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ABSTRACT 

In this paper, Space Time Adaptive Processing (STAP) applied 

on wideband signals from uniformly spaced real elements using 

Direct Data Domain Least Squares (D3LS). Two antenna 

configurations are used: an array of dipole antenna (narrowband 

antenna) and an array of patch antenna (wideband antenna). A 

frequency transformation technique is used only for the case of 

narrowband antenna which transforms the steering vector at a 

wideband frequency to another steering vector at the desired 

frequency. The mutual coupling between elements will affect on 

the estimation of complex amplitude of Signal of Interest (SOI). 

It is necessary to compensate for the strong mutual coupling that 

exists between the real antenna elements. This is done by using 

coupling transformation matrix which converts the voltages that 

are induced at the real antenna elements to an equivalent set of 

voltages that will be induced by the same incident wave in 

uniform linear virtual array (ULVA). Then, we will apply STAP 

D3LS on the compensated voltages. Numerical simulations are 

done using the three main methods of D3LS namely the forward, 

backward, and the forward–backward methods.  

General Terms 

Adaptive signal Processing algorithm, Beamforming algorithm 

Keywords 
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1. INTRODUCTION 
The beamforming of adaptive antenna is a computationally 

intensive process at which each users signal is multiplied by 

complex weight vectors that adjust the magnitude and phase of 

the signal from each antenna element. The principle advantage 

of an adaptive array is the ability to electronically steer the main 

lobe of the antenna to any desired direction while also 

automatically placing deep pattern nulls in the specific direction 

of interference sources and the direct data domain algorithms 

used to overcome these drawbacks of statistical techniques 

which are adaptively minimize the interference power while 

maintaining array gain in the direction of the target signal [1,2]. 

Until recently, most of the works on smart antennas have 

concerned narrowband communication systems that are 

characterized by a fractional bandwidth in the order of one to a 

few percents. The beamforming techniques used in narrowband 

systems are inadequate for wideband systems because they are 

unable to track a desired user or form nulls or low sidelobes 

towards interfering sources over a large frequency band. In order 

to overcome the problem of narrowband beamformers, several 

wideband beamforming techniques have been proposed recently 

[3]. In order to deal with wideband signals we have two 

solutions either using wideband antennas or using narrowband 

antennas with a frequency transformation technique. This 

transformation technique is done by transforming the steering 

vector at any frequency within the design frequency band into a 

new Steering vector at a specified reference frequency. In the 

practical case, if we are dealing with real elements. The 

elements spatially sample and reradiate the incident fields. The 

reradiated fields interact with the other elements resulting in 

mutual coupling between elements. EM principles are applied to 

compensate for the effects of mutual coupling between the 

antenna elements. This EM processing technique transforms the 

voltages that are induced in the uniformly spaced real elements 

due to all incoming signals to an equivalent set of voltages that 

will be produced in a ULVA containing isotropic point radiators 

by the same set of incident signals [4]. Once the corrected 

voltages are obtained, we can apply STAP based on D3LS 

approach. STAP is carried out by performing two-dimensional 

(2-D) filtering on signals that are collected by simultaneously 

combining signals from the elements of an antenna array (the 

spatial domain) as well as from the multiple pulses from 

coherent radar (the temporal domain) [5]. This algorithm is used 

for suppressing highly dynamic interference and enables the 

system to detect potentially weak target returns. 

 

2. SYSTEM MODEL 
Assume that U+ 1 source impinge on an array of real elements 

antenna from distinct azimuthal directions U  ,.....,0 . So in 

addition to SOI there are U undesired signals. We will deal with 

two arrays of dipole and patch antennas. Fig.1 and Fig.2 show 

the configurations of the Uniform Linear Equal Spaced Dipole 

Array (ULESDA) and patch array respectively. Each 

configuration consists of N elements located along the x-axis, 

and the distance between any two adjacent elements is d.  
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Fig.1 Geometry of ULESDA and its equivalent ULVA  

 

