
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

34

Finding Proneness of S/W using Class Hierarchy Method

Prof. Malan V. Gaikwad
Bharati Vidyapeeth Deemed

University COE, Pune.

Prof. Akhil Khare

Associate Professor
 Bharati Vidyapeeth Deemed

University COE, Pune.

Prof. Aparna S. Nakil
Asst. Professor

Sinhgad College of
Engineering Pune.

ABSTRACT

When it is requiring, releasing a new version of software it is

helpful to take reference of old version. If developers know in

advance which classes or methods of software may be change or

will cause faults then developers can focus more on these

classes.

It is require identifying classes at earlier stages of development

which may cause changes or faults in other classes, so that those

classes can be given special attention. The technique presented

here improves the quality and reliability of the software. To

achieve corrective and adaptive maintenance we require making

changes during the software evolution. It is important to analyze

the frequency of changes in individual classes and also to

identify and show related changes in multiple classes as these

changes are key components of software.

Prediction of change-prone and fault prone classes of a software

is an active topic under research in the area of software

engineering. Such prediction can be used to predict changes and

faults in different classes of a system from one release to the

next release of software. Finding the change-prone and fault

prone classes from software in advance can help the developers

to focus more attention on these classes.

The proposed model presenting a technique for finding

dependency of software, change-prone classes and fault-prone

classes of Object Oriented Software.

Keywords

Fault-Proneness, Change-Proneness

1. INTRODUCTION
In a recent research work, they used the probabilistic approach

to predict the probability of changes in any object oriented

software that might produce nearly accurate results for change

proneness, but the process is seems to be bit lengthen. The

proposed work presents a class hierarchy method which is easier

and correctable as compared to other relevant methods.

The classes have a tendency to change and cause a fault in other

classes are termed as change-prone and fault-prone classes. The

detection of fault prone and change prone classes in early stages

of development can enable the developers and experts to spend

their valuable time and resources on these areas of software. In other research work, they used clustering, fuzzy and coupling methods to find the fault proneness of class, which is bit complex to understand. Thus in this work we are presenting a technique that uses the software metrics and finds the fault-proneness.

The proposed model is used for predicting the change prone

classes and finding a probability of change-proneness by using

class hierarchy method. In previous work of probabilistic

approach they are taking dependencies of classes directly from

UML diagrams and then change-prone classes are identified. In

proposed work dependencies between the classes are identified

by using class hierarchy method by traversing all classes, sub

classes, and inherited classes. These dependencies are used to

construct adjacency matrix and adjacency list which can be then

used to find change-prone classes and probability of change-

proneness.

In this historical approach the model reading all class names and

their contents and keeping both in double dimensional array

where each class name is binding with its contents in the

respective matrix cell.

The model finds the fault-prone classes and fault-proneness by

using OO metrics. The metrics like Weighted Methods per

Class, Response for class, coupling between Objects are used to

find the fault-proneness of classes. As the RFC is high then the

fault-proneness is high. In the proposed model a class hierarchy

method is used to find the fault-proneness. To find metrics of

classes the source packages are taken as input and by reading all

classes of package the metrics are calculated. After finding all

metrics the model constructs the adjacency matrix of s/w metrics

and classes. Then the model detects whether the classes are high

fault-prone or very high fault-prone or medium or low fault-

prone by using adjacency matrix and centroid formula.

2. LITERATURE SURVEY
Several researchers have proposed several modules which are

used to find the change-proneness and fault-proneness of OO

software. Let’s see some works out of these.

Arnold and Bohner [1] propose a model for change propagation.

Several tools and techniques based on code dependencies and

algorithms like slicing and transitive closure to assist in code

propagation are demonstrated. The proposed methodology

represents a system as a set of data dependency graphs. Graves

et al. [2] represents model that finds the change-history of the

system to be a better predictor than code metrics. In that model,

Graves et al. assign weights to the perceived changes, with the

most recent receiving the most. These weighted values provide a

trend that is used to predict the number of faults in an upcoming

period. Girba et al.[3] proposes an approach that consists of

identifying the classes that were changed the most in the recent

history and at the same time checking whether the same classes

are among the most changed ones in the successive versions.

