
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.2, May 2011

11

Safe Guard Anomalies against SQL Injection Attacks

Romil Rawat
M.Tech Scholar

Deptt. Of IT, SATI Vidisha
M.P., India

Chandrapal Singh Dangi
M.Tech Scholar

Deptt. Of CSE, SSSIST
Sehore, M.P., India

Jagdish Patil
M.Tech Scholar

Deptt. Of IT, SATI Vidisha
M.P., India

ABSTRACT

For internet, web application exists and for web application

syntax, semantics, coding and design exists, and for coding and

designing, algorithm exists, and for algorithm, protecting

techniques and rules exists, But as the internet technologies

advanced, vulnerability also advanced .Various old procedures,

algorithm functions, coding and designing syntax and semantics

are there, which are vulnerable to attack and if used could be

easily traced or hacked by the attacker. Old practices which are

vulnerable should be banned in organization, companies and

govt. sectors and secure guidelines should be issued, which

consists of security guildelines.and should be strictly followed.

In this paper we have proposed coding flaws at different

platforms and their solutions.

Keywords

SQL Injection, Database Security, Authentication, HTTP

1. INTRODUCTION

With the increase use of web application, there is a chase of

getting more and more projects, designs and new standards [1, 2,

3]. Various techniques and various methods are there for

creating web application and various languages exists for its

creation. Thousands of Companies are there and lakes of

developers are also there, for doing internet related work for that

company. And they are all not following global standard for

writing language code and designing framework. And, [4, 5] as

a result some loopholes are left created in their application,

which result in vulnerable cause for that application. If proper

Input validation, syntax validation, secure coding framework,

security guidelines are to be followed, the application become

secure. Code reviews are an excellent means of checking for

common mistakes to enforce good security coding practices.

Coding standard can guide developers to make secure standard

design practices. The inexperienced programmer often builds the

SQL statement as a string, appending the input data into the

string along the way [6, 7]. The programmer then submits the

entire string to the database as a statement, allowing malicious

input to be interpreted directly by the database engine. Use of

prepared statement makes a SQL statement secure because it

binds user input to those placeholders,anathor techniques is to

use input filtering[7,8] techniques to filter user input meta

characters, many languages provide inbuilt function and

packages to filter input parameters. Various tools are also

available which checks web application for different

vulnerability points. Normally, web applications is a three tier

architecture, the Application tier at the user side, Middle tier

which converts the user queries into the SQL format, and the

backend database server which stores the user data as well as the

user‟s authentication table. Whenever a user wants to enter into

the web database through application tier, the user inputs his/her

authentication information from a login interface.

Working principal of web application is as follows:-

 Web application is requested through a web browser

by a user.

 The HTTP protocol accepts a request of user and sent

to the targeted web server.

 Server executes the request received

 Application program generates a output and sent back

to the user via HTTP.

 Current states of User, Web server and their execution

report are maintained by a special unit called cookies.

In our paper we have presented coding standards, and secure

guideline practices for developer and designers.

2. RELATED WORK

The mechanism to keep track of the positive taints and negative

taints is proposed by William G.J. Halfond, Alessandro Orso,

Panagiotis Manolios [18],

Defensive Programming [11][12] has given a approach for

Programmers by which they can implement their own input

filters or use existing safe API s that prevent malicious input

or that convert malicious input in to safer input. .

Vulnerability pattern approach is used by Livshits and Lam [16],

they propose static analysis approach for finding the SQL

injection attack. . The main issues of this method, is that it

cannot detect the SQL injection attacks patterns that are not

known beforehand. Vulnerability patterns are described here in

this approach.

 AMNESIA mechanism to prevent SQL injection at run

time is proposed by William G.J. Halfond and Alessandro Orso

[17].It uses a model based approach to detect illegal queries

before it sends for execution to database

 Static analysis framework (called SAFELI) has been

proposed by Xiang Fu et al [13], for identifying SIA (SQL

Injection attacks) vulnerabilities at compile time.. the source

code information can be analyzed by SAFELI and will be able

to identify very delicate vulnerabilities that cannot be discovered

by black-box vulnerability scanners.

