
International Journal of Computer Applications (0975 – 8887)
Volume 22– No.5, May 2011

26

Impact of Agile and TDD Implementation in Database

 Kalpna Sagar

University School of Information Technology

New Delhi, India

Bindu Goel

University School of Information Technology

New Delhi, India

ABSTRACT
Agile Software Development Methodologies not only

provide high level of adaptability but also deal with short

iterations for efficient and frequent product delivery,

incorporate rapid change in requirements and provide high

customer satisfaction. During the commercial development of

software and academic project environment, the focus is

given on the application but the backbone of the application

is the database. And database professionals seem firmly

rooted in serial development. So we require a technique with

which data professionals can work in the evolutionary

manner so that qualitative schema can be maintained.

Evolutionary Development of the Database can be achieved

with agile methodologies.

As the software development takes place it seems that entire

database schema which is developed once and for all, is

incorrect and unnecessary. But if we develop the database

with agile and TDD, we can get schema with high quality,

correctness and with frequent delivery. In TDD we write test

cases before developing or making any database changes

which minimizes the chances of introducing defects and early

detection of defects in our system and database since changes

happen as per the specifications of the tests. The paper

describes agile database development through focal entity

prototyping with TDD.

Keywords
Test Driven Development (TDD), Test First Development

(TFD), and Entity Relationship (ER).

1. INTRODUCTION
Today software products are becoming more complex and

need to develop more quickly. Furthermore, customers are

demanding software with better quality, and requirements

keep changing. These features can be achieved with agile

software development methods and therefore in the recent

years agile has gained significant attention in the software

engineering community. Development of the application is

adapting mainly evolutionary approach i.e. agile [1] because

it can deal with customer‟s expectations more effectively and

respond to changes more quickly. But the backbone of the

application is database and database professionals seem

firmly rooted in serial development. So we require a

technique with which data professionals can work in the

evolutionary manner so that qualitative schema can be

maintained. TDD plays the major role in the database

development although it seems to be a new concept for the

data professionals. The paper describes the database aspects

of TDD and specifies database behavior via database tests.

Now our main focus is to apply agile development approach

via focal entity prototyping approach [2] to the database

which will be productive and successful activity when

undertaken in well organized manner. Changes in the

database are incorporated through frequent short iterative

processing table by table. In order to verify and validate the

changes in the database, several database tests are to be

created to check the database behaviors using TDD [3]. The

tests are to be done with sample test data so that consistency

and integrity in the database can also be checked. And early

defects detection through TDD in the focal entity prototyping

approach will result into high quality schema, which will be

verified and validated iteratively and incrementally based on

database table processing into the hands of the customer.

Then feedback from the customer about the changes and

additions commences well before the final completion of the

system.

2. TEST DRIVEN DEVELOPMENT
Test driven development is an evolutionary approach to

development which combines test first development where

tests are written first before we write just enough production

code to fulfill that test and refactor. The actual development

is done in iterations on the basis of those tests [3]. For

example when developer goes to implement a new feature,

first question he asks himself is "Is this best design possible

which enables me to add this feature?" If answer is yes, then

he does the work to add feature. If the answer is no, he

refactors design to make it best possible then they continue

with a Test First Development (TFD) approach. There are

four iterative steps of TDD [3] as depicted in the figure 1:

 [Pass]

 [Fail] [Continue]

 [Pass, Development Stops]

Fig 1: Test Driven Development

1. Quickly add a test: We basically need just enough code to

fail (typically a single test).

2. Run tests: We will often need complete test suite although

for sake of speed we may decide to run only a subset, to

ensure that the new test does in fact fail.

3. Make change: Do just enough work to ensure that your

production code passes the new test(s).

Add a Test

Run Tests

Make a little

Change

Run Tests

International Journal of Computer Applications (0975 – 8887)
Volume 22– No.5, May 2011

27

4. Run tests again: If it fails we need to update our production

code and retest. Otherwise go back to Step 1.

