
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

12

Analyzing Image Filtrations by Enhanced Fuzzy Logic
with Multi Quality Inputs

Ramesh Tiwari

Department of CSE

Dr. B R Ambedkar NIT

Jalandhar, India

Renu Dhir

Department of CSE

Dr. B R Ambedkar NIT

Jalandhar, India

ABSTRACT

In this paper, we describe the Image Filtration through Fuzzy

Logics in four different scenarios of Image Input as 3*3,9*9,

17*17 and 25*25 division blocks and iterating fuzzy equation on

it for 2 and 8 times at constant amplification factor of 10. The

input image selected for analysis is PGM (Portable Gray Map),

dividing input images into matrix of m*n blocks. The input

image is analyzed for multiple iterations and difference in output

is significantly marked for MSE and PSNR.

General Terms

Image Processing, Noise Reduction and Impulse Noise.

Keywords

Fuzzy Filter and PGM image Filtration.

1. INTRODUCTION
A PGM image represents a grayscale graphic image. For most

purposes, a PGM image can just be thought of an array of

arbitrary integers, and all the programs in the world that think

they're processing a grayscale image can easily be tricked into

processing something else [1], this extra ordinary characteristics

makes PGM better than other formats for analyzing Image

Filtration when it comes to divide images into blocks of m*n for

input.

Noise can be systematically introduced into images during

acquisition and/or transmission of images [2, 3]. The impulse

noise has the tendency of either relatively high or relatively low,

thus it could severely degrade the image quality and some loss

of information details [4].

Various filtration techniques have been proposed for removing

such noise in the past and are well known that linear filters could

produce serious image blurring[5,6]. Therefore non linear filters

are widely exploited and improved. During the past years the

variety of filter classes are developed such as (1) Classical

filters; (2) Fuzzy Classical Filters i.e. fuzzy logic based filters

that are modification or extension of classical filters; (3) Fuzzy

Filters [7,8,9].

In this paper we exploit the use of Fuzzy Filters and resemble

their usage with increase in number of iterations. The paper

analyzed fuzzy filter for image inputs as block of 9*9, 17*17

and 25*25 at constant amplification factor of 10 and compared

with the 3*3 block input image[10].

2. SYSTEM DESCRIPTION

2.1 Working Principle
Fuzzy Logic requires some numerical parameters in order to

operate such as what is considered significant error and

significant rate of change of error, but exact values of these

numbers are usually not critical unless very responsive

performance is required in which case empirical tuning would

determine them. For example, automatic temperature control

systems normally uses only one temperature feedback sensor for

a single room whose data is subtracted from the command signal

to compute “error” and then time-differentiated to yield the error

slope or rate of change of error, hereafter called “divergence”.

Error might have units of ℃ and a small error considered to be

±2℃ while a large error is ±5℃. The “divergence” might then

have units of degrees/min with a small divergence being

±2℃/min and a large one being ±5℃/min w.r.t. command signal.

These values don’t have to be symmetrical and can be tweaked

once the system is operating in order to optimize performance.

2.2 Framework Developed
This system presents a technique for filtering noise in images by

a fuzzy filter in two steps.

First, the filter estimates a “fuzzy derivative” in order to be less

sensitive to local variations due to image structures such as

edges.

Second, the membership functions are adapted accordingly to

the noise level to perform “fuzzy smoothing.”

For each pixel that is processed, the first stage computes a fuzzy

derivative. Second, a set of varying fuzzy rules is fired to

determine a correction term. These rules make use of the fuzzy

derivative as input. Fuzzy sets are employed to represent the

properties. While the membership functions are fixed and

adapted after each iteration The general idea behind the filter

is to average a pixel using other pixel values from its

neighborhood, but simultaneously to take care of important

image structures such as edges. To determine neighborhood, we

divide the input image into blocks of m*n and identify new

boundaries. The main concern of the proposed filter is to

distinguish between local variations due to noise and due to

image structure. In order to accomplish this, for each pixel we

derive a value that expresses the degree in which the derivative

in a certain direction is small. Such a value is derived for each

direction corresponding to the neighboring pixels of the

processed pixel by a fuzzy rule. The further construction of the

filter is then based on the observation that a small fuzzy

derivative most likely is caused by noise, while a large fuzzy

derivative most likely is caused by an edge in the image.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

13

Consequently, for each direction we will apply two fuzzy rules

that take this observation into account and thus distinguish

between local variations due to noise and due to image structure.

