ImpPSNR 37.88 37.76 31.69 29.48 31.79 34.68 33.88 

Iterations 201 248 145 58 182 489 220 

512 

initTime 0.00 0.02 0.02 0.02 0.02 0.02 0.01 

initPSNR 36.26 35.96 29.56 27.98 28.00 32.23 31.67 

Time 77.44 349.94 88.00 40.86 328.69 389.23 212.36 

ImpPSNR 39.68 40.02 33.55 31.17 33.15 36.86 35.74 

Iterations 92 417 105 48 392 464 253 

Avg. 

initTime 0.01 0.01 0.01 0.01 0.01 0.02 0.01 

initPSNR 34.58 34.29 28.10 26.97 26.98 30.71 30.27 

Time 60.81 168.28 54.35 25.55 143.81 217.16 111.66 

ImpPSNR 37.89 37.92 31.86 29.59 31.38 34.83 33.91 

Iterations 132 304 107 54 235 412 208 

 

 

Table 2: Comparison of PSNR and the number of iterations required for optimization by 

OCG method for different codebook sizes 128, 256 and 512. 

CB Size Image Baboon Barbara Boats Bridge Camera Lena Average 

128 

initTime 0.27 0.31 0.33 0.31 0.34 0.31 0.31 

initPSNR 33.88 33.51 28.39 25.96 26.15 30.43 29.72 

Time 15.42 62.2 11.25 15.42 24.36 43.50 28.69 

ImpPSNR 35.94 36.07 30.72 28.33 29.94 33.05 32.34 

Iterations 74 299 54 74 117 209 138 

256 

initTime 0.28 0.31 0.33 0.31 0.34 0.31 0.31 

initPSNR 35.01 34.60 29.21 27.01 26.80 31.37 30.67 

Time 65.61 150.33 46.81 43.84 51.56 133.66 81.97 

ImpPSNR 37.44 37.97 32.06 29.56 31.52 34.73 33.88 

Iterations 157 360 112 105 124 321 197 

512 

initTime 0.27 0.31 0.33 0.31 0.34 0.31 0.31 

initPSNR 36.09 36.20 30.08 27.75 28.06 32.35 31.76 

Time 79.77 559.64 147.11 27.75 204.25 855.27 312.30 

ImpPSNR 39.50 39.96 33.88 31.16 33.05 36.25 35.63 

Iterations 95 666 175 33 244 1020 372 

Average 

initTime 0.27 0.31 0.33 0.31 0.34 0.31 0.31 

initPSNR 34.99 34.77 29.23 26.91 27.00 31.38 30.71 

Time 53.60 257.39 68.39 29.00 93.39 344.14 140.99 

ImpPSNR 37.63 38.00 32.22 29.68 31.50 34.68 33.95 

Iterations 109 442 114 71 162 517 236 
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Table 3: Comparison of PSNR and the number of iterations required for optimization by  

     CBSSSV method for different codebook sizes 128, 256 and 512. 

CB Size Image Baboon Barbara Boats Bridge Camera Lena Average 

128 

initTime 0.30 0.30 0.30 0.30 0.31 0.31 0.30 

initPSNR 33.74 33.24 28.26 26.09 26.27 30.19 29.63 

Time 15.53 50.73 23.08 7.50 28.64 25.92 25.23 

ImpPSNR 35.90 36.12 30.63 28.29 29.95 32.93 32.30 

Iterations 75 244 111 36 138 125 122 

256 

initTime 0.31 0.30 0.30 0.31 0.31 0.31 0.31 

initPSNR 34.95 34.66 29.18 27.03 27.23 31.33 30.73 

Time 50.84 134.95 74.03 11.69 98.45 180.11 91.68 

ImpPSNR 37.74 37.89 31.97 29.55 31.29 34.63 33.85 

Iterations 122 324 178 28 237 433 220 

512 

initTime 0.30 0.30 0.31 0.31 0.31 0.31 0.31 

initPSNR 36.29 36.32 30.02 28.01 28.32 32.45 31.90 

Time 37.13 717.59 100.63 50.42 20.8.47 771.44 279.54 

ImpPSNR 39.62 39.86 33.78 31.18 33.15 36.20 35.63 

Iterations 44 856 120 60 248 921 375 

Average 

initTime 0.30 0.30 0.30 0.31 0.31 0.31 0.31 

initPSNR 34.99 34.74 29.15      27.04 27.27 31.32      30.75 

Time 34.50 301.09 65.91 23.20 42.36 325.82 132.15 

ImpPSNR 37.75 37.96 32.13 29.67 31.46 34.59 33.93 

Iterations 80 474 136 41 207 493 239 

 

 

Table 4: Comparison of PSNR and the number of iterations required for optimization by  

                                                   CBCD method for different codebook sizes 128, 256 and 512. 

CB Size Image Baboon Barbara Boats Bridge Camera Lena Average 

128 

initTime 0.63 0.63 0.63 0.63 0.63 0.64 0.63 

initPSNR 33.12 32.59 27.69 26.08 25.51 30.27 29.21 

Time 21.39 51.52 21.80 13.33 18.70 21.34 24.68 

impPSNR 36.11 35.97 30.47 28.38 28.58 32.91 32.07 

Iterations 103 248 105 64 91 103 119 

256 

 

initTime 0.63 0.61 0.63 0.63 0.63 0.66 0.63 

initPSNR 34.36 34.31 28.54 26.75 26.16 30.88 30.17 

Time 83.74 103.08 44.86 22.84 51.94 148.47 75.82 

ImpPSNR 37.88 37.76 31.89 29.33 30.49 34.51 33.64 

Iterations 201 248 108 55 126 358 183 

512 

initTime 0.61 0.63 0.63 0.61 0.63 0.63 0.62 

initPSNR 36.26 35.96 29.62 27.28 26.96 31.60 31.28 

Time 77.27 349.47 191.00 30.92 244.64 363.41 209.45 

ImpPSNR 39.68 40.02 33.13 30.65 32.25 36.10 35.31 

Iterations 92 417 228.00 37 292 433 250 
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Average 

initTime 0.62 0.62 0.62 0.63 0.63 0.64 0.63 

initPSNR 34.58 34.29 27.84 26.60 26.21 30.92 30.07 

Time 60.80 168.02 32.53 93.60 105.09 177.74 106.30 

impPSNR 37.89 37.92 31.00 29.99 30.44 34.51 33.62 

Iterations 132 304 83 137 170 298 187 

 

