
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.1, May 2011

44

ABSTRACT
QuickMQ is asynchronous enterprise messaging system. It is

one of the providers of Java Message Service API, which

implements Sun Microsystems Java Message Service API 1.1

Specification. QuickMQ provides a powerful messaging

platform, with powerful and unique features including dynamic

routing, dynamic deployment, scalability, reduces system

bottlenecks along with heterogeneous system integrations.

The primary advantage of using QuickMQ is it is a lightweight

Messaging systems compared to other JMS providers which

adds to its performance. Also, it also implements both

producer-subscriber and point to point messaging models

Keywords— JMS, QuickMQ, Message Queue, Point to

Point Messaging, MOM

1. INTRODUCTION

As in this kind of heterogeneous world there are so many

programming languages, script languages and platforms each

having their own distinct characteristics, for example „Shell

Script‟ mainly good enough in dumping up for backups and

other side it is not good as it need to launch a new process for

each new shell command executed also has portability issues

which can be removed through using platform independent

languages like Java, Dot net, thus every language has its own

advantages and disadvantages. If an enterprise wants to

develop application which requires efficient back up technique

and also it need to be portable i.e. platform independent, then it

to satisfy desired needs it requires to import specific

characteristics from different programming languages. How

this can be achieved? Earlier there were solutions like

RMI(Remote Method Invocation) but this solution was rather

synchronous in nature i.e. system would get blocked and was

unable to process other tasks. Then came the concept of MOM

(Message Oriented Middleware) which mainly uses messaging

to communicate between two systems that mainly remove

synchronous problems.

As now a day‟s messaging has become an important part of

communication between different users and systems therefore

large numbers of way of communication as been invented. As

messaging supports loose coupling [4] between two systems it

has got lot of importance mainly in heterogeneous integration

and communication. Over the years system has grown in terms

of complexity and sophistication [4], to have system more

reliable, scalable and flexible, it has given rise to system which

is having more complex and sophisticated architecture [1]. In

order to increase in demand for better and faster systems,

messaging is found to be one way of solving these complex

problems.

The Application-to-Application system which is used in

business system is generally referred to as Enterprise

Messaging System or Message Oriented Middleware (MOM)

[8].

QuickMQ is lightweight MOM which mainly supports both

messaging models Point To Point and Publish-Subscribe. This

QuickMQ MOM is mainly used to transfer messages from one

application to another across network. It ensures that all

messages are properly distributed among applications,
although different Enterprises uses different formats and

network protocols for exchanging messages, but their

semantics are same. QuickMQ uses standards of SUN

Microsystems JMS API to create message, load information in

format, assign routing information and send message. The

same API is used to receive message on other end. Thus

QuickMQ increases reusability by reusing same API for

different systems. Enterprise Messaging products are also

available such as IBM Websphere MQ, SonicMQ, Microsoft

Message Queuing and TIBCO Rendezvous are being in use for

many years. Recently open source messaging products such as

ActiveMQ have entered market and are being used in

Enterprise environment, but all these need to be embed in

whole console, that is they come in complete package of

functionality while some of functionality might not be used,

this in turn increases cost and memory requirement of product,

also these products do not provide any feature to have

customization of required functionalities.

 In case middle scale Enterprises, some these functionalities

are not being used and those functionalities are mandatory to

be taken in whole console also these functionalities are running

in background irrespective of their use, as middle scale

enterprises mainly focuses on resource efficient products. For

example „Distributed Transactions‟ are mainly used in critical

business applications like banking transactions were these

transactions are need to Atomic(ACID property) [8] these can

be achieved through „Commit and Rollback‟, which results in

more processing time and large memory space. But in middle

scale enterprises do not always process critical business

application for example simple news broadcasting or sports

updates do not require to use ACID properties, which leads to

unnecessary usage of resources.

QUICKMQ Provider for Java Message Service

 Prof. Sushila Aghav
Professor, MITCOE
Kothrud, Pune, India

Swapnil S. Mahajan
MITCOE

Kothrud, Pune, India

Swapnil M. Gaikwad
MITCOE

Kothrud, Pune, Inda

Subodh S. Karwa
MITCOE

Kothrud, Pune, Inida

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.1, May 2011

45

Fig. 1 JMS API Architecture

2. BACKGROUND OF PROBLEM

Now days RMI (Remote Method Invocation), RPC (Remote

Procedure Call) are mainly used communication in

heterogeneous systems, but these methods are synchronous

and are tightly coupled [5], we can‟t do any other kind

processing till the current operations gets completed, so we

have to wait till current operation completes, which may lead

to starvation in some cases[4]. These synchronous methods

may affect performance of system in case of large record

processing.

