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ABSTRACT 
Computing of multiple tasks simultaneously on multiple 

processors is called Parallel Computing. The parallel program 

consists of multiple active processes simultaneously solving a 

given problem. Parallel computers can be roughly classified as 

Multi-Processor and Multi-Core. In both these classifications 

the hardware supports parallelism with computer node having 

multiple processing elements in a single machine, either in 

single chip pack or on more than one distinct chip respectively. 

Parallel programming is the ability of program to run on this 

infrastructure which is still quite difficult and complex task to 

achieve. Out of many two different approaches used in parallel 

environment are MPI and OpenMP, each one of them having 

their own merits and demerits. Hybrid model combines both 

approaches in the pursuit of reducing the weaknesses in 

individual. 

In proposed approach takes a pair of, Matrices produces another 

matrix by using Matrix-Vector Multiplication Algorithm. The 

resulting matrix agrees with the result of composition of the 

linear transformations represented by the two original matrices. 

This algorithm is implemented in MPI, OpenMP, and Hybrid 

mode. The algorithm is tested for number of nodes with 

different number of matrix size. The results indicates that the 

Hybrid approach out performs the MPI and OpenMP approach. 
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1. INTRODUCTION 

Matrices are a key tool in linear algebra. One use of matrices is 

to represent linear transformations, which are higher-

dimensional analogs of linear functions of the form f(x) = cx, 

where c is a constant; matrix multiplication corresponds to 

composition of linear transformations. Matrices can also keep 

track of the coefficients in a system of linear equations [5]. For 

a square matrix, the determinant and inverse matrix (when it 

exists) govern the behavior of solutions to the corresponding 

system of linear equations, and eigenvalues and eigenvectors 

provide insight into the geometry of the associated linear 

transformation. Matrices find many applications. Physics makes 

use of matrices in various domains, for example in geometrical 

optics and matrix mechanics; the latter led to studying in more 

detail matrices with an infinite number of rows and columns. 

Graph theory uses matrices to keep track of distances between 

pairs of vertices in a graph. Computer graphics uses matrices to 

project 3-dimensional space onto a 2-dimensional screen [4]. 

Matrix calculus generalizes classical analytical notions such as 

derivatives of functions or exponentials to matrices. The latter 

is a recurring need in solving ordinary differential equations. 

Serialism and dodecaphonism are musical movements of the 

20th century that use a square mathematical matrix to determine 

the pattern of music intervals. 

       Mention the word supercomputer to someone and they 

automatically think of monstrously complicated machines 

solving problems no one really understands. Maybe they think 

of flashing lights and some super intelligence that can beat 

humans at chess or figure out the meaning of life, the universe, 

and everything. Back in the day, this was not an altogether 

untrue view of supercomputing. With an entry fee of at least 

seven figures, supercomputing was for the serious scientists and 

engineers who needed to crunch numbers as fast as possible. 

Today we have a different world. The custom supercomputer of 

yesteryear has given way to commodity-based supercomputing, 

or what is now called High Performance Computing (HPC). In 

today’s HPC world, it is not uncommon for the supercomputer 

to use the same hardware found in Web servers and even 

desktop workstations.  

          The HPC world is now open to almost everyone because 

the cost of entry is at an all-time low. To many organizations, 

HPC is now considered an essential part of business success. 

Your competition may be using HPC right now. They won’t 

talk much about it because it’s considered a competitive 

advantage [3]. Of one thing you can be sure, however; they’re 

designing new products, optimizing manufacturing and delivery 

processes, solving production problems, mining data, and 

simulating everything from business process to shipping crates 

all in an effort to become more competitive, profitable, and 

“green”. HPC may very well be the new secret weapon. The 

main goal of writing a parallel program is to get better 

performance over the Serial version. With this in mind, there 

are several issues that one needs to consider when designing the 

parallel code to obtain the best performance possible within the 

constraints of the problem being solved. 

1.1 MPI: 
The generic form of message passing in parallel processing is 

the Message Passing Interface (MPI), which is used as the 

medium of communication. A standard Message Passing 

Interface (MPI) is originally designed for writing applications 

and libraries for distributed memory environments. 