2.3 Fuzzy Rule

2.3.1 Fuzzy Derivative Estimation
For filtering we want a good indication of the edges, while to

find these edges we need filtering. In our approach, we start by

looking for the edges. We try to provide a robust estimate by

applying fuzzy rules.

Consider the 3*3 neighborhood of a pixel (x, y) as display in

Figure 1. A simple derivative at the central pixel position (x, y)

in the direction D (D ∈ dir = {NW, W, SW, S, SE, E, NE, N}) is

defined as the difference between the pixel at (x, y) and its

neighbor in the direction D. This derivative value is denoted by

∇D(x, y). For example,

∇N(x, y) = I(x, y - 1) - I(x, y)

∇NW(x, y) = I(x - 1, y - 1) - I(x, y)

Next, the principal of the fuzzy derivative is based on the

following observation. Consider an edge passing through the

neighborhood of a pixel (x, y) in the SW – NE direction. The

derivative value ∇NW(x, y) will be large, but also derivative

values of neighboring pixels perpendicular to the edge’s

direction can expected to be large.

NW N NE

W (x, y) E

SW S SE

Figure 1: Neighborhood of a central pixel (x, y).

In table 1, we give an overview of the pixels we use to calculate

the fuzzy derivative for each direction. Each direction

corresponds to a fixed position and the sets specify which pixels

are considered with respect to the central pixel (x, y).

To compute the value that express the degree to which the fuzzy

derivative in a certain direction is small, we will make use of the

fuzzy set small. The membership function mK(u) for small

properties is the following:

where K is an adaptive parameter [10].

2.3.2 Adaptive Threshold Selection
We start by dividing the image in small m*n non-overlapping

blocks. For each block B, we compute a rough measure for the

homogeneity of this block by considering the maximum and

minimum pixel value [11].

Where L represent the number of gray levels.

Table 1. Pixel involved in calculating the fuzzy derivatives in

each direction

Direction Position Set w.r.t. (x, y)

NW (x - 1, y - 1) {(-1,1),(0,0),(1,-1)}

W (x - 1, y) {(0,1),(0,0),(0,-1)}

SW (x - 1, y + 1) {(1,1),(0,0),(-1,-1)}

S (x , y + 1) {(1,0),(0,0),(-1,0)}

SE (x + 1, y + 1) {(1,-1),(0,0),(-1,1)}

E (x + 1, y) {(0,-1),(0,0),(0,1)}

NE (x + 1, y - 1) {(-1,-1),(0,0),(1,1)}

N (x , y - 1) {(-1,0),(0,0),(1,0)}

2.4 Implementation
The proposed system is implemented in language java as,

//smoothing algorithm

int K=-1,prevK=0,L=imgin.getMaxGray();

int neighbor[]=new int[8];

int simpderiv[][]=new int[3][8];

double fofxsmall[][]=new double[3][8];

double fuzzyderiv[]=new double[8];

double fofxpositive[]=new double[8];

double fofxnegative[]=new double[8];

double positivetruthness[]=new double[8];

double negativetruthness[]=new double[8];

double delta,fK;

//divide image into m*n blocks

int kvals[]=new int[9*9];

//for each block

for(int m=0;m<imgin.getRows();m=m+dim)

{

for(int n=0;n<imgin.getCols();n=n+dim)

{

//get pixelvalues

for(int tr=m,t=0;tr<m+dim;tr++)

{

for(int tc=n;tc<n+dim;tc++)

{

kvals[t]=imgin.getPixel(tr,tc);

t=t+1;

}

}

//get neighborhood pixel intensity values

neighbor[0]=imgin.getNeighbor(r,c,Globals.NW);

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

14

neighbor[1]=imgin.getNeighbor(r,c,Globals.W);

neighbor[2]=imgin.getNeighbor(r,c,Globals.SW);

neighbor[3]=imgin.getNeighbor(r,c,Globals.S);

neighbor[4]=imgin.getNeighbor(r,c,Globals.SE);

neighbor[5]=imgin.getNeighbor(r,c,Globals.E);

neighbor[6]=imgin.getNeighbor(r,c,Globals.NE);

neighbor[7]=imgin.getNeighbor(r,c,Globals.N);

//fuzzy derivative estimation

//calc simple derivative of (r,c)

for(int t=0;t<8;t++) simpderiv[0][t]=neighbor[t]-inval;