In the recent times, TDD is gaining significant attention in

the industry mainly for the application development. Focus is

given on the application development but the backbone of the

application is the database which should be well tested,

validated and corrected. So our main job is to apply TDD to

the database development. To extend TDD to database

development, we need database equivalents of regression

tests, refactoring, and continuous integration. So this test

driven database development provides the benefits of TDD,

plus a few others which are database related. First, it enables

to ensure the quality of data. Data is an important corporate

asset, yet many organizations suffer from significant data

quality challenges. Second, it enables us to validate the

functionality implemented within the database. Third, it

enables data professionals to work in an evolutionary manner,

just like application programmers.

The first part of Test driven database development is database

regression testing [9]. There are two categories of database

tests: interface tests and internal database tests. Interface tests

(Black box tests) validate what data is flowing in, going out

and getting mapped to our database. If an organization is

doing any database testing at all, it is usually at the interface

level. For example admin can access all the tables and all

information in the database but user can access only the

specific information whereas some user can‟t access even

specific information. For this we can have the test case i.e.

what will be the different access right on the tables let us say

a table should have read access to admin whereas user

should have no access to table.

Internal database tests (clear box tests) validate the internal

structure, behavior, and contents of a database. The present

study is highly focused on the internal and interface testing

via focal entity prototyping.

A database refactoring [8] is a simple change to a database

schema that improves its design while retaining both its

behavioral and informational semantics. Database schema

includes both structural aspects such as table definitions and

functional aspects such as stored procedures and triggers.

Database refactoring is conceptually more difficult than code

refactoring. Code refactoring only maintains behavioral

semantics, whereas database refactoring also maintains

informational semantics.

The continuous database integration deals with the regular

integration of the changes to each team member‟s database

instances including structural, functional and informational

changes.

2.1 Importance of TDD in the Database
1. It promotes significantly higher-level of unit testing

not only in the application but also in the database

development i.e. every single line of code and

interface and structural requirements (of database

table) are tested – something that traditional testing

doesn‟t guarantee. This seems to be far more

productive than attempting to code and test it in large

steps.

2. The suite of unit tests in the database provides

constant feedback that during each change, behavioral

and informational semantics remain preserved.

3. It helps in the early detection of defects in the

database and can be tested earlier accordingly.

Therefore high quality of the database can be

achieved.

4. High quality of the database design can also be

achieved via refactoring as discussed above.

5. Well tested and more comprehensible low-level

database design as the database design evolves

iteratively. This helps in building the confidence in

the developer by running the tests.

6. Security concerns in the database can also be

achieved via regression tests (interface tests) as

discussed earlier.

7. It provides executable system specification that act as

documentation in order to keep up-to-date unlike the

traditional design documentation.

8. Test-driven development forces critical analysis and

database design because the developer cannot create

the production code without truly understanding what

the desired result should be and how to test it.

9. Reduced debugging time

3. PRACTICE
A previous study presented in the paper at agile 2005[2]

described Focal Entity Prototyping (which is based on an

entity relationship concept). The study inspired from the

above mentioned paper. Some recent publications on

evolving the database can be found at [4, 5, 6, and 7]. Our

main focus is to apply TDD to focal entity prototyping

approach i.e. extending TDD to the database development via

focal entity prototyping as depicted in figure 2.

 New requirements

 Test Fail

 Test Pass

Fig 2: Focal Entity Prototyping with TDD

According to the customer feedback and the functional

requirement of application (i.e. banking application which is

described in the figure 3), entities (i.e. customer and account)

are identified and defined. For each entity, construction of the

table is done after which TDD is applied table by table. Then

different tests cases need to be created (like interface, internal

test, and structural refactoring tests). After running the test, if

Requirement Analysis

Entity Identification and Definition

Table Definition

Table Construction

TDD

Maintenance Form Construction

Customer Feedback

Release

International Journal of Computer Applications (0975 – 8887)
Volume 22– No.5, May 2011

28

the test passes, then maintenance form will be constructed

and delivered to the customer for getting the feedback and if

test fails changes are need to be done iteratively.

