
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

18

Application Specific Data Trace Cache Design

Sunita Parashar

Haryana College of Tech. & Mgmt,
Kaithal, Haryana

Anshu Parashar
Haryana College of Tech. & Mgmt,

Kaithal , Haryana

ABSTRACT
Increasing disparity between processor speeds and memory

access times is a major problem in today’s systems. In this

paper we have studied the design of a proposed system i.e. An

Application specific Data Trace Cache and have tried to do

some modification to the Data Remapping portion of it. We

have tried to further improve the benefits of this system by

implementing this system with the help of an already existing

concept of Cache Conscious Data Structures. Reference

locality of data can be improved by changing a program’s data

organization and layout. This is the concept behind both cache

conscious data structures as well as Data Trace Cache. So we

have tried to merge both these strategies to get some more

performance benefits.

General Terms
Performance, Design

Keywords
Trace Cache, Cache Conscious data structure, reference

locality

1. INTRODUCTION
The memory hierarchy has been the central component in the

design of computing platforms .It has widely served to bridge

the performance gap between processor and supporting

memory subsystem, usually by employing deep cache

hierarchies where each level trades off capacity for access

speed [1]. As processors are increasingly used in the context of

embedded systems, the cost of this memory hierarchy is

increasingly becoming a limiting factor in its ability to play as

central a role.

Trace cache is a mechanism to enable low latency, high

bandwidth instruction fetching. Trace caches store programs in

a representation that is a hybrid of the static program

representation and the dynamic instruction stream. Traces are

snapshots of short segments of the dynamic instruction stream

that are cached [2]. When a dynamic path is taken repetitively,

instructions are provided from the trace cache, yielding a

contiguous block of dynamic instructions that may correspond

to noncontiguous blocks of code from the static representation.

2. RELATED WORK
As the rate of instruction execution increases, performance of

the memory hierarchy becomes the bottleneck for most

applications. In the past, the principal challenge in memory

hierarchy management has been overcoming latency, but

blocking and pre-fetching have improved that problem

significantly [3]. As exposed memory latency is reduced,

bandwidth has become the dominant performance constraint

because limited memory bandwidth bounds the rate of data

transfer between memory and CPU regardless of the speed of

processors or the latency of memory access. So, program

performance is now limited by effective bandwidth, that is, the

rate at which operands of a computation are transferred

between CPU and memory.

Currently, the principal software mechanism for improving

effective bandwidth in a program, as well as reducing

overall memory latency, is increasing temporal and spatial

reuse through program transformation. Temporal reuse

occurs when multiple accesses to the same data structure

use a buffered copy in cache or registers, eliminating the

need for repeated accesses to main memory. While

temporal reuse reduces the frequency of memory accesses,

spatial reuse improves the efficiency of each memory

access by grouping accesses on the same cache line. Since

most current machines transfer one cache line at a time

from memory, this grouping amortizes the cost of the

bandwidth over more references. The combination of

temporal and spatial reuse can minimize the number of

transferred cache lines, i.e. the total memory bandwidth

requirement of the program. A substantive portion of the

research on compiler memory management has focused on

increasing temporal and spatial reuse in regular

applications. Cache and register blocking techniques group

computations on data tiles to enhance temporal reuse [4, 5].

Various loop reordering schemes seek to arrange stride-one

data access to maximize spatial reuse [6, 7, 8]. Data

transformations can often be used to effect spatial reuse

when computation transformation is insufficient or illegal

[9]. Data remapping can be used to improve cache

performance by observing MAPs, and packing in

contiguous memory locations sequentially accessed

patterns to improve spatial locality. The above techniques

adopt data layouts which are cache conscious [10]. Cache

performance can also be improved by changing the

organization and layout of its data—even complex, pointer-

based data structures. Techniques like structure splitting

and field reordering— improve the cache behavior of

structures larger than a cache block.[11].

2.1 Approach 1: Data trace cache
 Modern Superscalar processors with high Instruction Per

Cycle rates require enough supply of instructions for

execution in parallel and that in turn requires concurrent

access to different cache blocks. For this a multiport cache

can be used but this is an expensive solution both in terms

of power as well as area. To solve the problem, Instruction

Trace Cache has been designed which pack instructions

from different cache blocks in to a single cache line in their

dynamic execution order.

