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ABSTRACT 

Many graph clustering algorithms have been proposed in recent 

past researches, each algorithm having its own advantages and 

drawbacks. All these algorithms rely on a very different 

approach so it’s really hard to say that which one is the most 

efficient and optimal if we talk in the sense of performance. It is 

really hard to decide that which algorithm is beneficial in case of 

highly complex networks like PPI networks which consist of 

thousands of nodes. The paper proposes an effective data 

comparison of RNSC (Restricted Neighbourhood Search 

Clustering) and MCL (Markov Clustering) algorithms based on 

Erdos-Renyi and Power-Law Distribution graphs. The basic 

parameters used for comparison are Edge Density, Run Time, 

Number of Nodes, Cluster Size and Singleton Cluster. Our 

approach is an effective one because firstly we have used two 

types of graph generators, Erdos-Renyi and Scaled-Free for 

generation of input graphs which are very much closer to the 

real input graphs and secondly we have generated input graphs 

having more than 1000 nodes, so in our approach we have used 

both the algorithms for clustering highly complex input graphs 

just like PPI networks. For comparison and analysis purpose we 

have collected data sets and generated some graphs based on 

these parameters. The proposed approach depicts which 

algorithm is best to be used for clustering such complex graphs 

and also some fields for extension if possible in both them. All 

graphs used in this thesis are unweighted and undirected.   

General Terms 

Graph Clustering, Data mining et. al. 

Keywords 

RNSC, MCL, Erdos-Renyi, Scaled-Free, Edge Density, 

Singleton Cluster, Run Time, Number of Nodes, Cluster Size. 

1. INTRODUCTION 
Cluster Analysis [8] is the mathematical study of methods for 

recognizing natural group within a class of entities. The process 

of identifying similar structures in terms of grouping of data 

elements is called clustering. Graph clustering [1] and [5] is 

grouping of vertices a graph so that the vertices in one cluster 

have high intra connectivity as compared to inter-connectivity 

between different clusters. Graph clustering is closely related to 

graph partitioning. In a good clustering, the clusters have high 

density, i.e. are nearly complete graphs, and there are few edges 

in whose endpoints lie in deferent clusters. If G is a weighted 

graph, then we demand that in good clustering, each Ci contains 

a high edge weight sum and the sum of the weights of edges in 

G between these sub graphs is low [5]. In recent past researches 

various graph algorithms came into existence, like Markov 

Clustering (MCL), Restricted Neighbourhood Search Clustering 

(RNSC), Super Paramagnetic Clustering (SPC), and Molecular 

Complex Detection (MCODE), Local Clique Merging 

Algorithm (LCMA), Highly Connected Sub graph algorithm 

(HCS), SideS algorithm, Genetic algorithm, K-Means algorithm 

etc., each algorithm has its own strategy and relies on a very 

different approach. So it’s really hard to say that which one is 

the most efficient and optimal if we talk in the sense of 

performance and robustness. In 2002, the yeast interactome was 

estimated to contain up to 80,000 potential interactions thus a 

highly complex PPI networks were discovered which consisted 

of thousands of nodes and vertices. Many authors have tried to 

find the most optimal one in their past researches, but the factor 

mainly depends on the network given for which clustering is 

done. Many authors in their researches have given their views 

about which algorithms to consider for PPI [10] networks. 

Mainly two algorithms attracted attention of many authors 

which are RNSC and MCL, while others were weaker under 

most conditions. In my research we will also see that which 

algorithm evaluates the “goodness" of the clustering’s of a 

graph. Thus in my thesis work we are comparing these two 

algorithms under various parameters, and finally to generate a 

run time graph to compare their performances. The first segment 

of the paper depicts an overview of graph clustering algorithms 

(RNSC, MCL) and the graph generators which are to be used in 

our comparison. The next segment describes all the parameters 

to be used for comparison. In the last section we have provided 

all the results and discussions. 

2. AN OVERVIEW OF GRAPH 

CLUSTERING ALGORITHMS AND 

GRAPH GENERATORS 
In our approach we have used two graph clustering algorithms 

and two types of graph generator tools which we will be 

discussing in this segment. 

