
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

Prevention of Cross Site Scripting with E-Guard Algorithm

M. James Stephen
Associate Professor,
Dept. of I.T, ANITS,

Visakhapatnam, INDIA

P.V.G.D. Prasad Reddy
Professor, Dept. of CS&SE

Andhra University,
Visakhapatnam, INDIA

Ch. Demudu Naidu Ch. Rajesh
 Sr.Asst. Professor, Asst. Prof,
 Dept. of I.T, ANITS, Dept. of I.T
 Vizag, INIDA Vizag, INIDA

ABSTRACT

In this world of networking where people around the globe are

connected, Cross-site Scripting (XSS) has emerged to one of the

most prevalent growing threat. XSS attacks are those in which

attackers inject malicious codes, most often client-side scripts,

into web applications from outside sources. Because of the

number of possible injection location and techniques, many

applications are vulnerable to this attack method. Even though

the main reason for the vulnerability primarily lies on the server

side, the actual exploitation is within the victim’s web browser

on the client side.

In this paper, we propose a passive detection system to identify

successful XSS attacks. Based on a prototypical implementation,

we examine our approach’s accuracy and verify its detection

capabilities. We compiled a data-set of HTTP request/response

from 20 popular web applications for this, in combination with

both real word and manually crafted XSS exploits; our detection

approach results in a total of zero false negatives for all tests,

while maintaining an excellent false positive rate for more than

80 percent of the examined web applications.

General Terms

Cross Site Scripting, E-Guard Algorithm, False positive, False

Negative, White list, Black list, Gray list.

Keywords

XSS attack, Enhanced XSS Guard algorithm, E-Guard, Server-

side detection, Client-side detection.

1. INTRODUCTION
For the last few years, Cross-site Scripting (XSS) in web

applications had become one of the most prevalent types of

security vulnerabilities [1]. SQL Injection affect the server side,

but where as XSS attacks do not affect the server side but

clients: the actual exploitation is within the victim’s web

browser. So, the operator of a web application has only very

limited evidence of successful XSS attacks. XSS related

problems are therefore often overlooked and sometimes they are

recognized very late.

In this paper, we propose a server side Cross-site Scripting

Detection System (XSSDS); And our approach is based on well

known HTTP traffic monitoring (fig.1) and relies upon the

following two observations:

 1. There is a strong correlation between reflected XSS issues

and the incoming parameters.

 2. The set of all genuine java scripts in a web application is

bounded.

This gives the basis for two detection approaches to identify

effectively carried out reflected XSS attacks and to determine

stored XSS code. Our approach does not require any changes to

the actual application: Both attack detection methods depends

exclusively on access to the HTTP traffic. Our approach is

therefore applicable to all current web application technologies

i.e., web servers and applications.

2. TECHNICAL BACKGROUND
The term Cross site Scripting (XSS) [2] describes a class of

string based code injections on web applications. XSS can be

classified in three different types: reflected, stored, and DOM

based XSS:

 Reflected XSS [3] is perhaps simple to understand.

Part of webpage is dynamically created using content

supplied by the user and the exploit code is contained

within the user input.

 Stored XSS [3] in servers makes them vulnerable,

when they store user supplied input in a server side

data repository such as a file or a database. These

attacks are particularly insidious because they have the

potential to affect anybody who visits the site and to

whom the content is displayed.

 DOM or Document Object Model XSS [3] exploits the

document object model. DOM exposes this object

model so that scripts can access the content and the

metadata for the WebPages. Upper most in the DOM

hierarchy for example is the document object which

also provides access to other objects such as

document. Location and the vulnerability occurs when

these objects can be indirectly manipulated.

