
International Journal of Computer Applications (0975 – 8887)

Volume 21– No.9, May 2011

37

Improving Data Accessibility and Query Delay in Cluster
based Cooperative Caching (CBCC) in MANET using LFU-MIN

Madhavarao Boddu

Department of Computer Science
Pondicherry University

K. Suresh Joseph
Department of Computer Science

Pondicherry University

ABSTRACT

In order to improve data accessibility and reduce query delay in

MANETs, cooperative caching approach is adapted in. So far,

cache replacement algorithms like LRU, LFU, and LRU-MIN

are used to reduce query delay and improve data accessibility in

cluster based cooperative caching (CBCC) in MANETs. But

LRU, LFU and LRU-MIN have its limitations: They have a high

overhead cost of moving cache blocks into the most recently

used position each time when a cache block is accessed and

further they do not exploit the „frequency‟ information of

memory accesses. In this paper, we give an overview of caching

policies designed specifically for Web objects and provide a

new algorithm of our own to address these issues. This new

algorithm can be regarded as a LFU-MIN algorithm. We

examine the performance of this and other replacement

algorithms via omnet++ simulation environment. Simulation

results shows that the proposed LFU-MIN enhances the

performance of cluster based cooperative caching in MANETs

when compared with LRU and LFU.

Keywords

Adhoc Networks, cache replacement, clustering, cooperative

caching, Prefetching, omnet++

1. INTRODUCTION
A mobile ad hoc network (MANETs) is a collection of wireless

mobile nodes dynamically forming a network without the aid of

any predefined network infrastructure. Despite the wide range of

opportunities that MANETs provide, there are still research

problems that need to be dealt with before it gets a vote of

confidence from the public. Some of which are as follows. In

MANETs, mobility of nodes, wireless transmission effect on

attenuation, interference and multipath propagation due to the

mobility nature of nodes in MANETs the topology changes

dynamically. First, accessing remote information station via

multi hop communication leads to longer query latency and

causes high energy consumption. Second, when many clients

frequently access the database server they cause a high load on

the server and reduce the server response time. Third, multi hop

communication causes the network capacity degrades when

network partition occurs. To overcome the above limitations

data caching is an efficient methodology to reduce query delay

and bandwidth. To further enhance the performance of data

caching cluster based cross layer and perfecting techniques are

used. The focus of our research will be to improve the overall

network performance by reducing the client query delay and

response time. In this paper we propose a LFU-MIN cache

replacement algorithm for cluster based cooperative caching

(CBCC) in MANETs. The rest of the paper organized as

follows: section 2 describes the related work. Section 3

describes the overview of CBCC approach. Section 4 describes

the proposed cache replacement algorithm for CBCC approach.

Section 5 describes the performance evaluation of cache

replacement algorithms and section 6 concludes the paper and

suggests possible future work.

2. BACKGROUNDAND RELATED

WORK
Caching has been widely used in the wired area networks such

as the internet, to increase the performance of web services.

However the existing cooperative caching schemes cannot be

implemented directly in MANETs due to the resource

constraints that characterize the networks as a result new

approaches have been proposed to tackle the challenges. Many

cooperative caching proposals are available for wireless

networks. The proposals are grouped based on the usage of

underlying routing protocol, cache consistency management and

cache replacement mechanism. In [1, 2] different approaches

have been introduced to increase data accessibility and to reduce

query delay. In cooperative cache based data access in ad hoc

networks [1], a scheme is proposed. In this for caching they used

cached data and cached path etc. more over the used cache

replacement algorithm is only based on least recently used

information. The used LRU as a cache replacement algorithm

has certain limitations and the above proposed approach doesn‟t

considered Prefetching technique. In [2], a similar approach is

proposed for the network integrating ad hoc networks with the

internet. Cache replacement algorithms have direct impact on

the cache performance. In [3-7], a considerable number of

proposals give much higher priority to data accessibility as

opposed to accessed latency. So both factors are largely

influenced by the caching scheme that the cache management

adopted. In [3-7] new cache replacement algorithms are used to

make the best use of cache space. But the used traditional

replacement algorithms like LRU, LFU, and LRFU have

problems. However caching alone is not sufficient to guarantee

high data accessibility and low communication latency in

dynamic system. To overcome these draw backs, a new

approach is proposed in cluster based cross layer design for

cooperative caching in MANETs [8].

In the above proposal [8] for cache replacement mechanism they

used LRU-MIN as the cache replacement algorithm. But the

used LRU-MIN has certain limitations. Among those first, it

prefers only small objects to raise the hit ratio. Second, it

doesn‟t exploit the frequency information of memory accesses.