2.1 RNSC 
The RNSC [11] and [5] is a local search clustering algorithm 

[5].It uses two cost functions: Naïve and Scaled function. The 

naïve function is used as a preprocessor to the scaled cost 

function. Finally the scaled function tries to optimize the output 

from naïve function and reach to the global optimal solution. It 

is a local-search technique so only the neighbourhood moves are 

considered at every step, i.e. those clusters which can be reached 

from current cluster by moving a single vertex. 
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2.2 MCL 
The MCL algorithm is a fast and scalable unsupervised 

clustering algorithm based on simulation of stochastic flow in 

graphs [7].It is a more natural and organic clustering algorithm. 

It is based on flow simulation technique. A graph is described as 

a flow between the vertices. Its clustering uses flow expansion 

and inflation to produce a natural grouping of highly flow-

connected vertices or clusters, the algorithm takes flow 

expansion and inflation as inputs from the input graph  which 

uses these two operators for transforming one set of probabilities 

into another, algorithm  detects cluster structures in graphs by a 

mathematical bootstrapping [7] procedure. The process 

deterministically computes the probabilities of random walks 

through a graph by using the language of stochastic matrices 

(also called Markov [1] matrices), which capture the 

mathematical concept of random walks on a graph. Furthermore 

MCL uses threads also.  

2.3 Erdos-Renyi 
It is a graph generator tool based on probability distribution. 

This is a simple random graph in which the graph is represented 

in this form: GE  , where GE represents the Erdos-Renyi [2] 

graph and n is the number of nodes in the graph. Then every pair 

of vertices is check for edge and connected with probability  

(0≤ p ≤1).  

 

Algorithm: 1 Erdos-Renyi generator (Author’s Proposed 

Algorithm) 

 

 = number of graph nodes 

 =probability of selection 

 generates a random number  

for   

 for  =  to n 

  ; 

  if   

    is adjacent to  

   edgeCount++; 

  end if 

 end for 

end for 

 

2.4 Scaled-Free 
It is also termed as Power-Law [6] Graph. It is also a graph 

generator tool but it is different from previous tool discussed. 

Scaled-Free [3], [4] and [6] graphs are good models for certain 

type of biological graph, web graphs and other naturally-

occurring networks. In this graph the vertex degree follows a 

power-law distribution, i.e., there are large number of vertices 

with small degree and few vertices with very high degree (these 

vertices are also called hubs). The Scale free graph is 

represented by the notation GS , such that, GS represent the 

scale free graph, n is the number of vertices in the graph,  is 

used to construct the graph by the following method: 

Algorithm: 1 Scaled-Free generator (Scaled-Free generator 

code) [3], [5] and [8] 

The integer  represents number of nodes in graph. Choose  

and  such that . Now a Power law graph can be 

constructed by numbering the vertices as Make a set 

 of first k vertices, now start from k+1 vertex and construct 

a set  where , by 

joining vertex  random vertices in set .Choose a 

vertex  in  with probability proportional to 

 and not allowing multi edges. That is, we put 

each vertex  in a bucket  times and draw 

 non identical vertices. So  is a claw, and graph  

is always connected. This graph contains  edges. 

3. INTRODUCING PARAMETERS USED 

FOR COMPARISON 
In this segment we will be describing all the parameters which 

we have used to generate results. These parameters are- 

3.1 Edge Density 
The density of an unweighted graph or cluster is the proportion 

of possible edges that are present [5].The density of a sub graph 

is calculated by the formula 

 

 

Where  is the number of edges and  

is the number of vertices of the sub graph.  

3.2  Run Time 
Run Time denotes the computation time taken by the algorithm 

to generate clusters from given input graph. Here we have 

calculated the runtime of both the algorithms by using Time 

Command in Linux. The algorithm having a lower computation 

time is said to be an optimal one. 

3.3 Cluster Size  
It is also termed as Number of Clusters. Cluster size denotes the 

total number of clusters generated by the algorithm. Cluster size 

may be viewed from the output graph. 

3.4 Singleton Cluster 
Singleton cluster is a cluster containing only single vertex. The 

algorithm which forms less singleton clusters is said to be an 

optimal algorithm. 

3.5  Graph Size 
It is also termed as Number of Nodes denoted by the variable 

(N). It is the total number of nodes in a Graph. 

