
International Journal of Computer Applications (0975 – 8887)

Volume 21– No.8, May 2011

16

Convergence Analysis of Codebook Generation

Techniques for Vector Quantization using K-Means

Clustering Technique

S.Vimala

Department of Computer Science

Mother Teresa Women’s University

Kodaikanal – 624 102

Tamil Nadu, India

ABSTRACT
Vector Quantization (VQ) is one of the lossy image compression

techniques. VQ comprises of three different phases: Codebook

Generation, Image Encoding and Image Decoding. The

performance of VQ is mainly based on the codebook generation

phase. In this paper, five different codebook generation

techniques namely the Simple Codebook Generation (SCG),

Ordered Codebook Generation (OCG), Codebook Generation by

Sorting the Sum of Sib Vectors (CBSSSV), Codebook

Generation with Edge Features (CBEF) and Codebook

Generation with Cluster Density (CBCD) for Vector

Quantization have been discussed and their performance in

terms of number of iterations required to converge with respect

to Peak Signal to Noise Ratio (PSNR) is compared when k-

Means Clustering technique is used to optimize the initial

codebook that is created by any of the above techniques. Of

these discussed techniques, the CBEF technique performs better.

General Terms

Vector Quantization, Image Compression

Keywords

Compression, codevector, training vector, clustering, MSE.

1. INTRODUCTION
Image compression is essential for applications such as TV

transmission, video conferencing, facsimile transmission of

printed material, graphics images, or transmission of sensing

images obtained from satellites and reconnaissance aircraft [1].

Image compression techniques deal with the reduction of data

required to represent images. Compression of images also

reduces the time required for images to be sent over the Internet.

The image compression techniques are generally classified into

two major types namely, the lossy compression techniques and

lossless compression techniques.

Vector Quantization is one of the lossy image compression

techniques. It is theoretically proved that VQ is more efficient

than scalar quantization [2]. The VQ algorithms for reducing the

transmission bit rate or the storage have recently been

extensively investigated for speech and image signals [3] and

[4].

 The design of an efficient VQ encoder involves global

codebook generation by selecting a good clustering algorithm

and using appropriate features extracted from the training data

set [5]. VQ has been successfully used in various applications

involving VQ-based encoding and recognition [6]. VQ

techniques have been used for a number of years for data

compression. With its relatively simple structure and

computational complexity, VQ has received great attention in

the last decade. VQ comprises of three stages: 1. Codebook

Generation, 2. Image Encoding and 3. Image Decoding.

Codebook Generation is the key component of VQ. The

performance of the VQ mainly depends on the quality of the

codebook. LBG (Linde, Buzo, Gray) [7] is the most widely

referred VQ method for designing a codebook. There are several

known methods for generating a codebook.

In normal VQ, the input image is divided in to small blocks of

size 4 x 4 pixels. These blocks are converted into vectors of size

k-dimension (k = 4 x 4). These vectors are called training

vectors and the set of training vectors is called training set of

size N vectors. N is computed using the equation (1).

 N= (m x m)/16 (1)

where 16 is the size of the vector. A codebook of size M (M<N)

is generated by selecting M codevectors from the training set.

These codevectors act as the representative vector for the whole

training set. In image encoding, all the input blocks are

compared against the codevectors and whichever codevector is

closest to the input block, the corresponding index is stored or

transmitted. In the decoding stage, the corresponding codevector

of the index is coded to get the reconstructed image. The

difference between the input image and the reconstructed image

is the Mean Square Error (MSE) and is computed using the

equation (2). The Peak Signal to Noise Ratio is the inverse of

MSE and gives the quality of the reconstructed image. PSNR is

computed using the equation (3).

() ()[]
2

1 1

,',∑∑
= =

−=
M

y

N

x

yxIyxIMSE

 (2)

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.8, May 2011

17

()









=

MSEsqrt
PSNR

255
log*20 10

 (3)

The efficiency of VQ mainly depends on the quality of the

codebook. There are various techniques existing to generate

initial codebooks for VQ. The performance of the codebook

generation techniques is measured in terms of time taken to

generate the codebook and the quality of the reconstructed

images using the codebooks. When MSE is less, the quality is

high. The initial codebook thus generated using any of the

existing techniques is optimized using Generalized Lloyd

Algorithm (GLA) otherwise called k-Means Clustering

algorithm. When optimized, the MSE obtained with the initial

codebook will further be reduced. The initial MSE and the

improved MSE of all the discussed methods are compared.