3. DETECTION MECHANISMS

3.1 Reflected XSS through direct data

inclusion

There are largely two distinct countermeasures for XSS

prevention in real life web applications: input filtering and

output sanitation. Input filtering describes the process of

validating all incoming data. Suspicious input that might contain

30

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

31

a code injection payload is either rejected, encoded or the

offensive parts are removed using removal filters. The

protection approach implemented by these filters relies on

removing predefined keywords, such as <script, javascript , or

document. Such filtering approaches are, however, error prone

due to incomplete keyword list or non recursive

implementations [4]. If output sanitation is employed, certain

characters, such as <, “, or’ , are HTML encoded before user

supplied data is inserted into the outgoing HTML. Both of the

above protections are known to frequently fail, either through

erroneous implementation or because they are not applied to the

complete set of user supplied data.

3.2 Reflected XSS detection by

request/response matching
Our detection mechanism for reflected XSS is based on the

observation that reflected XSS implies a direct relationship

between the input data(e.g., HTML parameters) and the injected

script. More precisely: the injected script is fully contained both

in the HTTP request and the response. Reflected XSS should

therefore be detectable by simply matching incoming data and

outgoing java script using an appropriate similarity metric. It is

crucial to emphasize that we match the incoming data only

against script code found in HTML. Non script HTML content

is ignored for our script extraction technique.

 3.3 Install online Enhanced-XSS software in

user’s computers:
Despite all the above efforts, it is still possible for the users to

visit the spoofed Web sites. As a last defense, users can install

Enhanced XSS guard in their computers. The Enhanced XSS

guard we have developed divides the list of available websites

into three categories: blacklist/whitelist based and grey-based.

• Category I: When a user visits a Web site, the Enhanced XSS

guard scans the page source of that website and recognizes the

scripts present in that site and checks whether these scripts

matches with the black list scripts stored in the database. If it is

found to match with the blacklist scripts, then the user is warned

about the circumstances.

 • Category II: When a user visits a Web site, the Enhanced XSS

guard scans the page source of that website and recognizes the

scripts present in that site and checks whether these scripts

matches with the white list scripts stored in the database. If it is

found to match with the white list scripts, then the page is

forwarded to the respective domain.

• Category III: When a user visits a Web site, the Enhanced XSS

guard scans the page source of that website and recognizes the

scripts present in that site and checks whether these scripts

matches with both the white list and blacklist scripts stored in

the database. If it is found to match equally with both the

scripts, then the web page is named as a grey site and it can be

tested later for judging its kind.

4. XSS- A GROWING THREAT
In spite of all the existing mechanisms XSS attacks are still

remained as a growing threat [7] and all computer users have to

be aware of this. XSS attacks are those where an attacker can

exploit the code of a webpage stored in the server. By doing so

the attacker can successfully perform the tasks such as

redirecting to his own webpage or collect the user’s credible

information by the use of cookies.

The seriousness of XSS can be estimated by its recent attack on

REDDIT [5], a famous social networking site on September

2009. The XSS worm first was created when a Reddit user

posted a malicious script as a comment to a widely read story on

the site, Mikko Hypponen, chief research officer at anti-virus

firm F-Secure. It quickly spread when users hovered their mouse

over text in a comment, which invoked a command to send

further comments to other Reddit threads.

"People reading comments ended up sending massive amounts

of new comments to Reddit threads.” Jeremy Edberg, senior

product developer at Reddit, explained that the worm's author

actually took advantage of two bugs that enabled him to

perpetrate the infection. One of the flaws could be exploited by

placing an MD5 hash function at the end of every comment.

Reddit is just the latest social networking site to fall victim to a

XSS attack. Twitter experienced a similar incident in April.

5. THE ENHANCED XSS GUARD

ALGORITHM
Enhanced XSS guard (in short we call E-Guard) works by

analyzing the probability of scripts matched with white listed

and black listed sites.. The algorithm is illustrated in Fig.4

5. 1 Enhanced XSS Guard Algorithm
The following terminologies are used in the algorithm.

WL: Whitelist;

BL: Blacklist;

GL: Greylist;

int XSSGuard(GL} {

Read every line from the console(GL)

If(character==’<’){

Increment the array of scripts

Until character==’>’

}

Print number of scripts in the input file.