However, MPI does provide message-passing routines for 

exchanging all the information needed to allow a single MPI 

implementation to operate in a heterogeneous environment [1]. 

1.2 Open MP: 
OpenMP is an Application Program Interface (API) that may be 

used to explicitly direct multi-threaded, shared memory 

parallelism. It is a specification for a set of compiler directives, 

library routines and environment variables [2]. The available 
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programming environment on most of the Multi-Core 

processors will address the thread affinity to core and overheads 

in OpenMP Programming environment. 

 

1.3 HYBID: 
Combining shared-memory and distributed-memory 

programming models are an old idea [1]. One wants to exploit 

the strengths of both models: the efficiency, memory savings, 

and ease of programming of the shared-memory model and the 

scalability of the distributed-memory model. Until recently, the 

relevant models, languages, and libraries for shared-memory 

and distributed-memory architectures have evolved separately, 

with MPI becoming the dominant approach for the distributed 

memory, or message-passing, model, and OpenMP [2, 3] 

emerging as the dominant “high-level” approach for shared 

memory with threads.  

The idea of using OpenMP [3] threads to exploit the multiple 

cores per node while using MPI to communicate among the 

nodes appears obvious. Yet one can also use an “MPI 

everywhere” approach on these architectures, and the data on 

which approach is better is confusing and inconclusive. It 

appears to be heavily dependent on the hardware, the MPI and 

OpenMP implementations, and above all on the application and 

the skill of the application writer. 

2. IMPLEMENTATION DETAILS 
The Matrix product is the most commonly used type of product 

of matrices. Matrices offer a concise way of representing linear 

transformations between vector spaces, and matrix 

multiplication corresponds to the composition of linear 

transformations [4]. The matrix product of two matrices can be 

defined when their entries belong to the same ring, and hence 

can be added and multiplied [5], and, additionally, the number 

of the columns of the first matrix matches the number of the 

rows of the second matrix. The product of an m×p matrix A 

with an p×n matrix B is an m×n matrix denoted AB whose 

entries are, 

                       

                                                 P 

              (AB)i, j = Σ Aik. Bkj 
                                               k=1 

 

Where 1 ≤ i ≤ m is the row index and 1 ≤ j ≤ n is the column 

index. 

 

This definition can be restated by postulating that the matrix 

product is left and right distributive and the matrix units are 

multiplied according to the following rule: 

 

EikElj = δklEij 

 

Where the first factor is the m×n matrix with 1 at the 

intersection of the ith row and the kth column and zeros 

elsewhere and the second factor is the p×n matrix with 1 at the 

intersection of the lth row and the jth column and zeros 

elsewhere. 

 

In general, matrix multiplication is not. C More precisely, AB 

and BA need not be simultaneously defined; if they are, they 

may have different dimensions; and even if A and B are square 

matrices of the same order n, so that AB and BA are also 

square matrices of order n, if n is greater or equal than 2, AB 

need not be equal to BA. For example, 

 

E11E12 = E12, where as E12E11 = 0 
 

However, if A and B are both diagonal square matrices of the 

same order then AB = BA. 
 

 Matrix Multiplication is Associative: 

 
A (BC) = (AB) C 

 

 Matrix multiplication is Distributive over 

matrix addition: 

 
C (A+C) = AB+AC, 

               (A+B) C = AC+BC. 
 

Provided that the expression in either side of each identity is 

defined. 

 

 Matrix product is compatible with scalar 

multiplication: 

 
C (AB) = (CA) B = A (CB) 

 

Where C is a scalar (for the second identity to hold, C must 

belong to the center of the ground ring this condition is 

automatically satisfied if the ground ring is commutative, in 

particular, for matrices over a field). 

 

 If A and B are both nxn matrices with entries in a 

field then the determinant of their product is the 

product of their determinants: 

 
det (AB) = det (A) det(B) 

 

In particular, the determinants of AB and BA coincide. 

 
 Let U, V, and W be vector spaces over the same field 

with certain bases, S: V → W & T: U → V be linear 

transformations and ST: U → W be their 

composition. Suppose that A, B, and C are the 

matrices of T, S, and ST with respect to the given 

bases. Then 

 

AB = C 
 

Thus the matrix of the composition (or the product) of linear 

transformations is the product of their matrices with respect to 

the given bases. 