The remaining paper is organized as follows: In section 2,

various codebook generation methods are discussed. In section

4, the k-Means clustering is explained and the initial codebooks

that are generated using the methods discussed in section 3 are

improved using k-Means clustering method and the results

obtained are discussed in Section 4. The conclusion is given in

Section 5 and the references are given in section 6.

2. THE CODEBOOK GENERATION

METHODS

2.1. Simple Codebook Generation
In simple codebook generation, the training vectors at every nth

position are selected to form the codebook. The value of n is

computed using the equation (4).

 n = N/M (4)

where, M is the size of the desired codebook to be generated. In

SCG, the codevectors are selected randomly. Hence there are

chances for more than one codevector to be closer.

2.2. Ordered Codebook Generation (OCG)
An enhanced form of SCG is the ordered codebook generation

technique [8]. In this method, the training vectors are sorted in

ascending order based on the sum of the components

(magnitude) of the vectors. The magnitude of the vector is

computed using the equation (5).

∑
=

=
k

j

ji xS
1 (5)

where 1 <= i <= N, and xj is the j
th

 component of the vector.

After sorting, the training vectors at every nth position are

selected to form the codebook. In this method, the training

vectors are uniformly distributed and there are no chances for

the closest codevectors to occur in the codebook and improves

the quality of the codebook.

2.3. Codebook Generation by Sorting the

Sum of Sub Vectors (CBSSSV)

CBSSSV method [9] is an enhancement done to the OCG

method. When the training vectors are sorted based on their

magnitudes as in OCG, there are chances for different training

vectors to give same magnitude.

For example, we have taken two training vectors {165, 170, 169,

35, 166, 166, 173, 101, 162, 164, 170, 166, 161, 165, 165, 172}

and {126, 21, 46, 104, 244, 228, 150, 92, 197, 199, 153, 107,

248, 250, 163, 142} from the image cameraman. If we compute

the magnitude for both the vectors using the equation (4), the

values will be 2470 and 2470 respectively. The difference

between the vectors is 0. When we sort the training vectors in

ascending order based on the sum values, both the training

vectors will be in adjacent locations. As in OCG, if we select the

training vectors for codebook from every nth position, there are

chances for missing one of the vectors. But when we look at the

intensity values of both the vectors, the corresponding elements

are entirely different.

Hence the above proposed method is adopted. In this method,

the sum values of the sub vectors are taken rather than the sum

of the whole vector. Now the sum values of the above two

vectors will be

539-606+662-663= -68

297-714+656-803= -564

The absolute difference between both the vectors now is 496 (-

68-(564)). Hence these two vectors will be far away to each

other in the sorted list. Hence there is less number of chances for

missing one of the vectors while generating the codebook.

2.4. Codebook Generation with Cluster

Density

In this method [10], the number of closest codevectors for each

training vector is identified and is stored as the corresponding

cluster density. The cluster densities for all training vectors are

computed and are sorted in descending order. From the sorted

list, the top M training vectors with higher cluster densities are

identified and grouped as codebook. The closest codevector is

identified by calculating the distance between the codevector

and the training vector using the equation (6).

()∑
=

−=
k

j

ijji YXYXd
1

),(

 , 1<=i<=N (6)

where d(X, Yi) is the minimum, X being the current vector and

Yi refers to all other vectors.

2.5. Codebook Generation with Edge

Features (CBEF)
With the above methods, the reconstructed images have ragged

edges. To overcome this problem, in CBEF method [11], the

training vectors are classified into two categories namely the

edge blocks and shade blocks. The high detail blocks are called

edge blocks and the low detail blocks are called the shade

blocks. To identify whether a block is a high detail one or low

detail one, the mean x is computed using the equation (8).

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.8, May 2011

18

∑
=

=
k

i

ix
k

x
1

1

 (7)

The sum of the difference between the individual components

and the mean is computed using the equation (9).

