
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

22

Performance Analysis of Matrix-Vector Multiplication in
Hybrid (MPI + OpenMP)

Vivek N. Waghmare, Sandip V. Kendre and Sanket G. Chordiya

Assistant Professor
Sandip Institute of Tech. & Research Centre, Nashik

Maharashtra (INDIA)

ABSTRACT
Computing of multiple tasks simultaneously on multiple

processors is called Parallel Computing. The parallel program

consists of multiple active processes simultaneously solving a

given problem. Parallel computers can be roughly classified as

Multi-Processor and Multi-Core. In both these classifications

the hardware supports parallelism with computer node having

multiple processing elements in a single machine, either in

single chip pack or on more than one distinct chip respectively.

Parallel programming is the ability of program to run on this

infrastructure which is still quite difficult and complex task to

achieve. Out of many two different approaches used in parallel

environment are MPI and OpenMP, each one of them having

their own merits and demerits. Hybrid model combines both

approaches in the pursuit of reducing the weaknesses in

individual.

In proposed approach takes a pair of, Matrices produces another

matrix by using Matrix-Vector Multiplication Algorithm. The

resulting matrix agrees with the result of composition of the

linear transformations represented by the two original matrices.

This algorithm is implemented in MPI, OpenMP, and Hybrid

mode. The algorithm is tested for number of nodes with

different number of matrix size. The results indicates that the

Hybrid approach out performs the MPI and OpenMP approach.

Keywords: MPI, OpenMP, Hybrid (MPI+OpenMP),

Matrix-Vector Multiplication Algorithm

1. INTRODUCTION

Matrices are a key tool in linear algebra. One use of matrices is

to represent linear transformations, which are higher-

dimensional analogs of linear functions of the form f(x) = cx,

where c is a constant; matrix multiplication corresponds to

composition of linear transformations. Matrices can also keep

track of the coefficients in a system of linear equations [5]. For

a square matrix, the determinant and inverse matrix (when it

exists) govern the behavior of solutions to the corresponding

system of linear equations, and eigenvalues and eigenvectors

provide insight into the geometry of the associated linear

transformation. Matrices find many applications. Physics makes

use of matrices in various domains, for example in geometrical

optics and matrix mechanics; the latter led to studying in more

detail matrices with an infinite number of rows and columns.

Graph theory uses matrices to keep track of distances between

pairs of vertices in a graph. Computer graphics uses matrices to

project 3-dimensional space onto a 2-dimensional screen [4].

Matrix calculus generalizes classical analytical notions such as

derivatives of functions or exponentials to matrices. The latter

is a recurring need in solving ordinary differential equations.

Serialism and dodecaphonism are musical movements of the

20th century that use a square mathematical matrix to determine

the pattern of music intervals.

 Mention the word supercomputer to someone and they

automatically think of monstrously complicated machines

solving problems no one really understands. Maybe they think

of flashing lights and some super intelligence that can beat

humans at chess or figure out the meaning of life, the universe,

and everything. Back in the day, this was not an altogether

untrue view of supercomputing. With an entry fee of at least

seven figures, supercomputing was for the serious scientists and

engineers who needed to crunch numbers as fast as possible.

Today we have a different world. The custom supercomputer of

yesteryear has given way to commodity-based supercomputing,

or what is now called High Performance Computing (HPC). In

today’s HPC world, it is not uncommon for the supercomputer

to use the same hardware found in Web servers and even

desktop workstations.

 The HPC world is now open to almost everyone because

the cost of entry is at an all-time low. To many organizations,

HPC is now considered an essential part of business success.

Your competition may be using HPC right now. They won’t

talk much about it because it’s considered a competitive

advantage [3]. Of one thing you can be sure, however; they’re

designing new products, optimizing manufacturing and delivery

processes, solving production problems, mining data, and

simulating everything from business process to shipping crates

all in an effort to become more competitive, profitable, and

“green”. HPC may very well be the new secret weapon. The

main goal of writing a parallel program is to get better

performance over the Serial version. With this in mind, there

are several issues that one needs to consider when designing the

parallel code to obtain the best performance possible within the

constraints of the problem being solved.

1.1 MPI:
The generic form of message passing in parallel processing is

the Message Passing Interface (MPI), which is used as the

medium of communication. A standard Message Passing

Interface (MPI) is originally designed for writing applications

and libraries for distributed memory environments.

However, MPI does provide message-passing routines for

exchanging all the information needed to allow a single MPI

implementation to operate in a heterogeneous environment [1].

1.2 Open MP:
OpenMP is an Application Program Interface (API) that may be

used to explicitly direct multi-threaded, shared memory

parallelism. It is a specification for a set of compiler directives,

library routines and environment variables [2]. The available

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

23

programming environment on most of the Multi-Core

processors will address the thread affinity to core and overheads

in OpenMP Programming environment.