 

The figure 2.1 to the right illustrates the product of two 

matrices A and B, showing how each intersection in, the 

product matrix corresponds to a row of A and a column of B. 

The size of the output matrix is always the largest possible, i.e. 

for each row of A and for each column of B there are always 
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corresponding intersections in the product matrix [6]. The 

product matrix AB consists of all combinations of dot products 

of rows of A and columns of B. 

 

 
Figure 2.1 the product of two Matrices A & B. 

The values at the intersections marked with circles are: 

x1,2 = (a1,1, a1,2) . (b1, 2, b1,2) 

= a1,1 b1,2 + a1,2 b2,2 

 

x3,3 = (a3,1,a3,2) . (b1,3, b2,3) 

= a3,1 b1,3 + a3,2, b2,3 

3. RESULTS 

Performance analysis pure MPI Vs HYBRID (MPI+OpenMP) 

using matrix multiplication for MPI (1+3) task on dual core and 

2 task on each single core same for hybrid model. Use 2 

number of threads and chunk =50 constant number of node =2, 

as shown in table 3.1 and figure 3.1 as follows. 

 

Table 3.1 Performance of MPI time Vs HYBRID time on 2 

nodes with matrix multiplication. 

 

Matrix Size MPI_Time (Sec) HYBRID_Time(Sec) 

100 * 100 0.1053 0.065180 

200 * 200 1.60451 1.02532 

400 * 400 12.451664 7.295252 

600 * 600 27.401632 21.667435 

1000 * 1000 81.102446 54.757333 

 

Performance analysis pure MPI VS HYBRID (MPI+OpenMP) 

using matrix multiplication for MPI (1+3) task on dual core and 

2 task on each single core same for hybrid model. We use 2 

number of threads and chunk =50 constant number of node =2, 

3, 4, as shown as in Table 3.2, 3.3, 3.4 & Figure 3.2, 3.3, 3.4. 

 
 

Figure 3.1 Performance of MPI time Vs HYBRID time on 2 

nodes with matrix multiplication. 

 

 

Table 3.2 performance of MPI time Vs HYBRID time on 4 

nodes with matrix multiplication. 

 

Matrix Size MPI_Time (Sec) HYBRID_Time 

(Sec) 

1000 * 1000 74.3216 53.6614 

2000 * 2000 356.2699 271.5930 

4000 * 4000 2130.9338 1697.5930 

 

 
 

Figure 3.2 performance of MPI time Vs HYBRID time on 4 

nodes with matrix multiplication. 
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Table 3.3 performance of MPI time Vs HYBRID time on 4 

nodes with matrix multiplication. 

 

Node_ Number MPI_Time (Sec) HYBRID_Time(Sec) 

1 451.1239 311.9054 

2 367.7262 304.9193 

3 362.8631 284.3486 

4 356.2699 271.5930 

 

 

 

 
Figure 3.3 performance of MPI time Vs HYBRID time on 4 

nodes with matrix multiplication. 

 

Table 3.4 performance of MPI time Vs HYBRID time on 4 

node with matrix multiplication. 

 

Node_ Number MPI_Time (Sec) HYBRID_Time(Sec) 

1 27.9311 20.9770 

2 1.60665 7.895560 

3 7.98376 6.174830 

4 6.56270 4.843306 

 

 

 
Figure 3.4 performance of MPI time Vs HYBRID time on 4 

node with matrix multiplication 

 

As seen in the figure 3.1,3.2,3.3 and 3.4 the result obtain from 

the Hybrid programming is gives better result than that of MPI 

programming due the load balancing problem of MPI 

programming which is reduced due to the use of OpenMP 

threads within MPI communication. 

 

4. CONCLUSION 
This paper compares the performance for program by using 

MPI, OpenMP, and Hybrid (MPI+OpenMP). It is observed that 

the Hybrid mixed mode programming model gives better 

performance than that of MPI and OpenMP programming 

model for the number of task and thread assigned to each 

processor, which is scalable. 

 

Hence a combination of shared memory and message passing 

parallelization paradigms within the same application (mixed 

mode programming) may provide a more efficient 

Parallelization strategy than pure MPI and OpenMP. 
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