()∑
=

−=
k

i

i xxSD
1 (8)

The value SD is compared against a threshold value and if

greater, the block is a high detail block or an edge block. If less,

it is a low detail block or shade block. After classifying all the

blocks into edge or low detail blocks, the codebook is first

populated with the edge blocks, and then to fill the gap, the

shade blocks are selected in random. This method enables to

have smooth edges. The codebook thus generated using the

above techniques can be optimized to give better performance in

terms of MSE using the k-Means Clustering technique.

3. K-MEANS CLUSTERING TECHNIQUE
This technique is used to optimize the codebook that is initially

created by any one of the above said techniques. The N training

vectors are grouped into M clusters with the initial codevectors

as the centroids of all the clusters. Pick up the centroid Yi(k), of

any cluster. Find all the image blocks Xi that are closer to Yi

than to any other Yj. i.e. find the set of all Xi (training vectors)

that satisfy:

 d(Xi, Yi) < d(Xi, Yj) for all j ≠ i, (9)

where the distance between the training vector Xi and the

codevector Yi is computed as

∑
=

−=
k

j

ijj YXdy
1 (10)

Calculate the sum vector by adding all the training vectors Xi

that are closer to Yi. The individual component of the sum

vector is calculated by adding the corresponding components of

all the training vectors of the same cluster as:

∑
=

=
c

i

ijij XSum
1 (11)

where, c is the cluster strength. Now every component is divided

by the cluster strength c to get the new centroid of the cluster.

 Centroid = Sumij / ni , where i=1,2,….n (12)

The codevector Yi is replaced with the newly generated centroid

to form the refined codebook. These steps are repeated till the

codebooks of consecutive iterations converge.

3.1. k-Means Clustering Algorithm
Step1: The training vectors are grouped into M clusters based

on the distance between the codevectors and the training

vectors using the equation (10) and (11).

Step2: Compute the sum vector for every cluster by adding

the corresponding components of all the training vectors

that belong to the same cluster using the equation (12).

Step3: Compute the centroid for each cluster by dividing the

individual components of the sum vector by the cluster

strength ni using the equation (12).

Step4: Replace the existing codevector with the new centroid

to form the revised codebook.

Step5: Repeat the steps 1 through 4 till the codebooks of the

consecutive iterations converge.

4. RESULTS AND DISCUSSION
The algorithms are implemented using Matlab 7.0 on Windows

Operating System. The hardware used is the Intel Core 2 Duo

E7400@ 2.8 GHz Processor with 2 GB RAM. The experiments

were conducted with standard images Baboon, Barbara, Boats,

Bridge, Camera and Lena of size 256 x 256 pixels.

Tables 1, 2, 3, 4 and 5 show the comparison of PSNR, the time

taken for generating the initial codebook, the time taken for

optimizing the codebook, the improved PSNR after optimization

and the number of iterations required for the convergence of

codebook during optimization for different images with different

codebook sizes 128, 256 and 512.

The terms used in the following tables refer to

1. initTime - Time taken to generate the initial codebook

2. initPSNR - Quality of the image reconstructed with the

initial codebook

3. impPSNR - Improved PSNR with the optimized codebook

Table 1: Comparison of PSNR and the number of iterations required for optimization by SCG method for different codebook sizes

128, 256 and 512.

CB Size Image Baboon Barbara Boats Bridge Camera Lena Average

128

initTime 0.00 0.00 0.00 0.015 0.015 0.016 0.01

initPSNR 33.12 32.59 26.4 26.02 26.15 29.24 28.92

Time 21.42 51.86 14.89 11.66 27.16 59.00 31.00

ImpPSNR 36.11 35.97 30.35 28.12 29.19 32.94 32.11

Iterations 103 248 72 56 131 284 149

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.8, May 2011

19

256

initTime 0.02 0.00 0.02 0.00 0.00 0.02 0.01

initPSNR 34.36 34.31 28.33 26.90 26.80 30.66 30.23

Time 83.56 103.05 60.16 24.14 75.59 203.25 91.63

ImpPSNR 37.88 37.76 31.69 29.48 31.79 34.68 33.88

Iterations 201 248 145 58 182 489 220

512

initTime 0.00 0.02 0.02 0.02 0.02 0.02 0.01

initPSNR 36.26 35.96 29.56 27.98 28.00 32.23 31.67

Time 77.44 349.94 88.00 40.86 328.69 389.23 212.36

ImpPSNR 39.68 40.02 33.55 31.17 33.15 36.86 35.74

Iterations 92 417 105 48 392 464 253

Avg.

initTime 0.01 0.01 0.01 0.01 0.01 0.02 0.01

initPSNR 34.58 34.29 28.10 26.97 26.98 30.71 30.27

Time 60.81 168.28 54.35 25.55 143.81 217.16 111.66

ImpPSNR 37.89 37.92 31.86 29.59 31.38 34.83 33.91

Iterations 132 304 107 54 235 412 208

Table 2: Comparison of PSNR and the number of iterations required for optimization by

OCG method for different codebook sizes 128, 256 and 512.