Sometimes when we need to upload certain big record like

CSV(Comma Separated Files) files of say 1,00,000 elements

then till all elements are not being acknowledged we cannot

process any other request, which may lead to blocking of

system and starvation.

In tightly coupled systems there are many-to-many problems of

managing connections between these systems [4], when you

want to add some more application to mix, we need to go back

and let all other system know about it, which is rather more

tedious and leads to problems in up- gradation of system. Also

if some part of system goes down, everything halts.

In this case there is more load on server as all processing load

is being handled by server because of which leads to system

bottlenecks and system halts.

3. WHY “QUICKMQ”

 The main purpose of creating new implementation of Java

Message Service is its weight. Most of the implementations of

JMS are very costly and bulky consisting of many features,

which are not required for many small or middle level

organizations. Such implementations also do not provide any

provision to turn off those features. So we targeted those small

and middle level organizations and came up with elegant

solution QuickMQ. It provides absolutely necessary and

sufficient features with very efficient implementation of those.

So to be abstract its

“As Light As ‟Light‟ and As Fast As „Light”

In QuickMQ messaging system applications exchange

messages through virtual channels called destinations (i.e.

queue or a topic). When message is sent, it‟s addressed to a

destination, not a specific application. Any application that

subscribes or registers an interest in that destination may

receive the message. In this way the applications that receive

messages and those that send messages are decoupled. Senders

and receivers are not bound to each other in any way and may

send and receive messages as they see fit.

QuickMQ being provider it provides MOM facilities which

reduces load on server and reduces bottlenecks in turn,

.QuickMQ being asynchronous, we don‟t have to wait till

completion of operations, as in case synchronous uploading of

CSV files of 10,000 records we need to upload all records first

and then perform processing on them, but till all records gets

uploaded it needs to wait and cannot process another

processing‟s, this problem is now being solved in QuickMQ by

using asynchronous message communication in which some

amount of records can be uploaded and can perform

processing‟s on those uploaded records and can also upload

remaining records simultaneously, which may lead to save

much more time and does not lead to halt of system.

4. JMS API ARCHITECTURE

JMS API for enterprise messaging created by SUN

Microsystems. It is not just messaging system itself; but it is

abstraction of the interfaces and classes needed by messaging

clients when communicating with messaging system [1].

Figure 1 illustrates the way these parts interact.

Administrative tools allow you to bind destinations and

connection factories into a Java Naming and Directory

Interface (JNDI) API namespace [1].

A JMS client can then look up the administered objects in

the namespace and then establish a logical connection to the

same objects through the JMS provider.

5. MESSAGE DOMAINS

Before the JMS API existed, most messaging products

supported either the point-to-point or the publish/subscribe

approach to messaging. The JMS Specification provides a

separate domain for each approach and defines compliance for

each domain. A standalone JMS provider may implement one

or both domains. A J2EE provider must implement both

domains. In fact, most current nt implementations of the JMS

API provide support for both the point-to-point and the

publish/subscribe domains, and some JMS clients combine the

use of both domains in a single application. In this way, the

JMS API has extended the power and flexibility of messaging

products.

5.1 Point to point messaging domain

A point-to-point (PTP) product or application is built

around the concept of message queues, senders, and receivers.

Each message is addressed to a specific queue, and receiving

clients extract messages from the queue(s) established to hold

their messages. Queues retain all messages sent to them until

the messages are consumed or until the messages expire.

PTP messaging has the following characteristics and is

illustrated in Figure 2. The common example of point to point

messaging model is banking transaction in which transactions

like crediting for debiting money from his own account. As one

person performs operations on his accounts it is one to one

communication.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.1, May 2011

46

5.2 Publish/Subscribe Messaging Service

 In publish/subscribe (pub/sub) application; clients address

messages to a topic. Publishers and subscribers are generally

anonymous and may dynamically publish or subscribe to the

content hierarchy [1]. The system takes care of distributing the

messages arriving from a topic's multiple publishers to its

multiple subscribers. Topics retain messages only as long as it

takes to distribute them to current subscribers.