Third, the overhead cost of moving cache blocks into the most

recently used position each time when a cache block is accessed.

In this paper we propose a cache replacement algorithm called

LFU-MIN which makes use of frequency of information with

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.9, May 2011

38

minimal number of page replacements for evicting the objects

from the cache. The proposed cache replacement algorithm

further enhances the performance of cluster based cooperative

caching (CBCC) in MANETs.

3. SYSTEM ARCHITECTURE

3.1 CBCC Architecture
CBCC is a cluster-based middleware which stays on top of the

underlying network stack and provides caching and other data

management services to the upper layer applications in

MANET‟s environment. The instances of CBCC run in each

mobile host. The network traffic information which is in the data

link layer can be retrieved by the middleware layer for

Prefetching purposes.

Application layer: It is responsible for providing an interface for

users to interact with application services or networking

services. Application layer uses HTTP, FTP, TFTP, TELNET

etc.

Middleware layer: It is responsible for service location, group

communications shared memory. Middleware layer consists of

various blocks such as cache management, information search,

Prefetching and clustering.

Cache management: Cache management includes cache

admission control, cache consistency maintenance, and cache

replacement.

Cache admission control: In this, a node will cache all received

data items until its cache space full. After the cache space

becomes full, the received data item will not be cached if the

data item has a copy within the cluster.

Cache replacement: When fresh data item is arrived for caching

and if cache space is full then the cache replacement algorithm

is used to locate one or more cached data items to take out from

the cache place. The cache replacement process involves two

steps: First, if some of the cached data items become obsolete,

these items will be detached to make space for the newly arrived

data item. If there is still no enough cachespace after all obsolete

items are removed, cache replacement will go to the second step,

which is that one or more cached data items will be expelled

from the cache space according to some criteria. The various

cache replacement algorithms used for this mechanism are LRU,

LRU-MIN etc.

Least Recently Used (LRU): It is one of the most widely used

cache replacement algorithm, which evicts the objects based on

the least recently used information. LRU maintains a hash table

for the past accessing of the data. In the head of the table the

most recently used information is placed and in the tail of the

table the least recently used information is stored. When a new

data item is added to the cache, it is added to the tail of the table.

Whenever a cache hit occurs the access time of the requested

data item is updated and it is moved into the head of the list.

After the cache is full, it simply removes the tail element of the

list.

LRU_MIN: It uses a technique called least recently used

information with minimal number of page replacements. LRU-

MIN is also just like LRU. Like LRU, LRU-MIN also maintains

and sorted list of documents in the hash table based on the least

recently used information i.e. based on the time the document

was last used. The only difference between LRU and LRU-MIN

is the method of selecting the document for the replacement.

Whenever cache needs to replace the document, it searches from

the tail of the hash table and evicts the data items only by which

have equal or greater size than newly arrived data item size. If

all cached documents are smaller than new document, the search

is repeated looking for the first two documents greater than half

the size of the new document. The process of halving the size

and doubling the number of documents to be removed is

repeated if large enough documents can still not be found for

replacement.

Least frequently used (LFU): evicts the document that has been

accessed the fewest times. It is realized by maintaining a

reference count for each file in the cache. Each time a cache hit

happens, the reference count of the file requested is increased by

one. In case of a cache miss and these is no enough free space in

the cache, the file(s) with the lowest reference count is (are)

replaced.

Cache consistency: The cache consistency strategy keeps the

cached data items synchronized with the original data items in

the data source.

Application Layer

Middleware Layer

App 1 App2 App n -------

Fig1: System architecture for Cluster-Based Cooperative

(CBCC) Caching(CBCC)

Cache Management

Cache Consistency

Cache Replacement

Cache admission control

Prefetching

Information search

Clustering

Local Hit Global Hit

Cluster Hit Remote Hit

Cache Path Hybrid Cache Cache Data

Transport Layer

Network Layer

Data Link Layer

TCP UDP

Bluetooth 802.11 Hiper LAN

Routing Protocols (AODV)

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.9, May 2011

39

Information search: Deals with locating and fetching the data

item requested by the client.

Prefetching: Responsible for determining the data item to be

prefetched from the Data Centre for future use.

Transport layer: It is responsible for providing data delivery

transportation between the applications in the network by using

the protocols like TCP, UDP. It includes the functionalities like

Identifying the services, segmentation, sequencing and

reassembling and error correction.

Network layer: It is responsible for providing logical addressing

and path determination (routing).The routing protocols such as

AODV, DSR, DYMO, etc. are responsible for performing path

determination (routing). The current system architecture uses

AODV protocol for path determination.