//calc simple derivative of perpendicular point-1

simpderiv[1][0]=imgin.getPixel(r-1 +1,c-1 -1)-

imgin.getPixel(r+1,c-1);

simpderiv[1][1]=imgin.getPixel(r+1,c-1)-imgin.getPixel(r+1,c);

simpderiv[1][2]=imgin.getPixel(r+1 +1,c-1 +1)-

imgin.getPixel(r+1,c+1);

simpderiv[1][3]=imgin.getPixel(r+1,c+1)-imgin.getPixel(r,c+1);

simpderiv[1][4]=imgin.getPixel(r+1 -1,c+1 +1)-

imgin.getPixel(r-1,c+1);

simpderiv[1][5]=imgin.getPixel(r-1,c+1)-imgin.getPixel(r-1,c);

simpderiv[1][6]=imgin.getPixel(r-1 -1,c+1 -1)-imgin.getPixel(r-

1, c-1);

simpderiv[1][7]=imgin.getPixel(r-1,c-1)-imgin.getPixel(r,c-1);

//calc simple derivative of perpendicular point-2

simpderiv[2][0]=imgin.getPixel(r-1 -1,c-1 +1)-imgin.getPixel(r-

1,c+1);

simpderiv[2][1]=imgin.getPixel(r-1,c-1)-imgin.getPixel(r-1,c);

simpderiv[2][2]=imgin.getPixel(r+1 -1,c-1 -1)-imgin.getPixel(r-

1, c-1);

simpderiv[2][3]=imgin.getPixel(r+1,c-1)-imgin.getPixel(r,c-1);

simpderiv[2][4]=imgin.getPixel(r+1 +1,c+1 -1)-

imgin.getPixel(r+1,c-1);

simpderiv[2][5]=imgin.getPixel(r+1,c+1)-imgin.getPixel(r+1,c);

simpderiv[2][6]=imgin.getPixel(r-1 +1,c+1 +1)-

imgin.getPixel(r+1,c+1);

simpderiv[2][7]=imgin.getPixel(r-1,c+1)-imgin.getPixel(r,c+1);

}

//find standard deviation

int sum=0;

double mean,dsum=0;

for(int t=0;t<dim*dim;t++) sum=sum+kvals[t]; //find sum

sd=Math.sqrt(dsum/((dim*dim)-1));

sumsd=sumsd+sd;

cnt=cnt+1.0;

}

mean=(double)sum/(double)(dim*dim);

for(int t=0;t<dim*dim;t++) dsum=dsum+((kvals[t]-

mean)*(kvals[t]-mean));//for each pixel

for(int r=0;r<imgin.getRows();r++)

{

for(int c=0;c<imgin.getCols();c++)

{

int inval=imgin.getPixel(r,c);//current pixel intensity value

//calc membership value for 'small' fuzzy set

for(int t=0;t<8;t++)

{

fofxsmall[0][t]=SmallFuzzySet.fofx(simpderiv[0][t],K);

fofxsmall[1][t]=SmallFuzzySet.fofx(simpderiv[1][t],K);

fofxsmall[2][t]=SmallFuzzySet.fofx(simpderiv[2][t],K);

}

The java interface developed is shown in Figure 2.

Figure 2: Developed java interface.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

15

3. RESULTS AND DISCUSSIONS
To apply Fuzzy Logic on Image we first break images into

blocks, this image partition brings more input for fuzzy

Equations and enhance the results. Here we study the

system for four cases 3*3, 9*9, 17*17, 25*25 block inputs

with an constant amplification factor of 10.

The PGM image with 20% noise density is used for the

analysis in this paper, is shown in Figure 3.

Figure 3: Corrupted Image with 20% noise density.

3.1 3*3 Partition
Figure 4 and Figure 5 shows Fuzzy Filtered image whose

input block is divided into 3*3 matrices after 2 and 8

iterations.

Figure 4: After Two Iterations.

Figure 5: After Eight Iterations.

3.2 9*9 Partition
Figure 6 and Figure 7 shows Fuzzy Filtered image whose

input block is divided into 9*9 matrices after 2 and 8

iterations.

Figure 6: After Two Iterations.

Figure 7: After Eight Iterations.

3.3 17*17 Partition
Figure 8 and Figure 9 shows Fuzzy Filtered image whose

input block is divided into 17*17 matrices after 2 and 8

iterations.

Figure 8: After Two Iterations.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

16

Figure 9: After Eight Iterations.

3.4 25*25 Partitions
Figure 10 and Figure 11 shows Fuzzy Filtered image whose

input block is divided into 25*25 matrices after 2 and 8

iterations.

Figure 10: After Two Iterations.

Figure 11: After Eight Iterations.