Fig.2 Geometry of Patch array and its equivalent ULVA  

Using the complex envelope representation, a single snapshot of 

the voltages represents a 1N vector of phasor voltages  )(tx  

received by the elements of the actual array at a particular time 

instance t and can be expressed by 
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Where )(tsu denotes the signal at the elements of the array 

from the 
thu source, for Uu ,....,0 . )]([ a denotes the far 

field pattern of the array toward the azimuth direction  and 

 )(t denotes the noise vector at each of the loaded antenna 

elements. By using a matrix representation (1) becomes [6] 

                               )()()()(             ttsAtx             (2) 

Where )]([ A  of size )1(  UN referred to as the array 

manifold corresponding to each one of the incident signals of 

unity amplitude and is represented by 

                            ,......,,           10 UaaaA           (3) 

 2.1 Frequency Transformation Technique 
A wideband received signal is incident on a uniform linear array 

of N elements and d the spacing between elements. The 

procedure is based on transforming the steering vector at the 

wideband frequency fw into a prespecified reference frequency fn 

using the transformation matrix for U+1 uniformly spaced 

directions covering the angular region [3,7]. This technique is 

used for the case of first configuration as shown in fig.1 because 

this antenna is narrowband antenna and we will transform the 

wideband steering vector to another steering vector operating in 

the frequency range of this ULESDA. The array steering matrix 

whose columns are the array steering vectors at the frequency fw 

corresponding to each of the U+1 directions is defined by:              

               ,,......,,,,,   10 wUwww fafafafA     (4) 

Hence, we are going to select the best-fit frequency 

transformation, ][ f , between The steering matrix at the 

frequency fw,   wfA ,  , and The steering matrix at the 

reference frequency fn,   nv fA ,  such that 

                                  ],[],][[             nvwf fAfA   (5) 

First, we define a set of uniformly defined angles to cover a 

sector, the azimuth angles spanning ],[ 1qq   

              ] ,....., 2 ,  ,[][ 1 qqqqq                   (6) 

where the angle   represents the azimuth incremental step size. 

Then we measure the steering vectors associated with the 

set ][ q . The measured steering matrix at the frequency fw is 

defined by 

   )],(),......,,(),,([)],([ 1 wqwqwqwq fafafafA   (7) 

Next, we calculate the measured steering matrix at the reference 

frequency fn corresponding to the same set of angles ][ q  

   )],(),......,,(),,([)],([ 1 wqvwqvwqvwqv fafafafA   (8) 

The frequency transformation matrix ][ f  is obtained by 

minimizing the mean square error function and the solution of it 

is as follows [7] 

              1
],][,[],][,[][


 HfAfAHfAfAf wqwqwqnqv

(9) 

where the superscript H represents the conjugate transpose of a 

complex matrix. The frequency transformation matrix ][ f  

needs to be computed only once a priori for the defined sector 

and this computation can be done off-line. So, now the actual 

steering vector at the wideband frequency is transformed to 

another one at the reference frequency. 
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2.2 Coupling Compensation Technique 
In practice, the induced voltages in a real array (ULESDA or 

patch array) are contaminated by the effects of the mutual 

coupling between the elements of the array which will 

undermine the performance of a conventional adaptive signal 

processing algorithm [4]. By using a coupling transformation 

matrix, one can compensate for all the undesired 

electromagnetic effects. The voltages induced in an actual array 

are then transformed to a set of voltages that would be induced 

in an ULVA consisting of omnidirectional isotropic point 

radiators. It is based on transforming the real array into an 

ULVA operating in the absence of mutual coupling and other 

undesired electromagnetic effects. Hence, we are going to select 

the best-fit coupling transformation, ][ , between the real array 

manifold, )]([ A  , and the virtual array manifold corresponding 

to an ULVA, )]([ vA such that 

                                 ])([)](][[               vAA           (10) 

for all of the azimuth angles   within a predefined sector. 