However, in this only the addition or removal of methods is

considered as changes. Mockus and Weiss [4] proposed a model

to predict faults in a software system based on information

extracted from changes to the system (e.g., lines of code

modified, the changed components, etc.). Arisholm et al.[5]

makes the use of dynamic coupling measures as indicators of

change proneness. Their approach is based on correlating the

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

35

number of changes to each class with dynamic coupling

measures and other class-level size and static coupling

measures. C. Catal, U. Sevim, and B. Diri [6] use clustering

methods to find fault-proneness. X-means and fuzzy C-means

algorithms are used to find fault-proneness. The centroid method

is used to find the clusters center that is used for prediction of

fault.Toshihiro Kamiya, Shinji Kusumoto and Katsuro Inoue [7]

makes the use of OO s/w to find the fault. Completeness,

correctness methods are used.

Sunint K. Khalsa [8] explains use of fuzzy algorithm

to find fault-proneness. Fuzzy system model uses CK-metrics

and defect density metrics to find fault-proneness. In fuzzy

system metrics are given as input parameters which are

converted into fuzzy values then defuzzyfication module maps

these to crisp (original) values. Analysis of fault-proneness is

done as whether it is low, high, higher, or vlow depending onto

the ck-metrics. Parvinder S. Sandhu, Satish Kumar Dhiman,

Anmol Goyal [10] applies the genetic algorithm to find fault –

prone classes in different generations of s/w development.

3. PROPOSED METHOD

3.1 Change-Proneness
The proposed model of change-proneness by using hierarchical

method is explained in detail in paper [12]. Here we will see

only important aspect of change-proneness.

In this approach we are concentrating not only the classes but

also the class components.

Figure 1 Proposed model of change-Proneness

 Proposed method involves following Analysis methods-

1. Find whether the internal changes in class

2. Find the dependencies between classes

3. Construct the adjacency matrix

4. Create the adjacency list depending onto the adjacency

matrix

5. Construct the graph of dependency list

6. Find the change prone classes

7. Find the change proneness of a class(using

probability)

3.1.1 Internal changes
The programmer or designer or a person involved in that project

may make changes in project. Changes made in class are

internal changes of that class; change is local to that class only it

will not affect on any other class which is depending or

inheriting from that class. When the change made in class is

affecting to other class then it is external change to that class.

3.1.2 Adjacency matrix

In previous work different technologies and algorithms are used

to find change-prone classes and change-proneness, which are

bit complex. The proposed model uses easier and faster class

hierarchy method to find the change prone classes. Module

identifies the dependencies between classes and constructs a

matrix.

In this approach we are considering no of different classes as a

nodes of graphs and then depending on to these nodes we are

constructing graphs.

Figure 2 Adjacency Matrix algorithm

Suppose there are three classes A, B, C and class B is depending

on to the class B, class C is depending on to the class A. then we

can show the dependency graph just like this.

Figure 3 Dependency graph for class A, B, C

Adjacency matrix is a two dimensional array which stores the

values 0 and 1 for graph. for the matrix each cell a[i][j]=1 if

there is an edge i j and a[i][j] = 0 if there is not edge in

between I and j. so for above graph the dependency using matrix

we can show as following. AB=1 and BC=1 as there is

edge between them.

A B C

Find internal

change in classes

Construct matrix

depending on to the

hierarchy of classes

Construct Adjacency

list depending on to

the matrix

Find dependencies

between classes and

change prone classes

of each and every

class

Construct graph and

calculate probability

of change proneness

Adjacency Matrix Algorithm

 Start

 Take array for matrix creation

 Read classes

 Find class name as a substring in all classes

If substring found then

 Place 1 in array as matrix component

 Otherwise place 0 in matrix

 Display matrix

 End

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

36

Figure 4 Adjacency matrix for Figure 3

Adjacency matrix provides good solution for dense graphs,
which implies having constant number of vertices.

3.1.3 Adjacency list

The adjacency list stores a list of vertices for every vertex in

the graph which are adjacent to current vertices.

Figure 5 Adjacency List algorithm

A graph is stored in more compact form in adjacency list than

adjacency matrix. Adjacency list is a good solution for sparse
graphs.