 Scott and Sharp Proxy filter [9] [10] , this technique can

be effective against SQLIA; they used a proxy to filter input

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.2, May 2011

12

data and output data streams for a web application ,although

correctly specify filtering rules for each application is required

by the developers to input.

 The mechanism which filters the SQL Injection in a static

manner is proposed by Buehrer et al [15]. The SQL statements

by comparing the parse tree of a SQL statement before and after

input and only allowing to SQL statements to execute if the

parse trees match.

 Novel-specification based methodology proposed by

Konstantinos et al [14], they given a mechanism to detect SQL

injection with. This approach utilizes specifications that define

the intended syntactic structure of SQL queries that are

produced and excecuted by the web-application.

 Instruction–Set Randomization [9][11] defined a

framework that allows developers to create SQL queries using

randomized keywords instead of the normal SQL keywords.

 Marco Cova et al [19], proposed a Swaddler which,

analyzes the internal state of a web application and learns the

relationships between the application's critical execution points

and the application's internal state..

3. GENERAL GUIDELINE

• Use of good software design engineering and other phases of

software facilitates a structured, small, and simple code. Always

follow secure coding checklist.

• Use of Secure libraries which contains standard designs (e.g.,

anti-cross site scripting library) to protect against security bugs

during web application development. Application scanner

should be used to test code to detect vulnerabilities.

Reading security-related forums, magazines, research papers,

and newsletters. And to apply these researches on design and

implementation work.

• Use of the latest compilers also recommends defenses against

coding errors; for example, GCC protects code from buffer

overflows.

• Proper error/exception handling is to be followed. Check the

return values of every function, especially security-related

functions.

• Use of limited permission to access database, always uses SQL

execute-only permission.

Because it limits uses of given accesses, securing the design,

don‟t use high-privileged accounts like sysadmin or dbo. If it is

needed to use high-privileged operations, then wrap those

operations in a stored procedure and stored procedure should be

signed with a certificate that has the required high privileges and

grant execute permission on the stored procedure.

• Always follow input validation. Create „white list‟ of good

input parameters and „Black list ‟ of attacking and bad

parameters.

•Use version/configuration control to track changes occurred in

the code or document. This will create compatibility wizards for

moving across versions.

• Use parameterized SQL statement. And SQL Statement could

be vulnerable, so never trust on input for SQL statement.

• The function, syntaxes and designs which seems to be

vulnerable and creates weak application should be banned

strictly; rules should be created to follows only secure and safe

guidelines.

• For keeping client web browser secure from interpreting by

malicious activity, Encode HTML input.XSS attacks cause

serious problem if proper encoding is not used.

• Don‟t use sensitive data in cookies; it could create cookie theft

attack.

 •java.util.regex, SqlParametersCollection, PHP Data Object

(PDO) and Perl‟s DBI library. Use these libraries, package and

function to escape any potentially dangerous characters.

•Use strong cryptographic techniques for encrypt all confidential

data. Use secure algorithms with long keys.

• Developers should be guided or educated by the modern attack

scenario.traing and workshop programs should be incorporated

at regular interval by experts.

4. FOLLOWS THE SECURE CODING

GUIDELINES

 These languages are frequently used for web development, and

they support various predefined packages, function, design and

parameters. If they are not properly sanitized and quoted, it

could result disastrous result. The main security issue in web

designing is keeping database confidential and accessible to

unauthorized user. If SQL query generated by user input is

properly handle before creation of dynamic SQL, the application

will work in safe mode, but if any designing and parameter

transfer flaws occurred due to Input parameter, it will create

unauthorized access and bypassing of web application by

vulnerability intension. Below is some codes and their designing

solution, which will create safe Code.