Integrity and Consistency are the most important features

required in the database development which is where we can

utilize the benefits of TDD.TDD is about checking the

integrity and consistency not only in the application but also

in database before and after the change. TDD is also about

testing the application for predictable and unpredictable

changes in the application so that behavior of the application

is known and validated including the failure scenarios. TDD

revolves around writing 3 types of test cases – with positive,

negative and boundary conditions. Positive test cases should

always pass and are meant to test the expected results.

Negative test cases are intended for testing the unexpected

results like passing in value that does not fall within the

structural semantics of the system (passing integer when

expecting Boolean is an example for this). Boundary test

cases are meant for testing the boundary conditions which

“just” fall outside the valid ranges like passing -1 when input

from only 0 to 10 is expected. In context of the database, the

idea of doing the TDD is to ensure the behavioral semantics

don't change when introducing the iterative structural changes

in the database. So any small change in the database, like

adding a column or moving it around in different tables, can

be tested for those semantics from the application perspective

using test driven approach. For the application, the behavior

of a stored procedure should not change - as in returning

different data or not returning something that I expect to see

as output which you can easily do by writing test cases before

and after introducing any schema changes in Database.

Secondly, we can do the data validation, persistence and data

execution checks by doing clear-box testing. We write some

code using any programming language, in Java or C#, to call

stored procedures to ensure what we intend to get as output

before changes and after making changes which ensure our

test cases run fine. We have some tools available for writing

such tests Microsoft‟s Visual Studio Team System for

Database Professionals includes testing tools for SQL server.

When TDD approach is applied, we write test cases to

validate each structural or functional change one at a time

(mainly table by table and having validation checks on tables

or other database objects) and then evolve the database

schema to fulfill the test-specified functionality, from the

very start of the project continually, incrementally and

iteratively, throughout the development activity. Through this

we can validate syntax, field type, field length and constraints

on the table i.e. we are validating the data and database

objects which interact with that data in the database. Such

tests might specify following validations:

 Checking primary keys

 Checking foreign keys

 Checking unique key constraints

 Checking data-types

 Checking indexes

 Checking the joins to establish the relations

 Validating column default value rules

 Validating size rules

 Validating value existence rule

 No null constraints

 Checking auto-increment (seeding) attribute.

3.1 Testing Example:
Assume that we are building a banking application as

depicted in figure 3.

Conceptual

Model 1 1..

Data

Model

 TDD

 Process

 Model

Fig 3: Transformation Model

Using the Conceptual Model (ER modeling) Bank relation is

setup between customer and account entities. After which,

data model for banking application is deduced which deals

with the table creation for each entity.

Now the TDD„s Internal (clear box) tests are to be created.

We can use Microsoft‟s Visual Studio Team System for

Database Professionals including testing tools for SQL

Server. For example for the customer table, we can have the

Bank Customer Account

Customer

Table

Bank

Table

Account

Table

Test Case for Validating

Syntax

Test Case for Validating

Field Type and Length

Test Case for Validating

Constraints on Table

Test Case for Consistency

Checks

Customer Table

Maintenance

Form

Account Table

Maintenance

Form

International Journal of Computer Applications (0975 – 8887)
Volume 22– No.5, May 2011

29

test case to validate field type, length, some more constraints

of the customer table as follows:

Table 1. Customer

 Cust

ID

Cust

First

Name

Cust

Last

Name

Cust

Add

Cust

Tel

Bal

Field

Type

Int Char Char Cha

r

Int Int

Field

Length

15 25 25 40 10 25

Other

Constraint

Prim

ary

key,

Not

null,

Auto

incre

ment

Uppe

rcase,

Not

null,

Index

ing

upper

case

Not

null

Not

null,

Uniq

ue

null

Next step is doing the database refactoring i.e. structural

refactoring. For example, assume the Customer table has a

balance column, which depicts the total balance the customer

has in his bank account, which should really have been a part

of Account table. We have 2 different applications A & B

which connects to the same database to do the CRUD

operations on these tables. So iterative (TDD) development

suggests we should move the column to the account table

while also maintaining the integrity of the data. So we add a

column (Balance) in Account table while keeping the column

in the Customer table which will be phased out after the

complete iteration. To keep the data consistent and in sync,

we write data object – a trigger in our case. The trigger will

update the value of balance in the new table Account when

we update primary (Customer) table. Now we modify our

applications one at a time (other application will continue to

work since the existing rules and semantics did not change in

the Customer table) to reflect new changes. Hence the

database design will be improved while maintaining

behavioral and informational semantics and consistency in

the database.