Pub/sub messaging has the following characteristics.

 Each message may have multiple consumers.

 Publishers and subscribers have a timing dependency.

 A client that subscribes to a topic can consume only

messages published after the client has created a subscription,

and the subscriber must continue to be active in order for it to

consume messages [1]. The JMS API relaxes this timing

dependency to some extent by allowing clients to create

durable subscriptions.

Durable subscriptions can receive messages sent while the

subscribers are not active. Durable subscriptions provide the

flexibility and reliability of queues but still allow clients to

send messages to many recipients [4].

Use pub/sub messaging when each message can be

processed by zero, one, or many consumers. Figure 3 illustrates

pub/sub messaging.

The common example for pub/sub model is stock update in

which main server at Mumbai stock exchange will publish

stock updates to virtual channel called as Topic which is being

subscribed by more than one subscriber. Thus it seems to be

one-to-many communication.

6. JAVA NAMING AND DIRECTORY

(JNDI)

JMS clients look up configured JMS objects using the JNDI

API [7]. JMS administrators use provider-specific facilities for

creating and configuring these objects. This division of work

maximizes the portability of clients by delegating provider-

specific work to the administrator. It also leads to more

administrable applications because clients do not need to

embed administrative values in their code [12]. JNDI is used

mainly in naming services to locate administered objects, and

administered objects are objects that are created by system

administrator [4]. These administered objects are bound to

name in naming service. A naming service associates name

with distributed objects, files, and devices so that they can be

located on network using names instead of cryptic network

address [6].

Advantages of Using JNDI
1. It hides provider-specific details from JMS clients.

2. It abstracts JMS administrative information into Java objects

that are easily organized and administrated from a common

management console [12].

3. Since there will be JNDI providers for all popular naming

services, this means JMS providers can deliver one

implementation of administered objects that will run

everywhere. [6] Thereby eliminating deployment and

configuration issues.

7. PROPOSED WORK

We have developed a “QuickMQ” messaging platform

that facilitates asynchronous messaging between heterogeneous

systems. We analysed many implementations of the JMS

specification and gathered the information about the features

that are not required by small and middle level organisations.

We eliminated those features in the implementation of

QuickMQ but still maintaining the high degree of performance

[2].

7.1 Implementation

As QuickMQ is mainly provider for java message service

the name itself suggest that it is mainly implemented in java as

specifications are available in java language. J2EE Version 1.5

is used in implementation of QuickMQ. As shown in fig. 4

1) Connection Factory - an administered object used by a

client to create a Connection.

2) Connection - an active connection to a JMS provider.

3) Destination - an administered object that encapsulates the

identity of a message destination or ca be called as virtual

channel for communication.

4) Session - a single-threaded context for sending and

receiving messages.

5) Message Producer - an object created by a Session that is

used for sending messages to a destination.

6) Message Consumer - an object created by a Session that is

used or receiving messages sent to a destination.

7.2 Performance

Though, we are providing customization of functionality but

still our performance has been maintained in comparison to

other messaging products.

Fig. 3 Publish/Subscribe Messaging

Fig. 2 Point-to-Point Messaging

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.1, May 2011

47

7.2.1 Effect of the Number of Publishers
We study the effect of the number of publishers on the message

throughput. Two different machines carry a varying number of

publishers and one machine hosts 1 subscriber. The throughput

of received and dispatched messages as well as their sum which

we define it the overall throughput. The overall message

throughput reaches its maximum rate at 1200 msgs/s for 3 or

more publishers. Hence, the number of publishers has very

little influences on the JMS server throughput. As a

consequence, we use in the following experiments at least 3 or

more publishers.

In this particular experiment series, the JMS server could only

utilized to 90% due to the limitation of a single subscriber. To

assess the impact of the persistent mode, we conduct the same

experiment in the non-persistent mode and the results are the

overall throughput is about 2000 msgs/s for the non-persistent

mode in contrast to about 1200 msgs/s for the persistent mode.

Due to the non-persistent mode, the dispatched message rate is

lower than the received message rate for a large number of

publishers which leads to about 10% message loss in the end.