1.3 HYBID:
Combining shared-memory and distributed-memory

programming models are an old idea [1]. One wants to exploit

the strengths of both models: the efficiency, memory savings,

and ease of programming of the shared-memory model and the

scalability of the distributed-memory model. Until recently, the

relevant models, languages, and libraries for shared-memory

and distributed-memory architectures have evolved separately,

with MPI becoming the dominant approach for the distributed

memory, or message-passing, model, and OpenMP [2, 3]

emerging as the dominant “high-level” approach for shared

memory with threads.

The idea of using OpenMP [3] threads to exploit the multiple

cores per node while using MPI to communicate among the

nodes appears obvious. Yet one can also use an “MPI

everywhere” approach on these architectures, and the data on

which approach is better is confusing and inconclusive. It

appears to be heavily dependent on the hardware, the MPI and

OpenMP implementations, and above all on the application and

the skill of the application writer.

2. IMPLEMENTATION DETAILS
The Matrix product is the most commonly used type of product

of matrices. Matrices offer a concise way of representing linear

transformations between vector spaces, and matrix

multiplication corresponds to the composition of linear

transformations [4]. The matrix product of two matrices can be

defined when their entries belong to the same ring, and hence

can be added and multiplied [5], and, additionally, the number

of the columns of the first matrix matches the number of the

rows of the second matrix. The product of an m×p matrix A

with an p×n matrix B is an m×n matrix denoted AB whose

entries are,

 P

 (AB)i, j = Σ Aik. Bkj
 k=1

Where 1 ≤ i ≤ m is the row index and 1 ≤ j ≤ n is the column

index.

This definition can be restated by postulating that the matrix

product is left and right distributive and the matrix units are

multiplied according to the following rule:

EikElj = δklEij

Where the first factor is the m×n matrix with 1 at the

intersection of the ith row and the kth column and zeros

elsewhere and the second factor is the p×n matrix with 1 at the

intersection of the lth row and the jth column and zeros

elsewhere.

In general, matrix multiplication is not. C More precisely, AB

and BA need not be simultaneously defined; if they are, they

may have different dimensions; and even if A and B are square

matrices of the same order n, so that AB and BA are also

square matrices of order n, if n is greater or equal than 2, AB

need not be equal to BA. For example,

E11E12 = E12, where as E12E11 = 0

However, if A and B are both diagonal square matrices of the

same order then AB = BA.

 Matrix Multiplication is Associative:

A (BC) = (AB) C

 Matrix multiplication is Distributive over

matrix addition:

C (A+C) = AB+AC,

 (A+B) C = AC+BC.

Provided that the expression in either side of each identity is

defined.

 Matrix product is compatible with scalar

multiplication:

C (AB) = (CA) B = A (CB)

Where C is a scalar (for the second identity to hold, C must

belong to the center of the ground ring this condition is

automatically satisfied if the ground ring is commutative, in

particular, for matrices over a field).

 If A and B are both nxn matrices with entries in a

field then the determinant of their product is the

product of their determinants:

det (AB) = det (A) det(B)

In particular, the determinants of AB and BA coincide.

 Let U, V, and W be vector spaces over the same field

with certain bases, S: V → W & T: U → V be linear

transformations and ST: U → W be their

composition. Suppose that A, B, and C are the

matrices of T, S, and ST with respect to the given

bases. Then

AB = C

Thus the matrix of the composition (or the product) of linear

transformations is the product of their matrices with respect to

the given bases.

The figure 2.1 to the right illustrates the product of two

matrices A and B, showing how each intersection in, the

product matrix corresponds to a row of A and a column of B.

The size of the output matrix is always the largest possible, i.e.

for each row of A and for each column of B there are always

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

24

corresponding intersections in the product matrix [6]. The

product matrix AB consists of all combinations of dot products

of rows of A and columns of B.

Figure 2.1 the product of two Matrices A & B.

The values at the intersections marked with circles are:

x1,2 = (a1,1, a1,2) . (b1, 2, b1,2)

= a1,1 b1,2 + a1,2 b2,2

x3,3 = (a3,1,a3,2) . (b1,3, b2,3)

= a3,1 b1,3 + a3,2, b2,3

3. RESULTS

Performance analysis pure MPI Vs HYBRID (MPI+OpenMP)

using matrix multiplication for MPI (1+3) task on dual core and

2 task on each single core same for hybrid model. Use 2

number of threads and chunk =50 constant number of node =2,

as shown in table 3.1 and figure 3.1 as follows.

Table 3.1 Performance of MPI time Vs HYBRID time on 2

nodes with matrix multiplication.