As enough instructions are required in superscalar

processors, same is the case with the data. But multiported

Data cache will be prohibitive in terms of cost. So, we need

some way to have a virtual multiport data cache. This type

of data cache is designed with the concept of instruction

trace cache. This has been called as Data Trace Cache and

like Instruction Trace Cache it packs together data from

diverse addresses that are required for concurrent access

during program execution.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

19

The new system has been designed with a Data Trace Cache, a

level-1 data cache and a cache controller. This new memory

system is shown in fig 1. The cache controller has four read

ports and a write port .If CPU required only one read port at a

given cycle the cache controller request the data directly from

level-1 data cache, which has only single

 Fig 1. Memory System

read port. In case the CPU require data from more than one

address the cache controller request all data from entire set of

addresses from DTC. Although the DTC has only one read

port, each DTC port contains data from more than one block.

In parallel to the DTC access, data from single address is

fetched from level-1 cache. In case of a hit in the DTC the

entire burst of data is returned .In case there was a miss in the

DTC, only single access is serviced by level-1 data cache.

Store instruction presents a major difficulty to the data trace

cache. The first problem is locating specific addresses inside

the DTC. Since the index function is the XOR value of the

address inside the DTC. Since index function is XOR value of

address, we must keep look up table to be able to locate single

address for store operation. Once locating all the trace cache

line that contain the value need to be updated all these lines

must be updated .Updating several blocks require many

lookups, resulting in long store latencies.

2.2 Approach 2: Application specific data

trace cache

Cache size requirements are constantly increasing in an effort

to reduce average memory latency. For example, the Intel

Itanium 2 processor has a 32KB L1, 256KB L2 and a 4MB L3

[12]. To keep cache area costs low, efforts are needed to utilize

caches more efficiently. This approach addresses the issue of

improving cache performance by exploiting the unique

memory behavior of a large class of applications keeping

cache area costs low. Improving the memory system

performance of any application is largely founded on the

discovery and exploitation of reference locality. Reference

locality, though present, may in fact be difficult to detect. The

approach is to take in to consideration the application data

structures for an important group of embedded kernels: those

which access large rooted tree data structures. This

examination reveals a form of reference locality that can be

exploited using a small cache designed specifically for

accesses to this rooted tree [13]. An access to the tree involves

a traversal starting from the root node and proceeding to a leaf.

Such a traversal involves access to a single node at each level

generating a relatively small number of memory accesses

relative to the size of the tree. Also the nodes closer to the root

are accessed more often than those closer to the leaves. The

fact that only one node at each level is accessed is, exploited in

generating the layout of the trees in memory. The resulting

cache design is a data trace cache (DTC). The DTC design

utilizes a flexible placement policy, distinguished from the

fixed, application independent placement policies of

traditional cache architectures. Only memory accesses to

the application tree data structures are processed by the

DTC. Non-tree data structure references are handled by a

conventional memory hierarchy.

Additionally, in certain high performance architectures

such as network processors, a cache hierarchy is normally

absent. This is due to the general belief that packet data

processing exhibits little reference locality. This is

compounded by the fact that caches produce good average

case behavior, while network processors require worst case

behavior to be acceptable [14]. But using the DTC to cache

the application data structure alone (e.g. the routing table or

packet classification tables) can yield benefits.

3. MODIFICATIONS TO APPROACH

2: (APPLICATION SPECIFIC DATA

TRACE CACHE)
Various modifications to the above devised approach have

been suggested. Like in the given approach simple breadth

first remapping has been used. Also the Partitioning and

Placement of the data is being guided solely by the runtime

indexing simplicity requirement of the given cache

architecture. The approach we are suggesting is to use the

two semiautomatic tools i.e. ccmorph and ccmalloc to

implement the remapping as well as partitioning and

placement of the data. These tools will significantly reduce

the level of programming effort, knowledge, and

architectural familiarity [15]. Ccmorph and ccmalloc— use

cache-conscious reorganization and cache conscious

allocation strategies to produce cache conscious pointer

structure layouts. ccmorph is a transparent tree reorganizer

that utilizes topology information to cluster and color the

structure. ccmalloc is a cache-conscious heap allocator that

attempts to co-locate contemporaneously accessed data

elements in the same physical cache block.

3.1 Comparison of Breadth First and

Depth First Remapping:
 Here we are comparing the miss rates when we are

remapping the tree data structure either in breadth first

order or in the depth first order.

In case the tree data structure is remapped in the depth first

order the miss rate for the remapped data can be calculated

as:

Fig 2. Depth First Remapping:

Suppose we are walking this tree left-to-right as in Fig. 2.