CB Size Image Baboon Barbara Boats Bridge Camera Lena Average

128

initTime 0.27 0.31 0.33 0.31 0.34 0.31 0.31

initPSNR 33.88 33.51 28.39 25.96 26.15 30.43 29.72

Time 15.42 62.2 11.25 15.42 24.36 43.50 28.69

ImpPSNR 35.94 36.07 30.72 28.33 29.94 33.05 32.34

Iterations 74 299 54 74 117 209 138

256

initTime 0.28 0.31 0.33 0.31 0.34 0.31 0.31

initPSNR 35.01 34.60 29.21 27.01 26.80 31.37 30.67

Time 65.61 150.33 46.81 43.84 51.56 133.66 81.97

ImpPSNR 37.44 37.97 32.06 29.56 31.52 34.73 33.88

Iterations 157 360 112 105 124 321 197

512

initTime 0.27 0.31 0.33 0.31 0.34 0.31 0.31

initPSNR 36.09 36.20 30.08 27.75 28.06 32.35 31.76

Time 79.77 559.64 147.11 27.75 204.25 855.27 312.30

ImpPSNR 39.50 39.96 33.88 31.16 33.05 36.25 35.63

Iterations 95 666 175 33 244 1020 372

Average

initTime 0.27 0.31 0.33 0.31 0.34 0.31 0.31

initPSNR 34.99 34.77 29.23 26.91 27.00 31.38 30.71

Time 53.60 257.39 68.39 29.00 93.39 344.14 140.99

ImpPSNR 37.63 38.00 32.22 29.68 31.50 34.68 33.95

Iterations 109 442 114 71 162 517 236

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.8, May 2011

20

Table 3: Comparison of PSNR and the number of iterations required for optimization by

 CBSSSV method for different codebook sizes 128, 256 and 512.

CB Size Image Baboon Barbara Boats Bridge Camera Lena Average

128

initTime 0.30 0.30 0.30 0.30 0.31 0.31 0.30

initPSNR 33.74 33.24 28.26 26.09 26.27 30.19 29.63

Time 15.53 50.73 23.08 7.50 28.64 25.92 25.23

ImpPSNR 35.90 36.12 30.63 28.29 29.95 32.93 32.30

Iterations 75 244 111 36 138 125 122

256

initTime 0.31 0.30 0.30 0.31 0.31 0.31 0.31

initPSNR 34.95 34.66 29.18 27.03 27.23 31.33 30.73

Time 50.84 134.95 74.03 11.69 98.45 180.11 91.68

ImpPSNR 37.74 37.89 31.97 29.55 31.29 34.63 33.85

Iterations 122 324 178 28 237 433 220

512

initTime 0.30 0.30 0.31 0.31 0.31 0.31 0.31

initPSNR 36.29 36.32 30.02 28.01 28.32 32.45 31.90

Time 37.13 717.59 100.63 50.42 20.8.47 771.44 279.54

ImpPSNR 39.62 39.86 33.78 31.18 33.15 36.20 35.63

Iterations 44 856 120 60 248 921 375

Average

initTime 0.30 0.30 0.30 0.31 0.31 0.31 0.31

initPSNR 34.99 34.74 29.15 27.04 27.27 31.32 30.75

Time 34.50 301.09 65.91 23.20 42.36 325.82 132.15

ImpPSNR 37.75 37.96 32.13 29.67 31.46 34.59 33.93

Iterations 80 474 136 41 207 493 239

Table 4: Comparison of PSNR and the number of iterations required for optimization by

 CBCD method for different codebook sizes 128, 256 and 512.