Matrix Size MPI_Time (Sec) HYBRID_Time(Sec)

100 * 100 0.1053 0.065180

200 * 200 1.60451 1.02532

400 * 400 12.451664 7.295252

600 * 600 27.401632 21.667435

1000 * 1000 81.102446 54.757333

Performance analysis pure MPI VS HYBRID (MPI+OpenMP)

using matrix multiplication for MPI (1+3) task on dual core and

2 task on each single core same for hybrid model. We use 2

number of threads and chunk =50 constant number of node =2,

3, 4, as shown as in Table 3.2, 3.3, 3.4 & Figure 3.2, 3.3, 3.4.

Figure 3.1 Performance of MPI time Vs HYBRID time on 2

nodes with matrix multiplication.

Table 3.2 performance of MPI time Vs HYBRID time on 4

nodes with matrix multiplication.

Matrix Size MPI_Time (Sec) HYBRID_Time

(Sec)

1000 * 1000 74.3216 53.6614

2000 * 2000 356.2699 271.5930

4000 * 4000 2130.9338 1697.5930

Figure 3.2 performance of MPI time Vs HYBRID time on 4

nodes with matrix multiplication.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

25

Table 3.3 performance of MPI time Vs HYBRID time on 4

nodes with matrix multiplication.

Node_ Number MPI_Time (Sec) HYBRID_Time(Sec)

1 451.1239 311.9054

2 367.7262 304.9193

3 362.8631 284.3486

4 356.2699 271.5930

Figure 3.3 performance of MPI time Vs HYBRID time on 4

nodes with matrix multiplication.

Table 3.4 performance of MPI time Vs HYBRID time on 4

node with matrix multiplication.

Node_ Number MPI_Time (Sec) HYBRID_Time(Sec)

1 27.9311 20.9770

2 1.60665 7.895560

3 7.98376 6.174830

4 6.56270 4.843306

Figure 3.4 performance of MPI time Vs HYBRID time on 4

node with matrix multiplication

As seen in the figure 3.1,3.2,3.3 and 3.4 the result obtain from

the Hybrid programming is gives better result than that of MPI

programming due the load balancing problem of MPI

programming which is reduced due to the use of OpenMP

threads within MPI communication.

4. CONCLUSION
This paper compares the performance for program by using

MPI, OpenMP, and Hybrid (MPI+OpenMP). It is observed that

the Hybrid mixed mode programming model gives better

performance than that of MPI and OpenMP programming

model for the number of task and thread assigned to each

processor, which is scalable.

Hence a combination of shared memory and message passing

parallelization paradigms within the same application (mixed

mode programming) may provide a more efficient

Parallelization strategy than pure MPI and OpenMP.

5. REFERENCES
[1] MPI, MPI: \A Message-Passing Interface standard"

Message Passing Interface Forum, June 1995.

http://www.mpi-forum.org.

[2] OpenMP, The OpenMP ARB. http://www.OpenMP.org/.

[3] Mixed-mode programming", D. Klepacki, T.J.Watson

Research Center presentations, IBM 1999.

http://www.research.ibm.com/actc/Talks/DavidKlepacki/

MixedMode/htm.

[4] Henry Cohn, Robert Kleinberg, Balazs Szegedy, and Chris

Umans. Group-theoretic Algorithms for Matrix

Multiplication. arXiv:math.GR/0511460. Proceedings of

the 46th Annual Symposium on Foundations of Computer

Science, 23–25 October 2005, Pittsburgh, PA, IEEE

Computer Society, pp. 379–388.

[5] Horn, Roger A.; Johnson, Charles R. (1985), Matrix

Analysis, Cambridge University Press, ISBN 978-0-521-

38632-6.

[6] Ran Raz. On the complexity of matrix product. In

Proceedings of the thirty-fourth annual ACM symposium

on Theory of computing. ACM Press, 2002.

doi:10.1145/509907.509932.

[7] Finite-size errors in quantum many-body simulations of

extended systems", P.R.C. Kent, R.Q. Hood,

A.J.Williamson, R.J. Needs, W.M.C Foulkes, G.

Rajagopal, Phys. Rev. B 59, pp 1917-1929, 1999.24.

[8] P. Lanucara and S. Rovida, “Conjugate-Gradient

algortihms: An MPI-OpenMP implementation on

distributed shared memory systems”, proceeding of the 1st

European Workshop on OpenMP, Lund, Sweden, 1999.

[9] D.K. Tafti, “Computational power balancing”, Help for the

overloaded processor. http://access.ncsa.uiuc.edu/

Features/Load-Balancing/

http://www.mpi-forum.org/
http://www.openmp.org/