TABLE I

DATA OF FIG.5

Throughput(msgs/s) Number of Publishers

1200 0

1100 5

1050 10

1000 15

1000 20

Fig. 5 Effect of the Number of Subscribers

7.2.2 Effect of the Number of Subscriber
Similarly to the above, we investigate the impact of the

number of subscribers on the JMS server throughput. To that

end, we have 3 publishers‟ threads running on one machine

and vary the number of subscribers on two other machines. The

overall throughput of the JMS server starts at 1200 msgs/s for

1 subscriber, it increases with an increasing number of

subscribers to a value of about 3200 msgs/s for 20 subscribers,

and it decreases then to 1300 msgs/s for many subscribers.

Thus, the previous experiments led to a untypically low

capacity due to the single subscriber. The received message

rate decreases significantly with an increasing number of

subscriber‟s n. This can be explained as follows. No filters are

applied and all messages are delivered to any subscriber. Thus,

each message is replicated n times. This requires more CPU

cycles for dispatching messages and increases the overall

processing time of a single message. As a consequence, the

received message rate is reduced because the overall

throughput capacity of the server stays constant. The

throughput of a JMS server can be measured in messages per

Fig. 4 LightMQ Specifications

Connection Factory

Connection

Session Message Consumer

Message

Message Producer

Destination Destination

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.1, May 2011

48

Fig 6. Effect of the Message Size

second (message throughput). The message body size has

certainly an impact on these values. We test the maximum

throughput depending on the message size.

We set up 5 publishers on one publisher machine and 5

subscribers on a single subscriber machine; a single subscriber

is not able to fully utilize the server CPU. The throughput in

msgs/s is measured but the throughput in Mbit/s is derived

from these data.
TABLE II

DATA OF FIG.6

Throughput(msgs/s)
Number of

Subscribers

1200 0

1400 5

2000 10

2500 15

3200 20

2800 25

2300 30

The calculation of the corresponding overall message size

takes into account various message headers, i.e., 40 bytes JMS

header, 32 bytes TCP header, 20 bytes IP header, and 38 bytes

Ethernet header, as well as TCP fragmentation. an increasing

message body size decreases the message throughput and

increases the data throughput significantly. For small message

bodies, the message throughput is limited by 3000 msgs/s

while for very large message sizes, the data throughput

increases significantly up to 300 Mbit/s. Obviously, the

network interface of the JMS server becomes the system

bottleneck.

8. FEATURES OF QUICKMQ

QuickMQ provider for JMS provides a common way for Java

programs to create, send, receive and read an enterprise

messaging system‟s messages. In comparison with traditional

MOM it provides addition with the following features

1) Asynchronous Messaging: Sender doesn‟t require

waiting till acknowledgement of previously sent message

is received. It results in increased speed [1].

2) Reliability: Message is delivered at once and only once.

Lower levels of reliability are available for applications

that can afford to miss messages or to receive duplicate

messages[1].

3) Loosely coupled: A component sends a message to a

destination, and the recipient can retrieve the message

from the destination. However, the sender and the receiver

do not have to be available at the same time in order to

communicate.

4) Message selectors: To get only desired messages out

of all, consumer can take help of message selector, where

SQL92 conditional expression syntax is used with

message properties and headers as criteria of selection.

Expression syntax contains Identifiers, Literals,

Comparison operator and Arithmetic operator.

9. QUALITY OF SERVICE

1) Transacted Sessions
a) It maintains atomicity, i.e. the messages sent to destination

(queue) during lifespan of Queue Session will not be delivered

to receiver until commit is invoked on Queue Session.

b) This feature is achieved by making 1st parameter „True‟ in

createQueueSession function.

c) createQueueSession (true,session.AUTO_ACK)

2) Persistent/Non-Persistent Delivery
a) Persistent messages are survived on failure of JMS provider

and later delivered till that they are stored on database. While

non-persistent messages do not.

b) setDeliveryMode (DeliveryMode.PERSISTENT)

3) Priorities
a) Message producer gives priority to message; they are used

by server for ordering of messages. Messages with higher

priority are ahead of messages with lower priority.

b) Function Used: publish (msg, ….., PRIORITY, ……….)