CB Size Image Baboon Barbara Boats Bridge Camera Lena Average

128

initTime 0.63 0.63 0.63 0.63 0.63 0.64 0.63

initPSNR 33.12 32.59 27.69 26.08 25.51 30.27 29.21

Time 21.39 51.52 21.80 13.33 18.70 21.34 24.68

impPSNR 36.11 35.97 30.47 28.38 28.58 32.91 32.07

Iterations 103 248 105 64 91 103 119

256

initTime 0.63 0.61 0.63 0.63 0.63 0.66 0.63

initPSNR 34.36 34.31 28.54 26.75 26.16 30.88 30.17

Time 83.74 103.08 44.86 22.84 51.94 148.47 75.82

ImpPSNR 37.88 37.76 31.89 29.33 30.49 34.51 33.64

Iterations 201 248 108 55 126 358 183

512

initTime 0.61 0.63 0.63 0.61 0.63 0.63 0.62

initPSNR 36.26 35.96 29.62 27.28 26.96 31.60 31.28

Time 77.27 349.47 191.00 30.92 244.64 363.41 209.45

ImpPSNR 39.68 40.02 33.13 30.65 32.25 36.10 35.31

Iterations 92 417 228.00 37 292 433 250

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.8, May 2011

21

Average

initTime 0.62 0.62 0.62 0.63 0.63 0.64 0.63

initPSNR 34.58 34.29 27.84 26.60 26.21 30.92 30.07

Time 60.80 168.02 32.53 93.60 105.09 177.74 106.30

impPSNR 37.89 37.92 31.00 29.99 30.44 34.51 33.62

Iterations 132 304 83 137 170 298 187

Table 5: Comparison of PSNR and the number of iterations required for optimization by

 CBEF method for different codebook sizes 128, 256 and 512.

CB Size Image Baboon Barbara Boats Bridge Camera Lena Average

128

initTime 0.63 0.63 0.63 0.63 0.63 0.64 0.63

initPSNR 33.12 32.59 27.69 26.08 25.51 30.27 29.21

Time 21.39 51.52 21.80 13.33 18.70 21.34 24.68

impPSNR 36.11 35.97 30.47 28.38 28.58 32.91 32.07

Iterations 103 248 105 64 91 103 119

256

initTime 0.63 0.61 0.63 0.63 0.63 0.66 0.63

initPSNR 34.36 34.31 28.54 26.75 26.16 30.88 30.17

Time 83.74 103.08 44.86 22.84 51.94 148.47 75.82

ImpPSNR 37.88 37.76 31.89 29.33 30.49 34.51 33.64

Iterations 201 248 108 55 126 358 183

512

initTime 0.61 0.63 0.63 0.61 0.63 0.63 0.62

initPSNR 36.26 35.96 29.62 27.28 26.96 31.60 31.28

Time 77.27 349.47 191.00 30.92 244.64 363.41 209.45

ImpPSNR 39.68 40.02 33.13 30.65 32.25 36.10 35.31

Iterations 92 417 228.00 37 292 433 250

Average

initTime 0.62 0.62 0.62 0.63 0.63 0.64 0.63

initPSNR 34.58 34.29 27.84 26.60 26.21 30.92 30.07

Time 60.80 168.02 32.53 93.60 105.09 177.74 106.30

impPSNR 37.89 37.92 31.00 29.99 30.44 34.51 33.62

Iterations 132 304 83 137 170 298 187

Table 6: Comparison of the average time, iterations and the PSNR with respect to the

 methods SCG, OCG, CBSSSV, CBEF and CBCD

Techniques SCG OCG CBSSSV CBEF CBCD

initTime 0.01 0.31 0.31 0.63 16.65

initPSNR 30.27 30.71 30.75 30.07 30.61

Time 111.66 140.99 132.15 106.30 125.94

impPSNR 33.91 33.95 33.93 33.62 33.64

Iterations 208 236 239 187 221

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.8, May 2011

22

In Tables 1 thru. 5, the results obtained with all the techniques

are presented in separate tables. The average values are

presented in Table 6. As far as the initial codebook is concerned,

the OCG method performs better in terms of time taken to

generate the codebook. It takes on an average of 0.01 seconds.

The OCG and CBSSSV methods take o.31 seconds on an

average. The CBEF method takes 0.63 seconds and the CBCD

method takes more time, i.e. 16.65 seconds. When compared to

CBCD method, the time taken by SCG method is negligible.