4.1 Secure coding with VB.NET

4.1.1 Vulnerable piece of .Net code

dim rolno As String

„ Get name from user input

dim name As String = Request.QueryString("name")

„ Setup the database connection (details omitted)

Dim connection As SqlConnection = New

SqlConnection(<setup db conn here>)

„ Substitute the unfiltered “name” parameter in the query string

Dim query As String = String.Format(_

"SELECT rolno FROM student WHERE Name='{0}'", _ name)

„ Send command to database

Dim query As SqlCommand = New SqlCommand(queryText,

connection)

Dim dataAdapter As SqlDataAdapter = New

SqlDataAdapter(query)

GetRolnoFromName = New DataSet

dataAdapter.Fill(GetRolnoFromName)

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.2, May 2011

13

4.1.2 Secure Code of .Net code

dim rolno As String

„ Get name from user input

dim name As String = Request.QueryString("name")

„ Setup the database connection (details omitted)

Dim connection As SqlConnection = New

SqlConnection(<setup db conn here>)

„ Set up the query to use @name where we will add that

parameter via

„ the SqlParametersCollection

Dim queryText As String = String.Format(_ "SELECT rolno

FROM student WHERE name=@name")

„ Send command to database

Command(queryText, connection)

Dim query As SqlCommand = New

Sqlquery.Parameters.Add(@name,name)

Dim dataAdapter As SqlDataAdapter = New

SqlDataAdapter(cmd)

GetRolnoFromName = New DataSet

dataAdapter.Fill(GetRolnoFromName)

4.2 Secure coding with Perl

4.2.1 Vulnerable Perl piece of Perl code:

$query = $sql->prepare(“select rolno from student where name

= „$name‟“);

$query->execute;

4.2.2 Secure Code

$query = $sql->prepare(“select rolno from student where name

= ?“);

$query->execute($name);

4.3 Secure coding with PHP

4.3.1 Vulnerable piece of PHP code

// Get $name from the HTTP request...

$name = $_REQUEST(“name”);

// Set up our query to look up ROLNO by name...

$query = “select rolno from student where name = „” . $name .

“‟”;

// Now, execute our query...

$query->execute();

// Now, pull our rolno out of the query results...

$rolno->$query->fetchAll();

4.3.2 Secure Code

// Get $name from the HTTP request...

$name = $_REQUEST(“name”);

// Build our query to lookup ROLNO by name,

// using a prepared statement and substitution to bind our

parameter...

$query = $dbhandle->prepare(“select rolno from student where

name = ?”);

// Now execute the query, substituting the $name variable using

the

// an array to satisfy the API.

$query->execute($query,array($name));

// Now, pull our ROLNO out of the query results...

$rolno = $query->fetchAll();

4.4 Secure coding with Java

4.4.1 Vulnerable piece of java code

// Build our query, directly substituting the NAME parameter

from input

String query = “select rolno from student where name = „

+ req.getParameter(“NAME”) + “‟”

// Get a Statement object from the Connection object

Statement statement = connection.createStatement();

// Execute our query, allowing the attacker to supply his SQL

commands...

ResultSet results = statement.executeQuery(query);

// Get the ROLNO from the result set..

4.4.2 Secure Code

// Build Prepared statement, passing our query string in as a

parameter...

PreparedStatement statement = connection.prepareStatement

("SELECT rolno FROM student WHERE name = ?“);

// Substitute that “?” symbol for our the NAME, noting that it‟s

to

// be bound as a String parameter...

statement.setString(1,req.getParameter(“NAME”);

// Execute query and get query results...

ResultSet results = statement.executeQuery(query);

// Get the ROLNO from the result set.

String rolno = results.getString(1);

5. EVALUATION

Web Application is compared before and after applying the

secure guideline principles. And it is found that if checkpoints

and secure methods are used, the performance and security of

application increases to much extent and it becomes almost

impossible to bypass the web application by unauthenticated

manner. As shown in both graphs the attack intensity reduces to

much extent after applying the secure guidelines. Design flaws

are removed by checkpoints at every vulnerable position. Figure

1 shows the increase of attack intensity, if design flaws and lack

of secure guidelines are there. Figure 2 shows the decrement in

attack intensity and increases the security. Performance of

application has been increased.

6. CONCLUSION

Our concept provides a secure application, based on secure

guidelines. Here application loopholes are closed by secure

checkpoints. Web application is vulnerable only, if there is

designing flaws, coding mistakes and lack of proper guidelines.