Data link Layer: Provides apparent network services so that

network layer can be ignorant about the network topology and

provides access to physical networking media. It includes error

checking and flow control mechanism.

3.2 Cluster Formation and Maintenance

Clustering is a method used to partition the network into several

virtual groups based on the some predefined method. For the

cluster formation we use least cluster change algorithm [8]

which is an improvement of lowest ID algorithm. Each mobile

node has a unique id. The node which has least id in the group is

elected as a cluster head. Cluster head maintains a list which

maintains the information of all other nodes in the group. In a

cluster, the number of hops between any two nodes is not more

than two. In the whole network there is no direct connection

between the cluster heads. Fig. 2 is an illustration of clustering

architecture. In fig. 2, nodes which have pink color are cluster

heads, nodes which have green color are gateways, and the rest

are cluster members. Cluster member is just like a mobile node

it does not have any extra functionality. The node which is

common to two cluster heads is elected as a gateway. Gateway

is used for providing the communication between two cluster

heads. Whenever a node requests for the data, first it has to be

checked in the cluster head list. If it is not available in the list of

cluster head then the cluster head forwards the requested data

item to the other cluster via gateway.

By using LCC we can reduce the frequent changes of cluster

head formation. LCC adopts LID to create clusters. If a cluster

member moves out of the cluster it won‟t affect the existing

clustering architecture. If two cluster heads exist within the

cluster, the lowest id mobile node is elected as a cluster head

and if more number of nodes moves out of the cluster will form

a new cluster.

3.3 Information Search Operation
Information search operation [8], mainly deals with locating and

fetching the data item requested by the client from the cache.

This Information search includes 4 cases.

Case 1: Local hit: When copy of the requested data item is

ordered inside the hard disk of the requester, the data item is

retrieved to serve the query and no cooperation is necessary.

Case 2: Cluster hit: When the requested data item is stored in a

client within the cluster of the requester, the requester sends a

request to the Cluster head and the Cluster head returns the

address of a client that has cached the data item.

Client data

request

Local cache

discovery

Consistency

check

Cluster head

search

Validate from client

Search in the clusters

along routing path to the

data source

request

Retrieve data

from specific client

Retrieve data

from other client

Retrieve data

from the source

Return data to the requester Cache admission control

request

Replacement policy

Local Hit

Cluster Miss Cluster hit

Local Miss Not Valid

Remote Miss Remote Hit Fresh Copy

Fig. 3. Information Search Operation

Valid

2

 Cluster Member

2

 Cluster Head

 Gateway

Fig. 2. Clustering Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.9, May 2011

40

Case 3: Remote hit: When the data is found with a client

belonging to a cluster, other than home cluster of the requester,

along the routing path to the data source.

Case 4: Global hit: Data item is retrieved from the server. When

the client data request comes to the mobile node, first it checks

in the local hard disk of mobile node i.e. local cache of mobile

node. If it is available in the local cache it sends back the reply

to the client. Otherwise the request is forwarded to the neighbors

based on the cache current state information in the cluster head.

If the cluster head has the requested cache state information

cluster head gives back to the requester by giving the cluster

member id. If it is not available within the cluster then the

request is forwarded to the other cluster through gateway. The

request is processed the same way and sends back the reply to

the requester. Otherwise the request is reached to the data center,

the datacenter processes the data request and sends backs the

requested information to the client via multi hop communication

then the client uses the cache admission control for the

consistency check in the cluster. If the same data is available

within the cluster, then it won‟t cache the objects information. If

it is not available it will cache the data objects and sends back

the cached information to the cluster head for updating in the

cluster cache state.

4. PROPOSED CACHE REPLACEMENT

ALGORITHM FOR CBCC APPROACH

LFU-MIN uses a technique called least frequently used

information with minimal number of page replacements. LFU-

MIN is an advancement of LFU replacement algorithm.LFU

evicts the document that has been accessed the fewest times. It is

realized by maintaining a reference count for each file in the

cache. Each time a cache hit happens, the reference count of the

file requested is increased by one. In case of a cache miss and

these is no enough free space in the cache, the file(s) with the

lowest reference count is (are) replaced. In LFU-MIN we

maintain a table which consists of the size of all the cached

documents. Whenever a new document has to be fetched into

the cache, it checks the availability of free space in the cache, if

it is equal or greater than the new document then it fetches the

document into the cache and updates the counter information

and the size of the document is updated in the size table. In case

of a cache miss and these is no enough free space in the cache,

then the documents which has the document size equal or

greater than the new item size with lowest reference rate are

replaced. If the documents available in the cache do have the

size which is equal or greater than the new item size and If all

cached documents are smaller than new document, the search is

repeated looking for the first two documents greater than half

the size of the new document with lowest reference rate. The

process of halving the size and doubling the number of

documents to be removed is repeated if large enough documents

can still not be found for replacement.