Then 1 and 2 are on the same line and 3 is on a different

one. We will get a miss when we are coming to the root of

the tree i.e. node 1. 1 and 2 are on the same cache line, so

Left Subtree Right Subtree

CPU

Cache Controller

DTC Level 1 Data Cache

 Level 2 Cache

Root

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

20

we are not going to get a miss when we access 2. We are also

going to get a miss when we access 3, since it’s on a different

cache line. We can count the precise number of misses:

() 1 ((1) 1) (1) 2 (1)LRT d T d T d T d

The first term corresponds to the initial miss, terms two and

three correspond to the number of misses in the left and right

subtree, respectively. With an appropriate initial condition, this

yields () 2dT d .

 d-1

 d

 Fig 3. Breadth First Remapping:

We can compute the number of misses created after a BF

allocation inductively.

When allocation is breadth-first, every other node at the

bottom level causes a miss. For a binary tree Fig. 3, the size of

the bottom level is the same half the size of the tree, so

 () (1) 2dT d T d ,

which means that () 2dT d . So the number of misses is the

same as in the case of depth-first allocation.

Above results show that just changing the remapping strategy

from breadth first to depth first is not going to effect the

performance in any way. So, we need to think of some other

remapping method. One more method that can be used is the

subtree remapping strategy. This method involves the benefits

of both breadth first as well as depth first methods. This same

method is being used by ccmorph.

3.2 Semiautomatic tools: ccmorph and

ccmalloc
Ccmorph reorganizes a data structure using clustering and

coloring. Clustering attempts to pack in a cache block data

structure elements likely to be accessed contemporaneously.

Coloring is used because caches have finite associativity,

which means that only a limited number of concurrently

accessed data elements can map to the same cache line without

incurring conflict misses. Ccmorph operate on trees and the

programmer must supply it a pointer to the root of a data

structure, a function to traverse the structure, and cache

parameters. The other function, ccmalloc, attempts to locate

the new data item in the same cache block as the existing item.

It takes an additional parameter that point to an existing data

structure element likely to be accessed contemporaneously.

3.3 Using ccmorph and ccmalloc for Data

Trace Cache Implementation:
3.3.1 Ccmalloc:
Ccmalloc is used for cache-conscious allocation of memory.

The main difference from a regular malloc is that ccmalloc

takes as an extra argument, a pointer to some data structure

that is likely to be referenced close (in time) to the newly

allocated structure. ccmalloc attempts to allocate the new data

in the same cache conscious(cc) -block as the data structure

pointed at by the argument pointer. Suppose the parents and

their children in a binary tree are attempted to be allocated

together, then ccmalloc invokes calls to the standard malloc

in two cases; when allocating a new cc-block or when the

size of the data structure is larger than the cc-block.

Otherwise, if called with a pointer to an already allocated

structure, the new structure is put in empty slot in the cc-

block right after that structure. When no proper area is

found, ordinary malloc is called with the cc-block size.

#ifdef CCMALLOC

child = ccmalloc(sizeof(struct node), parent));

#else

child = malloc(sizeof(struct node));

#endif

The block diagram of how the application is to be adapted

to work with our Data trace cache system is:

Fig. 4 Data Trace Cache System

3.3.2 Benefits over the previous approach:
Major benefit of our approach over the previous approach

is that using cache conscious technique can help us to adapt

our system to the specific needs of the application as well

as underlying system by choosing the cache-conscious

block size, or cc-block size, according to its data structures

and to the specific cache line size of the system. Also the

cc-block size can be set dynamically in software,

independently of the hardware cache line size. This means

that even though the hardware cache line is smaller than the

used data structures, ccmalloc can take advantage of co-

allocating data structures, and can be varied depending on

the size of the data structures the programmer wants to co-

allocate. Another benefit is that we use subtree clustering

for remapping; as in binary subtree clustering, for a series

of random tree searches, the probability of accessing either

child of a node is 1/2. With k nodes in a subtree clustered in

a cache block, the expected number of accesses to the block

is the height of the subtree, i.e. log2(k+1), which is greater

than 2 for k > 3. Consider the alternative of a depth-first

clustering scheme, in which the k nodes in a block form a

single parent-child-grandchild-... chain. In this case, the

expected number of accesses to the block is:

2 1

1 1 1 1
2 22 2

11 1* 1* 2*(1 ()) 2k

k

 So, subtree clustering improves the probability of access of

contagiously placed nodes.