Our system used advanced guidelines, which shows some rules

which should be strictly followed by designer and coder. Some

old methods which are vulnerable to attack should be strictly

banned. Expert ways are used to eliminate any possible attack

scenario and its terror.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.2, May 2011

14

Fig.1. Increase of Attack Intensity

Fig.2. Decrement in Attack Intensity

7. REFERENCES
[1] Monica S. Lam, Michael Martin, Benjamin Livshits, and

John Whaley, “Securing Web Applications with Static and

Dynamic Information Flow Tracking,” PEPM‟08, January

7–8, 2008, San Francisco, California, USA.

[2] J. Scambray, M. Shema, and C. Sima, Hacking Exposed

Web Applications, 2nd ed., McGraw-Hill, 2006.

[3] D. Stuttard and M. Pinto, The Web Application Hacker‟s

Handbook,Wiley Publishing, 2008.

[4] Michael Howard, David LeBlanc, “Writing secure code”,

Microsoft Press, 2003.

[5] Common Weaknesses Enumeration Definitions, April-

2010, http://cwe.mitre.org/data/definitions/113.html.

[6] Mark G. Graff, Kenneth R.van Wyk, „Secure Coding

Principles, and Practices‟, 2003.

[7] Trupti Shiralkar and Brenda Grove “Guidelines for Secure

Coding”, January,2009.

[8] B. Indrani & E. Ramaraj ,” X – LOG AUTHENTICATION

TECHNIQUE TO PREVENT SQL INJECTION

ATTACKS”, International Journal of Information

Technology and Knowledge Management January-June

2011, Volume 4, No. 1, pp. 323-328.

[9] A Classification of SQL Inject ion At tacks and

Countermeasures: William G.J. Hal Fond and Alessandro

Orso, Col lege of Comput ing, Georgia Institute of

Technology.Gatech.edu.

[10] D. Scott and R. Sharp, “Abstracting Application-level Web

Security”, In Proceedings of the 11th International

Conference on the World Wide Web (WWW 2002),

Pages 396–407, 2002.Y. Huang, F. Yu, C. Hang, C. H.

Tsai, D. T. Lee, and S. Y. Kuo.

[11] “Securing Web Application Code by Static Analysis and

Runtime Protection”, In Proceedings of the 12th

International World Wide Web Conference (WWW 04),

May 2004.

[12] SQL Injection Attack Examples based on the Taxonomy of

Orso et al.

[13] Xiang Fu, Xin Lu, Boris Peltsverger, Shijun Chen, "A

Static Analysis Framework For Detecting SQL Injection

Vulnerabilities", IEEE Transaction of computer software

and application conference, 2007.

[14] Konstantinos Kemalis and Theodoros Tzouramanis,

"Specification based approach on SQL Injection detection",

ACM, 2008.

[15] G.T. Buehrer, B.W.Weide and P.A..G.Sivilotti, "Using

Parse tree validation to prevent SQL Injection attacks", In

proc. Of the 5th International Workshop on Software

Engineering and Middleware(SEM '056), Pages 106-113,

Sep. 2005.

[16] V.B. Livshits and M.S. Lam, "Finding Security

vulnerability in java applications with static analysis", In

proceedings of the 14th Usenix Security Symposium, Aug

2005.

[17] William G.J. Halfond, Alessandro Orso,Panagiotis

Manolios, "WASP:Protecting Web Applications Using

Positive Tainting and Syntax-Aware Evaluation", IEEE

Transaction of Software Engineering Vol 34, Nol,

January/February 2008.

[18] W.G. J. Halfond and A. Orso, "Combining Static Analysis

and Run time monitoring to counter SQL Injection attacks",

3rd International workshop on Dynamic Analysis, St.

Louis, Missouri, 2005, pp.1.

[19] Marco Cova, Davide Balzarotti, Viktoria Felmetsger, and

Giovanni vigna, " Swaddler: An approach for the anamoly

based character distribution models in the detection of SQL

Injection attacks", Recent Advances in Intrusion Detection

System, Pages 63-86, Springerlink, 2007.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 1 2 3 4 5 6

Performance enhancement chart
before secure guideline

A
tt

ac
k

In
te

n
si

ty

Designing Flaws

0

0.01

0.02

0.03

0.04

0.05

0.06

0 1 2 3 4 5 6

Performance enhancement chart after
secure guideline

A
tt

ac
k

In
te

n
si

ty

Secure Guideline