5. PERFORMANCE EVALUATION OF

CACHE REPLACEMENT ALGORITHMS

FOR CBCC APPROACH

5.1 Simulation Environment
In this section we have evaluated the performance of LRU, LFU

and LFU-MIN cache replacement algorithms in CBCC approach

using OMNET++ simulation environment. The simulation

parameters used in the experiments are shown in table 1. The

simulation was carried out in a grid of 4000×300m with 50 to

100 nodes. The time interval between two consecutive queries

generated from each node/client follows an exponential

distribution with mean node query delay Tq is taken as 6 sec.

The node density can be selected by selecting the number of

nodes; here we considered the number of nodes as 70 by default.

The bandwidth selected for the transmission is 2mbps and the

total transmission range of 250m is considered for the

simulation. Each client generates a single stream of read only

queries. After a query is sent out, the client does not generate

new query until the pending query is served. Each client

generates accesses to the data items following Zipf distribution

[9] with a skewness parameter (ɵ) 0.8. If ɵ = 0, clients

uniformly access the data items. As ɵ is increasing, the access

to the data items becomes more skewed. Similar to other studies

[10], [11] we choose ɵ to be 0.8. The AODV routing protocol

was used in the simulation. The nodes/clients move according to

the random waypoint model.

Initially, the clients are randomly distributed in the area. Each

client selects a random destination and moves towards the

destination with a speed selected randomly from [,].

After the client reaches its destination, it pauses for a period of

time and repeats this movement pattern. The data are updated

only by the server. The server serves the requests on FCFS

(first-come-first-serve) basis. When the server sends a data item

to a client, it sends the TTL value along with the data. The TTL

value is set exponentially with a mean value. After the TTL

expires, the client has to get the new version of the data item

either from the server or from other client (having maintained

the data item in its cache) before serving the query.

The Zipf-like parameter [9] can be expressed as

i
iPN


)(

 - (3)

Where

Algorithm: LFU-MIN

1. Create data item list
2. While
3. Begin
4. for (cache. Length)
5. If (cache item size>=new-item size) then
6. Insert cached item into L and update the counter.
7. End if
8. End For
9. New-item size=new-item size/2
10. End while
11. // Remove items from L using LFU
12. While
13. Begin
14. for (L.length)
15. Delete least frequently used item from L
16. End for
17. End while

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.9, May 2011

41

1

1

1












 

N

i i 10 

Here N is the total number of data items. And ɵ is the skewness

parameter.

Table 1. Simulation Parameters

Parameter
Maximum
Capacity

Default value

Simulation area - 4000*300 m

Database size - 750 items

Cache size (KB) 50 – 450 80

Size of the document(Smin) - 1kB

Size of the document(Smax) - 10kB

Transmission range
25-250M 250M

Number of clients 50-100
70

Zipf-like parameter 0.5-1.0 0.7

Time-To-Live (TTL)
200-1000 sec

500

Mean query delay(Tq) 2-100 sec 6 sec

Bandwidth - 2mb/s

Node speed 2-20 m/s 2 m/s

5.2 Performance Metrics
Performance metrics are used to evaluate and to improve the

efficiency of the process. The performance metrics Hit Ratio

(HR), Delay Savings Ratio (DSR) are considered in the

simulation experiment.

Hit ratio: It is defined as the ratio of number of successful

requests to the total number of requests.

 Hit ratio = - (4)

Delay savings ratio: it is defined as the total time taken for the

completion of successful requests..



 



i

ii

i

iiii

df

cnvdnr

DSR
*

)**(
 - (5)

Where nri is the number of references to document i, fi is the

total number of references to document i. nvi is the number of

validations performed on document i.

5.3 Cache Performance Comparison
We compared the performance of LRU,LFU and LFU-MIN.As

Fig. 4 indicates, LFU-MIN consistently provides better

performance than LRU, LFU for all the cache sizes, it improves

the Delay Savings Ratio(DSR)on average by 26.5 percent

compared with LRU and 8.12percent compared with LFU.LFU-

MIN improves the cache hit ratio performance when compared

with LRU,LFU. it improves the cache hit ratio performance by

34.35 percent over LRU, and 6.7percent over LFU. LFU-MIN

also improves the consistency of the cached documents in

addition to improving performance of cache. The performance

evaluations of various parameters are plotted by using the

graphical representation. In Fig. 4, X-axis represents cache size

and Y-axis represents DSR and for fig. 5, X-axis represents

cache size and Y-axis represents Hit-Ratio.