Here TDD will have test cased, for the first iteration, for

running a stored procedure to update current balance for a

customer and then to display the final balance and since we

have a trigger to keep the tables in sync, mainly the columns,

after the update both columns will reflect the same value and

our test case would always pass as behavior of procedure has

not changed which effectively means, our data persistence,

retrieval and execution engines have not changed. In addition

we also write test cases to ensure negative test cases fail and

boundary condition test run successfully.

Another example when we want to preserve the informational

semantics so that change does not affect the information of

the customer could be when we change the value of the

Customer Phone column of customer table from one format”

(011)25-678” to another”01125678”. Here TDD will have

test cases to validate the display and storage of data before

and after the conversion of data type of the column from

integer to Varchar. Here informational semantics have been

preserved and change to database has improved the design.

This proves the effectiveness of TDD and Agile development

approach in the context of the database.

4. CONCLUSION
In this paper our main focus was on the application of TDD

to the focal entity prototyping approach i.e. through this we

can validate syntax, field type, field length and constraints on

the table and can maintain the integrity and consistency in the

database. In other words we are validating the data contained

within the database. Through this, confidence in the database

development can be gained by developer. For any new

system, we can incrementally deliver processing capabilities,

based on the database table processing, into the hands of the

customer, then feedback from the customer about the

changes, validations and additions in the table commences

well before the final completion of the system. We are

considering not only the evolutionary development of the

database schema, but also the changes and refactoring which

are verified and validated iteratively. The impact of the agile

and TDD implementation in the database development will

be such that single iteration can produce a well defined,

tested and good designed increment to the database schema

mainly table by table and can detect defects earlier in life

cycle of focal entity prototyping.

Hence, similar to the agile application developers who take

quality-driven, TDD approach to software development, the

same approach can also be applied by agile database

developers.

5. REFERENCES
[1] Juha Koskela Software configuration management in

Agile methods http://www.vtt.fi/inf/pdf/publications/

2003/P514.pdf

[2] Roy Morien, 2005”Agile Development of the database:

Focal Entity Prototyping Approach” Proceedings of the

agile development conference (ADC) IEEE Computer

Society.

[3] Scott, W. Ambler, “Introduction to Test Driven Design

(TDD)”Available:

http://www.agiledata.org/essays/tdd.html

[4] Ambler, Scott (2003), Agile Database Techniques, Wiley

Publishing, 2003.

[5] Ambler, Scott (2003a), at

http://www.agiledata.org/essays/impedanceMismatch.ht

ml

[6] Ambler, Scott, (2004), “Agile Data Modelling”, Software

Development Magazine, July, August, September.

[7] Fowler, Martin (2003) at

http://www.martinfowler.com/articles/evodb.htsml.

[8] The Process of Database Refactoring by Scott W. Ambler

[9] A Roadmap for Regression Testing Relational Databases

by Scott W. Ambler

[10] Morien, Roy (1992), “Prototyping Large on- Line

Systems: Using a concept of a Focal Entity for Task

Identification”, Proceedings of the Third Australian

Conference on Information Systems, Wollongong.

[11] Morien, Roy & Cant. R (1994), “Specification With

Prototypes: Two Case Studies”, Proceedings of the 5th

Australian Conference on Information Systems, Monash

University.

[12] Harriman, Alan, P. Hodgets and M. Leo (2004),

“Emergent Database Design: Liberating Database

Development with Agile Practices”, Agile Development

Conference, Salt Lake City, Utah.

http://www.agiledata.org/essays/tdd.html