4. RESULTS AND DISCUSSIONS 

4.1 Results for Erdos-Renyi Graph 
This section contains all the results and discussions regarding 

Erdos-Renyi graphs. 

4.1.1 Run time vs Edge density for RNSC and MCL 
The table contains computed values of Run time and Edge 

densities for RNSC and MCL graph clustering algorithms. 
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Table 1. Dataset for Erdos-Renyi Graph 

S. No. For a graph of 1000 nodes 

Edge 

Density 

Run Time (RNSC) 

in seconds 

Run Time (MCL) 

in seconds 

1. 1 0.05 0.63 

2. 10 4.24 4.51 

3. 20 47.82 5.24 

4. 30 56.25 5.60 

5. 40 38.31 6.10 

6. 50 28.11 6.79 

7. 60 8.75 7.18 

8. 70 11.71 7.39 

9. 80 13.99 7.89 

10. 90 16.50 8.84 

11. 100 17.41 1.42 
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Fig 1: A line graph representing Run Time vs Edge Density. 

Discussion: Fig 1 shows a line graph representing Run Time 

versus Edge Density for a graph of 1000 nodes. In case of MCL 

the run-time increases linearly with the edge density, but as the 

Edge-Density reaches 100% or fully-connected the run-time of 

the graph decreases drastically. This is evident from the fact that 

now the graph is completely connected and the cost of the 

clustering will decrease drastically in each step as more and 

more vertices are added to same cluster at each step. Thus the 

time to compute when graph is completely connected is much 

lower. The run-time of the RNSC clustering increases sharply at 

the edge density of 25-50%; this is attributed to the fact that in 

this range half the edge-pairs are connected. The number of 

moves is very high because the cost keeps fluctuating in this 

range due to diversification steps. As the Edge-Density crosses 

50%, the edge-connectivity of the graph increases and the 

diversification step has low effect on such high Edge-Density. 

So the run-time decreases, but still increases linearly as the 

Edge-Density increases. 

4.1.2 Edge Density vs Cluster Size in RNCS and 

MCL 
The table contains computed values of Edge Density and Cluster 

Sizes for RNSC and MCL graph clustering algorithms. 

Table 2. Dataset for Erdos-Renyi Graph 

S. No. For a graph of 1000 nodes 

Edge 

Density 

Cluster Size 

(RNSC) 

Cluster Size 

(MCL) 

1. 0.1 666 251 

2. 1 304 903 

3. 2 236 998 

4. 3 195 1000 

5. 4 172 1000 

6. 5 124 1000 

7. 6 83 1000 

8. 7 47 1000 

9. 8 17 1000 

10. 9 8 101 
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Fig 2: A line graph representing Edge Density vs Cluster Size. 

Discussion: Fig 2 shows a line graph representing Edge Density 

versus Cluster Size for a graph of 1000 nodes. In case of the 

MCL clustering there is not much change in the number of 

clusters formed as the Edge-Density changes from 1 to 8, but on 

further increasing the Edge-Density, the number of cluster 

formed in the graph decreases. This is attributed to the fact that 

now there are more edges in the graph between the vertices. So 

the clustering cost decreases as the cluster size decreases. In the 

RNSC clustering we can observe that the number of clusters 

formed is constantly decreasing as the Edge-Density is 

increasing. This is obvious because now there are more edges in 

the graph and thus more compact clusters can be formed with 

lower costs. Thus the change in the number of clusters is easily 

observed in the RNSC clustering. 
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4.1.3 Number of Singleton Cluster vs Edge Density 
The table contains computed values of Singleton Cluster and 

Edge densities for RNSC and MCL graph clustering algorithms. 

Table 3. Dataset for Erdos-Renyi Graph 

S. No. For a graph of 1000 nodes 

Edge 

Density 

Singleton 

Cluster (RNSC) 

Singleton 

Cluster (MCL) 

1. 0.01 894 0 

2. 0.1 402 5 

3. 0.2 158 73 

4. 0.3 58 172 

5. 0.4 13 298 

6. 0.5 5 411 

7. 1 0 815 

8. 1.5 0 962 

9. 2 0 996 

10. 2.5 0 1000 

11. 3 0 1000 

12. 9 0 101 
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Fig 3: A line graph representing Edge Density vs Singleton 
Cluster. 