Application
program with

ccmalloc added

Remapping

application’s data

structure using

ccmorph

Compiling the

Application

Executing the Application

within the system with

data trace cache added

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

21

4. CONCLUSION
Application specific data trace caches with static remapping

coupled with partitioning and placement functions can bring

significant reductions in the total number of misses. The DTC

demonstrates this opportunity by achieving significant

reductions in miss rates for a variety of applications based on

tree data structures used in domains ranging from packet

processing applications to databases.

While techniques such as clustering and coloring can improve

the spatial and temporal locality of pointer-based data

structures, applying them to existing codes may require

considerable effort. These cache-conscious techniques have

been packaged into easy-to-use tools. The data structure

reorganizer, ccmorph, and cache-conscious memory allocator,

ccmalloc, greatly reduce the programming effort and

application knowledge required to improve cache performance.

These cache-conscious structure layout tools are fairly

automated, they still require programmer assistance to identify

tree-structures that can be moved, and suitable candidates for

cache block co-location.

4.1 Future Work
The approach we have explained above considers applications

that use a single data structure. The same approach can be

extended to applications that use multiple data structures. Even

though in the application, often references to one structure

predominate, this technique can be applied to each structure in

turn to improve its performance. Furthermore interactions

among different structures can also be taken into consideration.

This technique has been studied in the context of uniprocessor

systems. In multiprocessor systems, we need to consider the

data access patterns of different processors individually as

cache performance depends on whether the data items are

accessed by same processor or by different processors.

Because, co-locating the data elements without considering the

underlying processor could exacerbate false-sharing.

5. REFERENCES
[1] Krishna V. Palem and Rodric M. Rabbah . Design Space

Exploration and Optimization of Embedded Cache

Systems via a Compiler. In ACM Transactions in

Embedded Computing Systems.

[2] Eric Rotenberg, Steve Bennett, James E. Smith 1996. Trace

Cache: a Low Latency Approach to High Bandwidth

Instruction Fetching . In the Proceedings of the 29th

Annual International Symposium on Microarchitecture.

[3] Chen Ding, Ken Kennedy 1999. Improving Cache

Performance in Dynamic Applications through Data and

Computation Reorganization at Run Time. SIGPLAN ‘99

(PLDI) Atlanta, GA,

[4] D. Callahan, S. Carr, and K. Kennedy 1990. Improving

register allocation for subscripted variables. In

Proceedings of the SIGPLAN ‘90 Conference on

Programming Language Design and Implementation,

White Plains, NY.

[5] M. E. Wolf and M. Lam 1991. A data locality

optimizing algorithm. In Proceedings of the SIGPLAN

’91 Conference on Programming Language Design

and Implementation, Toronto, Canada.

[6] W. Abu-Sufah, D. Kuck, and D. Lawrie 1981. On the

performance enhancement of paging systems through

program analysis and transformations. IEEE

Transactions on computers, C-30(5):341-356.

[7] D. Gannon, W. Jalby, and K. Gallivan 1987. Strategies

for cache and local memory management by global

program transformations. In Proceedings of the First

International Conference on Supercomputing.

Springer-Verlag, Athens, Greece.

[8] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving

data locality with loop transformations. ACM

Transactions on Programming Languages and Systems

[9] M. Cierniak and W. Li 1995. Unifying data and control

transformations for distributed share d-memory

machines. In Proceedings of the SIGPLAN ’95

Conference on Programming Language Design and

Implementation, La Jolla.

[10] R. M. Rabbah and K. V. Palem 2003. Data remapping

for design space optimization of embedded memory

systems. ACM Transactions in Embedded Computing

Systems.

[11] Trishul M. Chilimbi, Bob Davidson, and James R.

Larus. 1999.Cache-conscious structure definition. In

Proceedings of the ACM SIGPLAN’99 Conference on

Programming Language Design and Implementation.

[12] Intel Itanium 2 Processor Hardware Developer’s

Manual, 2002.

[13] Subramanian Ramaswamy, Jaswanth Sreeram,

Sudhakar Yalamanchili, K. V. Palem 2005. Data

Trace Cache: An Application Specific Cache

Architecture . In MEDEA 2005 workshop in

conjunction with PACT 2005.

[14] Intel IXP2800 Network Processor Hardware Reference

Manual, 2002

[15] Trishul M. Chilimbi, Mark D. Hill, James R. Larus

1999. Cache-Conscious Structure Layout . . In

Proceedings of the SIGPLAN ’99 Conference on

Programming Language Design and Implementation,

Atlanta.