Read the input file from the console

//checking with white listed scripts

If (scripts in GL matches with scripts in WL){

Increment the array of scripts

Print the matched scripts

Print number of matched scripts

}

//checking with black listed scripts

Read the input file from the console

If (scripts in GL matches with scripts in BL){

Increment the array of scripts

Print the matched scripts

Print number of matched scripts

}

If(number of matched scripts with WL>BL){

Print the site as WL and redirect it to the respective website

}

Else if(number of matched scripts with BL>WL){

Print the site as BL

Print warning message to the user

}

http://www.scmagazineus.com/search/md5/

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

32

Else if(number of matched scripts equals both BL && WL){

Print check this site status later

}

Fig. 2. Description of the E-XSSGuard algorithm.

The Enhanced XSS guard algorithm works as follows. Initially,

we set whitelist, blacklist and graylist to empty in our

experiments. Then we manually enter some known scripts of

both white and black type in to the database. We refer to all the

webpages basing on the scripts they contain i.e if the website

contain more white scripts , then it is listed as white and if the

website contains more number of black scripts, then we list it as

black. When we encounter a new website which is not in both

the lists, then the algorithm of E-XSS Guard, scans the page

source of the grey site and prints the total number of scripts in it.

Then it checks the scripts with the whitelisted and blacklisted

scripts and its judges the website on the basis of number of

scripts matches with white and black list sites. If the number of

script matched with white list are more, then we add that site to

white list. If the number of script matched with black list are

more, then we add that site to the list of black. If there are equal

number of scripts matched with both white and black list, then

we add that site to the new list named Grey list, which is left un-

judged. After a few entries of new websites, this website will be

examined once again. And based on the result we list the

website accordingly.

Initially, when we check the websites we recognize the scripts in

them and list them on the basis of Enhanced XSS guard

algorithm. Every time we visit the webpage the XSS algorithm

runs and checks whether any new scripts are added to that

webpage or not. If the number of scripts remains same, then

there will be no change in the listing we made. If there are

additional scripts in the webpage, then we consult the owner of

that site for the information regarding on the additional scripts.

If the owner did not add any scripts, then we can consider that

the webpage is hacked by someone and we have to take

appropriate action according to the algorithm of Enhanced XSS

guard.

The following Figures shows the clear picture of the main

routine of Enhanced XSS Guard and graylist implementation.

start

Input the web page
source

If the scripts
are found to
match with
white list

Check the number of
scripts in the page

Add the
website to
white list

Add the
website to
black list

If the
scripts

are found
to match

with black
list

Add the
website to

grey list

yes

no

If the scripts
are found to
match with
white list

yes no

Fig. 3. Flowchart of working of EXSS GUARD

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

33

start

Check the number of
scripts in the grey list

Add the
website to
white list

Add the
website to
black list

If the
scripts are
found to
match

with black
list

Decide about

the web page
later by XSS

Guard

yes no

If the no. of
scripts are
found to

match more
with the

white list
yes no

Fig. 4. Flowchart of working of EXSS GUARD

5.2 Handling of False positives and false

negatives
Since Enhanced XSS guard is a rule-based heuristic algorithm, it

will not cause false positives [6] (i.e., treat non-XSS site as XSS

site) and may contain some false negatives (i.e., treat XSS site

as non-XSS site). In what follows, we show that Enhanced XSS

guard may result in no false positives but is very unlikely to

cause some false negatives.

In this paper, we study the common procedure of XSS attacks

and review possible approaches. We then focus on end-host

based anti-XSS approach. Enhanced XSS guard is character-

based, it can detect and prevent not only known XSS attacks but

also unknown ones. We have implemented Enhanced XSS guard

in Windows XP, and our experiments indicate that Enhanced

XSS guard is light-weighted in that it consumes very little

memory and CPU circles, and most importantly, it is very

effective in detecting XSS attacks with minimal false negatives.

Enhanced XSS guard detects about 96% of XSS archives

provided by APWG without knowing any signatures of the

attacks.

6. IMPLEMENTATION AND

VERIFICATION OF ENHANCED XSS

GUARD
We have implemented the E-XSS guard algorithm (in short we

call E-Guard) in Windows XP. E-XSS guard executive consists

grey list along with blacklist and whitelist.