The performance evaluation of the filtering operation is

quantified by the MSE(Mean Squared Error) and

PSNR(Peak Signal-to-Noise Ratio) are calculated using the

following standard formula:

where,

I(i,j) is original image without noise,

K(i,j) is filtered image,

m and n is the total number of pixels in the horizontal and

vertical dimensions of the image I(i,j) and K(i,j).

where, MAXI is the maximum possible pixel value of the

image.

For better image filtration MSE should be low and PSNR

should be high. When the two images are identical, the

MSE will be zero and PSNR is undefined.

The MSE and PSNR of Corrupted Image with 20% noise

density is 0.06221 and 12.06113dB respectively. The MSE

and PSNR of the filtered image after two iteration is shown

in the table 2.

Table 2. MSE and PSNR of the filtered image after two

iteration

 MSE PSNR

3*3 (Figure 4) 0.00928 20.32530

9*9 (Figure 6) 0.00607 22.16980

17*17 (Figure 8) 0.00624 22.04841

25*25 (Figure 10) 0.00649 21.87345

The MSE and PSNR of the filtered image after eight

iteration is shown in the table 3.

Table 3. MSE and PSNR of the filtered image after

eight iteration

 MSE PSNR

3*3 (Figure 5) 0.00897 20.47085

9*9 (Figure 7) 0.00600 22.21845

17*17 (Figure 9) 0.00615 22.11345

25*25 (Figure 11) 0.00644 21.90952

4. CONCLUSIONS
The focus of this paper is to analyze non linear Fuzzy

Image filter when same input image is divided into

different input blocks and iterated multiply. The multiple

iteration on input image for constant amplification factor of

10, results into sharp and much clear image due to removal

of high and low pixel intensity noise by taking multiple

fuzzy derivatives on neighboring pixel and repetitively

joining them into a group, for fuzzy smoothing. Table 2 and

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.5, May 2011

17

3 depicts better result for 9*9 input image with increase in

iterations.

5. REFERENCES
[1] Jef Poskanzer on his official site

http://netpbm.sourceforge.net/doc/pgm.html

[2] Zhou, Yan, Tang, Quan-hua, Jin, Wei-dong, 2008.
Adaptive fuzzy median filter for images corrupted by

impulse noise in Congress on image and signal

processing IEEE Conference. Volume 5 Page(s): 265 -

269

[3] Schulte, S., De Witte, V., Nachtegael, M., Van der

Weken, D., Kerre, E.E., 2006. Fuzzy two-step filter

for impulse noise reduction from color images in IEEE

Transactions on Image Processing Volume: 15, Issue:

11 Page(s): 3567 – 3578.

[4] Pei-Eng Ng, Kai-Kuang Ma, 2006. A switching

median filter with boundary discriminative noise

detection for extremely corrupted images in IEEE

Transactions on Image Processing Volume: 15, Issue:

6 Page(s): 1506 – 1516.

[5] Z. Deng, Z Yin, and Y Xiong., 2007 High probability

impulse noise-removing algorithm based on

mathematical morphology in IEEE Signal Process

Lett. Page(s): 31-34.

[6] Young Sik Choi, Krishnapuram, R., 1997, A robust

approach to image enhancement based on fuzzy logic

in IEEE Transactions on Image Processing, Volume: 6

Issue: 6, Page(s): 808 - 825,

[7] Yuewei Lin, Bin Fang, Yuanyan Tang, 2010, Image

Restoration Using Fuzzy Impulse Noise Detection and

Adaptive Median Filter in Chinese Conference on

Pattern Recognition, Page(s): 1 - 4 .

[8] Haixiang Xu, Xiaorui Yue, 2009, An Adaptive Fuzzy

Switching Filter for Images Corrupted by Impulse

Noise in Sixth International Conference on Fuzzy

Systems and Knowledge Discovery Volume: 3,

Page(s): 383 – 387.

[9] Nachtegael, M., Schulte, S., Van der Weken, D., De

Witte, V., Kerre, E.E., 2005. Fuzzy filters for noise

reduction: the case of gaussian noise in The 14th IEEE

International Conference on Fuzzy Systems, FUZZ

'05. Page(s): 201 – 206.

[10] Van De Ville, D., Nachtegael, M., Van der Weken, D.,

Kerre, E.E., Philips, W., Lemahieu, I., 2003. Noise

reduction by fuzzy image in IEEE Transactions on

Fuzzy Systems Volume: 11 , Issue: 4 Page(s): 429–

436.

[11] H.Haussecker and H.Tizhoosh,1999 Handbook of

Computer Vision and Applications, Page(s): 708– 753.