Comparison of Time, PSNR and No. of Iterations

0.00

50.00

100.00

150.00

200.00

250.00

300.00

SCG OCG CBSSSV CBEF CBCD

Techniques

Time

impPSNR

Iterations

Fig.1. Average variation in PSNR, Time and number of iterations required towards convergence of codebook.

The initial PSNR is almost the same for all methods. The

average difference n PSNR is 0.27. The average times taken by

k-Means Clustering method to optimize the initial codebooks

that are generated by all techniques are given in Table 6. The

time taken by CBEF method is the minimum which is 106.30.

The highest value is 140.99 and is taken by OCG method. The

number of iterations is minimum (187) in case of CBEF and

maximum (239) in case of CBSSSV.

When we look at the graph given in Fig.1, the average PSNR

obtained with the entire techniques lie on same line. But there is

a significant variation in the time taken to optimize the

codebook and the number of iterations required by all the

methods. CBEF gives better results in terms of time to optimize

the codebook and number of iterations required for convergence.

The input images of size 256 x 256 pixels and of varying gray

shades taken for the study are given in Fig. 2.

 (a) Baboon (b) Barbara

 (c) Boats (d) Bridge

 (e) Cameraman (f) Lena

Fig. 2. Input images taken for the study.

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.8, May 2011

23

5. CONCLUSION
We have discussed five different techniques for generating the

initial codebook that form the initial seeds for the k-Means

clustering algorithm. k-Means clustering technique is an

optimizing tool for improving the quality of the codebooks that

are generated for VQ. We experimented the performance of all

the methods using the k-Means clustering in terms of i. time

taken for optimization, ii. the improved PSNR (quality of the

reconstructed images) and iii. the number of iterations needed

for the convergence of codebooks of consecutive iterations. The

Codebook Generation with Edge Features (CBEF) gives better

results both in terms of time and the number of iterations. But

all methods give more or less same PSNR values. Hence CBEF

is considered to be the best of all methods. The experiments are

conducted with gray scale images. As the gray scale images

form the base for color images, the above techniques can also be

used for color images. These techniques can be used imaging

applications in hand-held devices.

6. REFERENCES
[1] Nasser M.Nasrabadi, “Image Coding using Vector

Quantization: A Review”, IEEE Transactions on

Communications, Vol. 36, No. 8, August 1988.

[2] Berger T, “Rate Distortion Theory”, Englewood

Cliffs, Prentice-Hall,NJ, 1971.

[3] A.Gersho and V.Cuperman, “Vector Quantization: A

Pattern Matching Technique for Speech Coding”, IEEE

Communications, Mag., pp 15-21, 1983.

[4] R.M.Gray, ”Vector Quantization”, IEEE ASSP Mag.,

pp. 4-29, Apr., 1984.

[5] Shuyu Yang, Sunanda Mitra, “Content Based Vector

Coder for Efficient Information Retrieval”, Dept. of

Electrical and Computer Engineering, Texas Tech

University, USA.

[6] H.B.Kekre, Tanuja K.Sarode, “Vector Quantized

Codebook Optimization using k-Means”, International

Journal on Computer Science and Engineering, Vol. 1,

No. 3, pp. 283-290, 2009.

[7] Gersho and R.M.Gray, Vector Quantization and Signal

Compression, Dordrecht, The Netherlands: Kluwer,

1992.

[8] K.Somasundaram and S.Vimala, “Simple and Fast

Ordered Codebook Generation for Vector Quantization,”

Proceedings of the National Conference on Image

Processing, Gandhigram Rural Institute, Allied
Publishers, India. ISBN 978-81-8424-574-5, Mar 2010.

[9] K.Somasundaram, S.Vimala, “Codebook Generation by

Sorting the Sum of Sub Vectors”, CiiT, International

Journal of Digital Image Processing, August 2010.

[10] K.Somasundaram, S.Vimala, “A Novel Codebook

Initialization Technique for Generalized Lloyd

Algorithm using Cluster Density”, International Journal

on Computer Science and Engineering, Vol. 2, No. 5, pp.

1807-1809, 2010.

 [11] K.Somasundaram, S.Vimala, “Codebook Generation for

Vector Quantization with Edge Features”, CiiT

International Journal of Digital Image Processing, Vol.

2, No.7, pp. 194-198, 2010.