Enhanced XSS guard is the key component of the

implementation. It is a standalone windows program with GUI

(graphic user interface).). It’s composed of 4 parts as illustrated

in Fig. 7: Analyzer, Alerter, Logger, and Database.

Implementation of Enhanced XSS guard is as follows:

Fig.5 Architecture diagram of EXSS Guard

Database: Store the whitelist, blacklist, graylist and the user

input URLs.

Analyzer: It is the key component of Enhanced XSS guard,

which implements the Enhanced XSS guard algorithm,. It uses

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

34

data provided by Comm and Database, and sends the results to

the Alert and Logger modules.

Alerter: When receiving a warning messages from Analyzer, it

shows the related information to alert the users and send back

the reactions of the user back to the Analyzer.

Logger: Archive the history information, such as user events,

alert information, for future use. After implemented the

Enhanced XSS guard system, we have designed experiments to

verify the effectiveness of our algorithm.

7. RESULTS
Since we are interested in testing Enhanced XSS guard’s ability

to detect unknown XSS attacks, we set whitelist, blacklist and

graylist to empty in our experiments. Our experiments showed

that Enhanced XSS guard can detect about 96% XSS attacks.

Our experiment also showed that our implementation uses small

amount of CPU time and memory space of the system. In a

computer with 1.6G Pentium CPU and 512MB memory, our

implementation consumes less than 1% CPU time and its

memory footprint is less than 7MB. We are planning to use

Enhanced XSS guard in daily life to further evaluate and

validate its effectiveness. Since we believe that a hybrid

approach may be more effective for XSS defense, we are also

planning to include a mechanism to update the blacklist and

whitelist in real-time and also implementing graylist in its

fullness.

8. CONCLUSION
It is becoming increasingly common to tune in to the news or

load your favorite news Web site and read about yet

another Internet scam. So XSS has becoming a serious network

security problem, causing financial lose of billions of dollars to

both consumers and e-commerce companies. And perhaps more

fundamentally, XSS has made e-commerce distrusted and less

attractive to normal consumers. So We designed an XSS

algorithm, Enhanced XSS guard, based on the derived

characteristics. Since XSS -Guard is characteristic based, it can

not only detect known attacks, but it is also effective to the

unknown ones. We have implemented Enhanced XSS guard for

Windows XP. Our experiment showed that Enhanced XSS

guard is light-weighted and can detect up to 96% unknown XSS

attacks in real-time.

We believe that the Enhanced XSS guard will be useful for

detecting XSS attacks in Web pages and eventually build

confidence to use e-commerce without any fear of threat.

8.1 Future Scope
As this application is portable, flexible and light weighted we

can provide this to the Internet Service Provider’s(ISP’s) so that

the problem of XSS can be handled at the ground level itself.

Also that if there is enough memory in the modem’s and if it is

technically feasible to implant applications in them, then we can

provide these modem’s with this Enhanced XSS guard

application.

9. REFERENCES
[1] S. Christey and R.A Martin. Vulnerability type distributions

in cve, version 1.1. [online], http://cwe.mitre.

Org/documents/vuln-trends/index.html,(09/11/07), may

2007.

[2] A. Klien. Cross site scripting explained. White paper,

sanctum security group, http://

crypto.stanford.edu/cs155/css.pdf, june 2002.

[3] Cross site scripting techniques and mitigation by CESG

revision 1.0, October 2007.

[4] Blwood. Multiple xss vulnerabilities in tikiwiki 1.9.x.mailing

list BUgtraq, http://www.security

focus.com/archive/1/435137/30/120/threaded, may 2006.\

[5] SC magazine on the article Redditt Succumbs then cleans up

from XSS Attack by Dan Kaplan dated September 28,2009.

[6] False Positive defined at Virus list.com .

[7] How serious are XSS threats http://doteduguru.com/id3067.

http://www.webopedia.com/TERM/W/Web_site.html
http://www.webopedia.com/TERM/I/Internet.html
http://www.security/