Table 5: Comparison of PSNR and the number of iterations required for optimization by 

                                                   CBEF method for different codebook sizes 128, 256 and 512. 

CB Size Image Baboon Barbara Boats Bridge Camera Lena Average 

128 

initTime 0.63 0.63 0.63 0.63 0.63 0.64 0.63 

initPSNR 33.12 32.59 27.69 26.08 25.51 30.27 29.21 

Time 21.39 51.52 21.80 13.33 18.70 21.34 24.68 

impPSNR 36.11 35.97 30.47 28.38 28.58 32.91 32.07 

Iterations 103 248 105 64 91 103 119 

256 

 

initTime 0.63 0.61 0.63 0.63 0.63 0.66 0.63 

initPSNR 34.36 34.31 28.54 26.75 26.16 30.88 30.17 

Time 83.74 103.08 44.86 22.84 51.94 148.47 75.82 

ImpPSNR 37.88 37.76 31.89 29.33 30.49 34.51 33.64 

Iterations 201 248 108 55 126 358 183 

512 

initTime 0.61 0.63 0.63 0.61 0.63 0.63 0.62 

initPSNR 36.26 35.96 29.62 27.28 26.96 31.60 31.28 

Time 77.27 349.47 191.00 30.92 244.64 363.41 209.45 

ImpPSNR 39.68 40.02 33.13 30.65 32.25 36.10 35.31 

Iterations 92 417 228.00 37 292 433 250 

Average 

initTime 0.62 0.62 0.62 0.63 0.63 0.64 0.63 

initPSNR 34.58 34.29 27.84 26.60 26.21 30.92 30.07 

Time 60.80 168.02 32.53 93.60 105.09 177.74 106.30 

impPSNR 37.89 37.92 31.00 29.99 30.44 34.51 33.62 

Iterations 132 304 83 137 170 298 187 

 

Table 6: Comparison of the average time, iterations and the PSNR with respect to the 

                                                       methods SCG, OCG, CBSSSV, CBEF and CBCD 

Techniques SCG OCG CBSSSV CBEF CBCD 

initTime 0.01 0.31 0.31 0.63 16.65 

initPSNR 30.27 30.71 30.75 30.07 30.61 

Time 111.66 140.99 132.15 106.30 125.94 

impPSNR 33.91 33.95 33.93 33.62 33.64 

Iterations 208 236 239 187 221 
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In Tables 1 thru. 5, the results obtained with all the techniques 

are presented in separate tables. The average values are 

presented in Table 6. As far as the initial codebook is concerned, 

the OCG method performs better in terms of time taken to 

generate the codebook. It takes on an average of 0.01 seconds.  

The OCG and CBSSSV methods take o.31 seconds on an 

average. The CBEF method takes 0.63 seconds and the CBCD 

method takes more time, i.e. 16.65 seconds. When compared to 

CBCD method, the time taken by SCG method is negligible.  

 

Comparison of Time, PSNR and No. of Iterations 
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Fig.1. Average variation in PSNR, Time and number of iterations required towards convergence of codebook.

The initial PSNR is almost the same for all methods. The 

average difference n PSNR is 0.27. The average times taken by 

k-Means Clustering method to optimize the initial codebooks 

that are generated by all techniques are given in Table 6. The 

time taken by CBEF method is the minimum which is 106.30. 

The highest value is 140.99 and is taken by OCG method. The 

number of iterations is minimum (187) in case of CBEF and 

maximum (239) in case of CBSSSV. 

When we look at the graph given in Fig.1, the average PSNR 

obtained with the entire techniques lie on same line. But there is 

a significant variation in the time taken to optimize the 

codebook and the number of iterations required by all the 

methods. CBEF gives better results in terms of time to optimize 

the codebook and number of iterations required for convergence.  

The input images of size 256 x 256 pixels and of varying gray 

shades taken for the study are given in Fig. 2. 

 

                (a) Baboon                               (b) Barbara 

 

              (c) Boats                                      (d)  Bridge 

 

 

           (e) Cameraman                               (f)  Lena 

Fig. 2. Input images taken for the study. 
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5. CONCLUSION 
We have discussed five different techniques for generating the 

initial codebook that form the initial seeds for the k-Means 

clustering algorithm. k-Means clustering technique is an 

optimizing tool for improving the quality of the codebooks that 

are generated for VQ. We experimented the performance of all 

the methods using the k-Means clustering in terms of i. time 

taken for optimization, ii. the improved PSNR (quality of the 

reconstructed images) and iii. the number of iterations needed 

for the convergence of codebooks of consecutive iterations. The 

Codebook Generation with Edge Features (CBEF) gives better 

results both in terms of time and the number of iterations.  But 

all methods give more or less same PSNR values. Hence CBEF 

is considered to be the best of all methods. The experiments are 

conducted with gray scale images. As the gray scale images 

form the base for color images, the above techniques can also be 

used for color images. These techniques can be used imaging 

applications in hand-held devices.  
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