Figure 6 Adjacency List for Matrix in Figure 4

Although there are disadvantages of both matrix and list, but

here in my proposed model I used both the adjacency matrix

and the adjacency list to get the desired output.

And finally the dependency and classes which are change prone

to the particular class are identified. The probability of change

proneness is calculated by using probability method.

P (D) = P (D) +P (D|C)*P(C) - P (D)*(D|C)*P(C) [9]

The P(D) is internal change in D is 0.5,P(C) is internal change in

C is 0.5,P(D|C) is change propagating from C to D is 0.25.

Suppose there are four classes 0,1,2,3. Dependencies found by

module for classes are 01, 12, 30, 31, 32.

The result of change proneness generated by module is-

Table 1 Results generated by Change-proneness Module

Class No. Change-Proneness

0 0.5703125

1 0.5625

2 0.5

3 0.9960667

3.2 Fault Proneness
When new releases of software are needed to generate it is times

consuming task to the testers to test the new generations of

software. if testers will know in advance which classes of

methods are fault-prone and its fault proneness then they can

concentrate on to these classes. It results saving of time.

 In the proposed model of finding the fault proneness, the fault-

prone classes are identified by using the OO metrics like

weighted methods per class (WMC), Coupling between objects

(CBO), Response for class (RFC). The metrics are calculated

and matrix is created depending on to the calculated metrics.

Figure 7 Proposed model to find Fault-proneness of class

Get source

package

Find the WMC,

CBO, RFC

metrics of

classes

Construct

matrix

depending on

to the metrics

of classes

Find

dependencies

between

classes and set

range for

different

metrics of

classes

Identify fault-

prone classes

depending on

to the

dependency

and OO

Metrics

Find fault-

proneness

of class

depending

on to the

OO metrics

1

0 2

1

 0

 1

 2

 5

A B C

0 1 0

1 0 1

0 1 0

A

 B

 C

Adjacency List Algorithm

Start

Read classes from matrix

Find substring in matrix

If substring found then

Place class no array as list component

Display list

End

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

37

WMC-the number of classes in each class is the weighted

methods of that class.

RFC-is the number functions that are called by another classes

and member functions.

Figure 8 proposed model for fault-proneness of classes of

different releases.

Figure 9 Fault-Proneness algorithm

CBO-is the number of classes coupled to the given class. The

coupling may be afferent coupling or efferent coupling. Efferent

coupling is the number of classes that the measured class is

depended upon and afferent coupling is the number of classes

that depends upon the measured class.

After Calculation of WMC, RFC and CBO I am creating their

matrix, where each row represents the class name and column

represents their respective value of WMC, RFC and CBO. Then

by observing the above matrix we need to set the parameter

range for metrics, like Very low, Low, Medium, High and very

high. To find fault proneness of class we need to set a range and

to find fault-proneness of different releases no need to set a

range of metrics.

Then by using knowledge base we will calculate the very low

and very high parameters of the object oriented matrix and then

by using centroid method equation we calculate fault proneness.

Centroid method equation used in our fault prone module is.

((wmclow*wmchigh) + (rfclow*rfchigh) + (cbolow*cbohigh))

 (Wmchigh+rfchigh+cbohigh)

Consider the following figure where we are considering the last

release of the software, in our case it is third generation.

 From the third generation matrix first we will get the

sum of all WMC and CBO of the matrix that is equal

to 17.00

 Then gets the average by dividing sum from number

of classes that is 17/ 4= 4.25.

 And then we consider average * 2 (that is 8.5=da)as

the maximum value for any class.(here value refers to

the sum of WMC+CBO of any class).

 then for the first class value=3 then we did like (3/8.5)

then we get its faultness that is 0.3529

 This will be continuing for all classes.