c) Default Priority: 4

d) Normal Priority: 0-4

e) Speed Up Priority: 5-9

4) Time to Live:-

a) Messages have expiration time, its mainly for those

messages who are relevant for fixed amount of time. We can

use any of following two methods.

b) setTimeLive (VALUE in miliSeconds);

c) Or we can set these milliseconds as 5th argument of

following function.

d) Function Used: publish(…., ……, ……, ….., Values in

milisecond)

10. CONCLUSION AND FUTURE SCOPE

We build application of having multiple functionalities in

different languages and we try to make these functionalities run

asynchronously on different language processors without

waiting for other, except for those functionalities having

dependencies between them.

Now a day‟s all applications are complex and support

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.1, May 2011

49

different functionalities which can be implemented effectively

in their respective languages depending on functional

requirements [5]. These different functionalities are now a days

can be executed by using java but these facilities are rather

synchronous ,only after performing single functionality the

other can be executed which may take longer for complete

execution, these mainly avoided in QuickMQ and different

functionalities are performed asynchronously which rather

reduces clock time of complete execution

We have implemented light version of JMS provider but

still we able to maintain the original performance nearly as that

was for heavy weight JMS provider. In this work, we have

tested QuickMQ for the performance and we tested it in

various conditions.

Here are some of our findings that we found during our

analysis.

1) At least 3 subscribers and 3 publishers sending in a saturated

mode are required to fully utilize server CPU and to make

server maximum message throughput.

2)In non-persistent mode, QuickMQ server achieves a

significant larger throughput may lose messages.

3) The message size has impact on throughput of server.

4) The number of Topics and Queues has little impact on

server capacity.

11. REFERENCES

[1] Java Message Service API Rev. 1.1, Sun Microsystems,

Inc., April 2002, http://java.sun.com/products/jms/.

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.

Kermarrec, “The Many Faces of Publish/Subscribe,” in

ACM Computing Surveys, 2003.

[3] Krissoft Solutions, “JMS Performance Comparison,”

Tech. Rep., 2004

[4] Java Message Service O‟Reilly Publications – Mark

Richards, Richard Monson- Haefel & David A. Chappell

[5] Professional JMS Programming – Wrox Programming

Scott Grant, Michael P. Kovacs, Meeraj

Kunnumpurath, Silvano Maffeis , K. Scott Morrison,

Gopalan Suresh Raj, Paul Giotta ,James McGovern

[6] Integrating heterogeneous information services using

JNDI

[7] Dirk Corissen, Piotr WVendykier, Dawid Kurzyniec, and

Vaidy Sunderam Emory University Dept. of Math and

Computer Science Atlanta, GA 30322 USA

[8] Hsin-Ta Chiao, Chun-Han Lin, Kai-Chih Liang, and

Shyan-Ming Yuan, Department of Computer and

Information Science National Chiao Tung University

1001 Ta Hsueh Rd., Hsinchu 300, Taiwan {gis84532,

gis89505, kcliang, smyuan}@cis.nctu.edu.tw

[9] A. Heydon and M. Najork, “Performance Limitation of

the Java Core Libraries,” Proc. of the ACM 1999 Conf. on

Java Grande, pp. 35 – 41, 1999

[10] Sun Microsystems, Java Remote Method Invocation-

Distributed Computing for JAVA,

http://java.sun.com/marketing/collateral/javarmi.html,Sun

Microsyetems

[11] The OpenJMS Project .http://openjms.exolab.org/

[12] Sun Microsystems. The JNDI tutorial. http://java.sun.

com/products/jndi/tutorial/.

[13] TIBCO Enterprise Message Service, Tibco Software, Inc.,

2004,http://www.tibco.com/resources/software/enterprise

_backbone/messageservice.pdf.

[14] IBM WebSphere MQ 6.0, IBM Corporation, 2005

[15] Enterprise-Grade Messaging, Sonic Software, Inc., 2004,

http://www.sonicsoftware.com/products/docs/sonicmq.pdf

[16] S. Bittner and A. Hinze, “A Detailed Investigation of

Memory Requirements for Publish/Subscribe Filtering

Algorithms,” in International Conference on Cooperative

Information Systems (CoopIS), Agia Napa, Cyprus, Oct.

2005, pp. 148–165.