Table 2. Obtained computational values

 LRU LFU LFU-MIN

Cache Size

(KB)
DSR HR DSR HR DSR HR

80 0.14 0.08 0.22 0.11 0.25 0.14

100 0.19 0.12 0.25 0.18 0.28 0.19

150 0.22 0.15 0.28 0.23 0.32 0.24

280 0.26 0.19 0.32 0.28 0.35 0.28

340 0.32 0.25 0.38 0.34 0.39 0.34

400 0.36 0.3 0.41 0.39 0.42 0.43

DSR- Delay Savings Ratio, HR- Hit Ratio

Fig 4: Performance comparison of DSR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

80 100 150 280 340 400

D
el

a
y

 S
a

v
in

g
s

R
a

ti
o

Cache Size (KB)

LRU LFU LFU-MIN

International Journal of Computer Applications (0975 – 8887)

Volume 21– No.9, May 2011

42

 Fig 5: Performance comparison of HR

6. CONCLUSION
In this paper, we proposed a new cache replacement algorithm

(LFU-MIN) which works on the principle of least frequently

used information with minimal number of page replacements.

The proposed new cache replacement algorithm is compared

with other cache replacement algorithms using simulation

modeling (omnet++). The Simulation results shows that the

proposed LFU-MIN cache replacement algorithm enhances the

performance of cluster-based cooperative caching (CBCC) in

MANETs by improving the cache hit ratio and by reducing the

client query response time while accessing the data items from

the cache memory as compared with LRU and LFU cache

replacement algorithms. For future work there is a need to find

out an efficient Prefetching technique which further improves

the data accessibility and reduce query delay to compliment the

cooperative caching scheme.

7. REFERENCES
[1] G. Cao, L. Yin and C.R. Das. “Cooperative cache-based

data access in adhoc networks,” IEEE Computer Society,

vol.37, 2004, pp.32-39.

[2] M. K. Denko and J. Tian, “Cross-layer design for

cooperative caching in mobile adhocnetworks,” in Proc.

5th IEEE, Consumer Communications and Networking

Conf. (CCNC), 2008, pp. 375–380.

[3] L. Yin and G. Cao, “Supporting cooperative caching in ad

hoc networks,” IEEE Trans. Mobile Comput., vol. 5, no. 1,

pp. 77-89, Jan. 2006.

[4] J.Zhao, P.Zhang and G.Cao, “On cooperative caching in

wirelessP2P networks”, in Proc.28th Int.Conf.Distributed

ComputingSystems(ICDCS2008),2008.

[5] H.Artail, H.Safa, K.Mershad, Z.Abou-Atme,

andN.Sulieman, “COACS: A cooperative and adaptive

caching system for MANETs,”IEEE Trans. Mobile

Comput., vol. 7, no. 8, pp. 961-977, Aug. 2008.

[6] N.Chand,R.C.Joshi,andM.Misra,”Cooperativecachingstrate

gyin mobile ad hoc networks based on

clusters,WirelessPerson.Commun” pp. 41-63, Dec. 2006.

[7] J. Tian and M. K. Denko, “Exploiting clustering and cross-

layer design approaches for data caching in MANETs,” in

Proc. 3rd IEEE Int. Conf. Wireless and Mobile Computing,

Networking and Communications, (WiMob), 2007, p. 52.

[8] Mieso K. Denko, Jun Tian, Thabo K. R. Nkwe, and

Mohammad S. Obaidat, “Cluster –Based Cross-Layer

Design for Cooperative Caching in Mobile Ad Hoc

Networks,” IEEE Systems Journal, vol. 3, no. 4, Dec 2009.

[9] L. Breslau, P. Cao, L. Fan, G. Phillips and S. Sheker, “Web

Caching and Zipf-Like Distributions: Evidence and

Implications,” IEEE INFOCOM, pp. 126-134, March 1999.

[10] L. Yin and G Cao, “Supporting Cooperative Caching in

Ad Hoc Networks,” IEEE INFOCOM, pp. 2537-2547,

March 2004.

[11] HuapingShen, Sajal K. Das, Mohan Kumar and Zhijun

Wang, “Cooperative Caching with Optimal Radius in

Hybrid Wireless Networks,” NETWORKING, pp. 841-853,

2004.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

80 100 150 280 340 400

H
it

 R
a

ti
o

Cache Size (KB)

LRU LFU LFU-MIN