 And we consider a class as low faulty which gives a

value b/w 0 to 25% of da that is 0 to

2.125(8.5*0.25=2.125)

 And we consider a class as Medium faulty which

gives a value b/w 26 to 50% of da that is > 2.125 to <=

4.25(8.5*0.5=4.25)

 And we consider a class as High faulty which gives a

value b/w 51 to 75% of da that is >4.25 to <=

6.375(8.5*0.75=6.375)

And we consider a class as Very High faulty which gives a value

b/w 76 to100% of da that is >6.375 to <= 8.5(8.5*1.0=8.5)

Table 2 Fault-Prone Result

Class no WMC RFC CBO

0 2 4 1

1 2 9 1

2 7 7 0

3 1 12 3

Get source

packages
Find the WMC, CBO,

RFC metrics of

classes

Construct matrix

depending on to the

metrics of classes

Identify fault-prone

classes and fault-

proneness of different

generations of classes

depending on to the OO

Metrics

 Fault proneness Algorithm

 Start

 Read source package

Get all class names and contents

Get all class dependencies

Find the Weighted Methods per Class

Find response for class

Find coupling between the objects

Construct adjacency matrix for metrics

Get range of matrix to find fault-proneness

If range is between some range

Then fault-proneness is low, high,

medium or very high

Print whether FP is high, low, very high, and medium

By using metrics values Find fault-proneness

End

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

38

Figure 10 Result of Fault-Proneness model

4. CONCLUSION
In previous work all data which required is taken manually and

from UML diagrams. The methods used by various peoples are

difficult to understand and quite complex to implement.

The proposed method of using class hierarchy method is too

simple to understand and implementation. And one important

thing is that I have not taken any data manually, it is calculated

by this model only. The proposed model finds change-prone

classes and change-proneness of classes and fault-prone classes

and fault-proneness of classes. The previous works takes the

OO metrics directly from the tools available for finding the s/w

metrics but the proposed model finds the S/w metrics by using

class hierarchy method.

5. REFERENCES
[1] R. Arnold and S. Bohner, “Impact Analysis – Toward a

Framework for Comparison,” in Proceedings of the IEEE

International Conference on Software Maintenance

(ICSM), 1993, pp. 292–301.

[2] T. L. Graves, A. F. Karr, J. S. Marron, and H.

Siy,“Predicting fault incidence using software change

history,”IEEE Trans. on Soft. Eng., vol. 26, no. 7, pp. 653–

661,2000

[3] T. Girba, S. Ducasse, and M. Lanza, “Yesterdays Weather:

Guiding Early Reverse Engineering Efforts by

Summarizing the Evolution of Changes,” in Proceedings of

the IEEE International Conference on Software

Maintenance (ICSM), 2004, pp. 284–293

[4] A. Mockus and D. M. Weiss, “Predicting risk of software

changes,” Bell Labs Technical Journal, vol. 5, no. 2, pp.

169 – 180, April 2000.

[5] E. Arisholm, L. Briand, and A. Foyen

[6] , “Dynamic Coupling Measurement for Object-Oriented

Software,” IEEE Trans.on Soft. Eng., vol. 30, no. 8, pp.

491–506, 2004.

[7] Software Fault Prediction of Unlabeled Program Modules

by C. Catal, U. Sevim, and B. Diri, Member, IAENGin the

Proceedings of the World Congress on Engineering 2009

Vol I

[8] Software Fault Prediction of Unlabeled Program Modules

by C. Catal, U. Sevim, and B. Diri, Member, IAENG in the

Proceedings of the World Congress on Engineering 2009

Vol I

[9] A Fuzzified Approach for the Prediction of Fault Proneness

and Defect Density in the Proceedings of the World

Congress on Engineering 2009 Vol. I WCE 2009, July 1 -

3, 2009, London, U.K. by Sunint K. Khalsa

[10] Change Prediction in Object-Oriented Software Systems: A

Probabilistic Approach by Ali R. Sharafat and Ladan

Tahvildari in Journal of software vol. 3, no. 5, may 2008.

[11] A Genetic Algorithm Based Classification Approach for

Finding Fault Prone Classes in the World Academy of

Science, Engineering and Technology 60 2009 by

Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal

[12] Predicting the Probability of Change in Object-Oriented

Systems Nikolaos Tsantalis, Alexander Chatzigeorgiou, in,

in IEEE Transactions on software engineering, vol.31, no.7,

July 2005.

[13] ”Class hierarchy method to find change proneness” by

Malan V.Gaikwad, prof. Akhil khare, A.S.Nakil in the

International journal of Computer Science and Engg.Vol.3

issue 1.