First, we define a set of uniformly defined angles to cover a 

sector, the azimuth angles spanning ],[ 1qq   

                    ] ,....., 2 ,  ,[][ 1 qqqqq         (11) 

where   represents the azimuth incremental step size. Then we 

measure the steering vectors associated with the set ][ q of the 

real array. The measured real array manifold is defined by 

 )]( ),...,2( ),( ),([][ 1 qqqqq aaaaA       (12) 

This can include all the undesired electromagnetic coupling 

effects. Next, we calculate the virtual array manifold 

corresponding to the same set of angles ][ q  

  )]( ),...,2( ),( ),([][ 1 qvqvqvqvqv aaaaA  (13) 

Then the coupling transformation matrix is obtained using a 

least squares solution as follows: 

                 ]][[]][[][
1

 H
qq

H
qqvq AAAA  (14) 

Where the superscript H represents the conjugate transpose of a 

complex matrix. This transformation matrix needs to be 

computed only once a priori for the defined sector and this 

computation can be done off-line. Hence, once   is known we 

can compensate for the various undesired electromagnetic 

effects, in real time by carrying out a single matrix vector 

multiplication. Finally, using (14), we can obtain the processed 

input voltages in which the mutual coupling effects have been 

eliminated. The compensated voltages  )(txc  will then be given 

by [6] 

                     )]([][)]([                           txtxc             (15) 

3. D
3
LS STAP APPROACH 

Since the antenna platform is moving, there is a Doppler shift, fd, 

in the received signal With M pulses received by a single 

antenna element [8]. So, the system processes M coherent pulses 

at a constant pulse repetition frequency, fr,  

The compensated voltages are now applied to the STAP 

processor as shown in Fig.3 [9].  

 

 
Fig.3 Data collection system 

The D3LS method has three different formulations namely the 

forward, backward, and the forward–backward methods. 

 

3.1 Forward Method 
The idea of the D3LS method is to use a single space-time 

snapshot of the data received by the array antenna to generate a 

cancellation matrix that does not contain the SOI component. In 

other words, the cancellation matrix contains only the 

interference and noise in the received data. Then, the weight 

vector that forces this matrix to be zero will be determined. By 

putting an additional constraint row for the SOI, the weight 

vector preserves the SOI gain while canceling the interference 

and noise in the data [8]. To generate the cancellation matrix, 

the element-to-element offset of the SOI in space and time, 

respectively, are defined as [6, 9]  
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where s and are the angle of arrival and the wavelength for 

SOI and d is antenna spacing. Thus we can form three 

cancellation equations from the received signal and its adjacent 

data as follows: 
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By setting the number of weights to be pNaN according to [6], 

the cancellation matrix for (18) can be formed as 
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Similarly, the cancellation matrix for (19) and (20) can be 

generated in the same manner. We have to know that (18) 

corresponds to spatial difference, (19) corresponds to temporal 

difference, and (20) corresponds to spatial-temporal difference 

of the received signal. Once three different cancellation matrices 

have been generated, we will arrange the elements of each 

cancellation matrix as a row vector of dimension aNpN1 by 

putting each row side by side. We call this row as a cancellation 

row. Now, we have generated three cancellation rows. To find a 

weight vector, we need to generate the total of 1aNpN  row 

vectors. To preserve the SOI from being canceled by the weight 

vector, we left 1 row for gain constraints along target direction 

as follows [10]. 
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After we put all cancellation and constraints rows, we obtain a 

cancellation matrix [T] of dimension aNpNaNpN   and the 

weight vector, W, which cancels the interference and maintain 

the SOI can be found by solving the following equation: 

                                       
1

00  TCWT
p

N
a

N 
    (23) 

 

where C is a look-direction gain SOI. After obtaining W, the 

signal amplitude, ̂ , can be estimated from[8] 
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3.2 Backward Method 
The weight vector can also calculated in a backward direction; 

where the equations (18)-(20) are generated in the reverse order 

with complex conjugate starting from
ap NNX , [6,10]. The 

cancellation equations for backward method are as follows. 
 