Discussion: Fig 3 shows a line graph representing Edge Density 

vs Singleton Cluster for a graph of 1000 nodes. This graph 

shows the variation in the number of singleton clusters formed 

as the Edge-Density of the graph increases from 0 to 10% in 

Erdos-Renyi graph with 1000 nodes. The number of singleton 

cluster formed is high when the Edge-Density is below 0.3, but 

as the Edge-Density increases the number of singleton cluster 

cease to exist, which is good for any clustering algorithm. But 

on the other hand in the MCL clustering initially the number of 

singleton clusters were zero and as the Edge-Density increases 

the number of singleton cluster also increase. Thus the RNSC 

out-performs the MCL clustering in the singleton cluster count. 

4.1.4 Run Time vs Number of Nodes 
The table contains computed values of Run Time and Number of 

Nodes for RNSC and MCL graph clustering algorithms. 

Table 4. Dataset for Erdos-Renyi Graph 

S. No. For a graph of 1000 nodes (Edge Density 5%) 

Size of 

Graph 

Run Time 

(RNSC) 

Run Time 

(MCL) 

1. 100 0 0.40 

2. 200 0.02 0.14 

3. 300 0.04 0.31 

4. 400 0.10 0.76 

5. 500 0.23 1.46 

6. 600 0.34 2.57 

7. 700 0.70 4.13 

8. 800 1.16 6.30 

9. 900 1.99 9.04 

10. 1000 3.05 12.40 

11. 1100 4.46 16.51 

12. 1200 4.68 19.23 

13. 1300 9.06 21.20 

14. 1400 13.60 27.22 

15. 1500 22.08 33.31 

16. 1600 23.56 36.58 

17. 1700 31.97 39.24 

18. 1800 48.06 42.57 

19. 1900 73.58 48.92 

20. 2000 119.14 54.42 
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Fig 4: A bar graph representing Run Time vs Graph Size. 

Discussion: Fig 4 shows a bar graph representing Run Time 
versus Graph Size for a graph of 1000 nodes. This graph shows 

that for graph of small sizes ranging from 100 to 1700 nodes, the 

run-time of RNSC clustering is lower than that of MCL 

clustering, but for more than 1800 nodes the run-time for RNSC 

increases drastically for Erdos-Renyi graphs. When the number 

of nodes in the graph reaches 1900 to 2000 nodes then the run-

time of MCL algorithm is not increasing because the MCL 
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algorithm uses threads of execution for computing the 

clustering. The computation time is decreased due to the usage 

of threads, but the RNSC algorithm is serial algorithm, so the 

run time increases beyond MCL run-time. But after a certain 

limit, i.e. nearly 5k nodes the MCL algorithm run-time increases 

much more than the RNSC, this is evident from the other graph 

which shows the run-time for both algorithms for the graphs of 

order 10k to 20k nodes. When the order of nodes reaches 10k 

then even the threaded version of the MCL takes more time to 

compute than the RNSC algorithm on the dual-core machine. 

4.2 Results for Scaled-Free Graph 
This section contains all the results and discussions regarding 

Scaled-Free graphs. 

4.2.1 Number of Nodes vs Cluster Size 
The table contains computed values of Number of Nodes and 

Cluster Sizes for RNSC and MCL graph clustering algorithms. 

Table 5. Dataset for Scaled-Free Graph 

S. No. For a graph of more than 10000 nodes 

Number 

of  Nodes 

Cluster Size 

(RNSC) 

Cluster Size 

(MCL) 

1. 10000 7084 2254 

2. 11000 7913 2462 

3. 12000 8389 2497 

4. 13000 9164 2916 

5. 14000 10888 3106 

6. 15000 10601 3419 

7. 16000 11292 3518 

8. 17000 12885 3781 

9. 18000 13330 4885 

10. 19000 13643 4186 

11. 20000 14118 4556 
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Fig 5: A line graph representing Graph Size vs Cluster Size. 