)27(                                               

)26(                            ,                            

)25(                            ,                            

1
2

1
1

*
1,1

*
,

1
2

*
,1

*
,

1
1

*
1,

*
,
















ZZXX

ZXX

ZXX

nmnm

nmnm

nmnm

 

Where * denotes the complex conjugate of the data. We, then, 

simply obtain a similar cancellation matrix as in (21) in a similar 

fashion for the forward method with the reversed order of the 

conjugated data. Once 1aNpN cancellation rows have been 

generated, the look-direction constraint in (22) will be added to 

obtain a square matrix [B] of size apap NNNN  .The weight 

vector can be obtained by solving the following equation [8] 
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After obtaining W, the signal amplitude can be estimated from 
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3.3 Forward-Backward Method 
To increase the number of degrees of freedom of the system, one 

need to use the forward-backward method that can be generated 

by putting both of the cancellation matrices from forward and 

backward directions together when calculating the weight 

vector. And the target signal complex amplitude can be 

estimated by either forward or backward direction. This 

increases the number of degrees of freedom and the accuracy of 

the system [10]. In the next section, the performance of the three 

methods will be shown via numerical simulations. 

4 SIMULATION RESULTS 
The performance of D3LS STAP on the induced signals from 

ULESDA and Patch array will be illustrated through the next 

two examples. For the first example, consider the SOI to be 

arriving from 
o

s 100  with amplitude 11 j  and one 

interferer with signal-to-interference ratio (SIR) –47 dB and 

arriving from
o

J 70 . All these signals will be received by 

ULESDA. The signal-to-noise (SNR) ratio at each antenna 

element is 30 dB.  In this simulation, The SOI and the jammer 

are operating at the following frequencies: 2GHz, 2.5GHz, 
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3GHz, 3.5GHz, and 4GHz. The antenna element spacing d is set 

to 5.0  at the reference frequency. N is set to 10. The induced 

voltages are applied to frequency and coupling transformation 

techniques respectively then the compensated voltages are 

applied to D3LS STAP algorithm. fig. 4, fig.5, and fig.6 show 

the performance of the system for the three  methods of D3LS.  

 

Fig. 4 Beam Pattern of the forward method using ULESDA 

 

 

Fig. 5 Beam Pattern of the backward method using 

ULESDA 

 

Fig. 6 Beam Pattern of the forward-backward method using 

ULESDA 

For the second example, consider the SOI to be arriving from 
o

s 100  with amplitude 11 j  and one interferer with SIR= 

–47 dB and arriving from
o

J 50 . All these signals will be 

received by patch array. The SNR at each antenna element is 30 

dB.  In this simulation, The SOI and the jammer are operating at 

the same frequencies of the first example. The antenna element 

spacing d = 5.0 and N is set to 7. The induced voltages are 

applied to the coupling transformation technique then the 

compensated voltages are applied to D3LS STAP algorithm. The 

performance of the system for the three main methods of D3LS 

can be shown in fig. 7, fig.8, and fig.9. 

 

Fig. 7 Beam Pattern of the forward method using patch 

array 
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Fig. 8 Beam Pattern of the backward method using patch 

array  

 
Fig. 9 Beam Pattern of the forward-backward method using 

patch array 

As seen from the figures; the performance of D3LS STAP is 

very good since the jammer is nulled correctly for the three 

cases while the main beam is constrained in the SOI direction. 

The results of patch array have the advantage of providing deep 

null than the results of ULESDA. This advantage will affect 

directly on the accuracy of complex amplitude estimation.  

 

 

 

5 CONCLUSION 
A D3LS STAP approach applied on a wideband signals received 

by ULESDA and Patch array. We use only single snapshot in 

order to null the interference signal while maintaining the main 

beam directed towards SOI. The main beam is directed towards 

the target signal and the jammer is nulled correctly with deep 

null. The results of Patch array is better than that of ULESDA 

since it provides more deep null in the direction of the jammer 

and it will affect on the accuracy of  the complex amplitude 

estimation.  
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