 

 

Discussion: Fig 5 shows a line graph representing Graph Size 

versus Cluster Size for a graph of, more than 10000 nodes. This 

graph shows that as the number of nodes increases in the graph 

the number of clusters formed increase linearly in the graph, 

with the condition that the graph follows the same attribute like 

Edge-Density and connectivity. The number of clusters formed 

in the RNSC clustering is much higher than the MCL clustering 

for power-law graphs. This is due to the fact the number of 

singleton clusters is very large in this type of graph. Singleton 

cluster is a cluster containing only single vertex. Singleton 

clusters result due to the fact that the cost of the cluster 

decreases sometime with singleton cluster sparsely connected 

graphs like power-law graphs. The number of clusters formed in 

RNSC can be minimized by changing the CLUSTER_LIMIT 

parameter in the algorithm. This parameter sets the maximum 

limit on the number of clusters formed. The above graphs are 

obtained by keeping the CLUSTER_LIMIT parameter as null. 

When the parameter is not set then the CLUSTER_LIMIT is set 

as the maximum number of nodes in the graph. The above graph 

is obtained by keeping the CLUSTER_LIMIT unchanged, i.e., 

maximum number of nodes in the graph. 

4.2.2 Graph size vs Run Time 
The table contains computed values of Graph Size and Run 

Times for RNSC and MCL graph clustering algorithms. 

Table 6. Dataset for Scaled-Free Graph 

S. No. For a graph of more than 10000 nodes 

Number 

of  Nodes 

Run Time(RNSC) 

in seconds 

Run Time(MCL) 

in seconds 

1. 10000 0.71 5.7 

2. 11000 1.31 6.8 

3. 12000 1.06 11.6 

4. 13000 1.25 12.46 

5. 14000 2.14 9.67 

6. 15000 1.68 7.79 

7. 16000 1.68 17.01 

8. 17000 2.2 13.5 

9. 18000 6.12 9.23 

10. 19000 3.04 24.27 

11. 20000 2.82 12.63 

 

0

5

10

15

20

25

30

R
u

n
 T

im
e
(i

n
 s

e
c
o

n
d

s
)

Number of Nodes(N)

GRAPH SIZE vs RUN TIME

Run Time(RNSC) Run Time(MCL)

 

Fig 6: A bar graph representing Run Time vs Graph Size. 
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Discussion: Fig 6 shows a bar graph representing Run Time 

versus Graph Size for a graph of more than 10000 nodes. As the 

order of the graph increases from 10000 nodes to 20000 nodes, 

the run-time of both RNSC and MCL increase but the run-time 

of RNSC is much smaller as compared to that of MCL. The 

graph here is power--law graph with alpha value 2.5. The RNSC 

performs much better for power law graph of order 10k-20k 

nodes. This can be attributed to that fact that the edge 

connectedness in the power law graph is not very high for all the 

vertices. So the change in the clustering due to the change in 

diversification is not very large, thus easily a final naive and 

scaled cost is achieved and the number of moves taken is less. In 

the case of MCL algorithm, the clustering is obtained by 

calculating the matrix multiplication which becomes very 

expensive for the graph of the order of 10-20k nodes. The run-

time of the RNSC clustering scheme can be further optimized by 

implementing parallelization in the algorithm. 

5. CONCLUSIONS AND FUTURE WORK 
In our approach we successfully implemented RNSC and MCL 

graph clustering algorithms in C++ for graphs having more than 

1000 nodes. With the help of these graphs we were able to 

compare both the algorithms with different parameters and in 

different conditions. In case of Erdos-Renyi graphs run time of 

RNSC algorithm is better as compared to MCL for graph having 

nodes less than 1800 but as nodes keep on increasing the run 

time of RNSC increases drastically while run time of MCL does 

not increase, so MCL is better in case of Erdos-Renyi graph 

having more than 1800 nodes but after a certain limit of about 

5k nodes and more and also due to high connectivity between 

the nodes it performs poorly as compared to RNSC. Future work 

will focus in optimizing the run time of RNSC algorithm by 

implementing parallelization in the algorithm and also by 

improving the heuristic approach of RNSC algorithm. MCL 

algorithm performs very poorly in case of sparse graphs while 

RNSC is better than MCL in case of sparse graphs i.e. in the 

case of Scaled-Free graphs. Speed in case of MCL may be 

improved through pruning. 
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