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ABSTRACT   
The wavelet transform as an important multi resolution analysis 

tool has already been commonly applied to texture analysis and 

classification. Mathematical morphology is very attractive for 

automatic image segmentation because it efficiently deals with 
geometrical descriptions such as size, area, shape, or 

connectivity that can be considered as segmentation-oriented 

features. This paper presents an image-segmentation system 

based on some well-known strategies implemented in a different 

methodology. The segmentation process is divided into three 

basic steps, namely: texture gradient extraction, marker 

extraction, and boundary decision. Texture information and its 

gradient are extracted using the decimated form of a complex 

wavelet packet transform. A novel marker location algorithm is 

subsequently used to locate significant homogeneous textured or 

non textured regions. The goal of boundary decision is to 
precisely locate the boundary of regions detected by the marker 

extraction. This decision is based on a region-growing algorithm 

which is a modified flooding based watershed algorithm. 

 

General Terms 
Image Processing, Pattern Recognition, Image Segmentation 

 

Index Terms  
Texture analysis, image segmentation, wavelet transforms, 

texture gradient, watershed transform 

 

1.   INTRODUCTION 
Texture provides vital information for many image segmentation 

tasks. The last three decades has witnessed extensive research on 

texture segmentation [1-5]. In the 1980s, most traditional 
approaches included gray level co-occurrence matrices (GLCM) 

[6], second-order statistic method[7.], Gauss–Markov random 

field [8], and local linear transform[9], where operations were 

restricted to the analysis of spatial relations between 

neighborhood pixels in a small image region. Hence, their 

performance is the best for the class of so called micro textures. 

Study on human vision system indicates that the 

spatial/frequency representation, which preserves both global 

and local information, is adequate for quasi-periodic signals. 

This observation has motivated researchers  to develop the multi 

resolution texture analysis models, such as the wavelet transform 
[10-14] and the Gabor transform [15-19]. The commonly 

adopted multi resolution analysis approach is to transform a 

texture image into a local spatial/frequency representation by 

convolving this image with a bank of filters with some tuned 

parameters. The wavelet transform and the Gabor transform are 

the most popular multi resolution methods. When compared to 

the wavelet transform, the Gabor transform needs to select the 

filter parameters according to different texture. There is a 

compromise between redundancy and completeness in the 

design of the Gabor filters because of nonorthogonality. The 

effect of the Gabor transform is also limited to its filtering area. 

Consequently, we chose the wavelet transform to obtain the 

spectral information of the texture image.  

It has been shown that the texture features which can 
effectively define directional and spatial/ frequency 

characteristics of the patterns lead to good texture analysis 

[20]. The Dual Tree Complex Wavelet Transform 

(DTXWT) [21] is an over complete wavelet that provides 

both good shift invariance and directional selectivity over 

the discrete wavelet transform(DWT) and is 

computationally faster than the Gabor transform. However, 

it is not suitable for textured images where the dominant 

frequency channels are located in the middle frequency 

channels. Therefore an appropriate way to perform wavelet 

transform for textured image is to use the concept of tree-

structured wavelet transform or wavelet packets. To exploit 
the advantages of these, we have taken in this work the 

combined transform ie dual tree complex wavelet packet 

transform. 

The watershed transform based segmentation approach 

works on morphological principles [22-25]. If we regard a 

grayscale image as a topographic relief, the gray value at a 

given location represents the elevation at that point. If this 

relief is to be flooded, the water will fill up lower elevation 

points first, and then the water level will increase. When 

water coming for two different regions meets, a watershed 

is created. The different regions that were flooded are 
called catchment basins. If this process is applied to a 

gradient image (in which each pixel corresponds to the 

modulus of the gradient at a particular point), the 

watersheds correspond exactly to the crest lines of the 

gradient, which are associated with the edges of the image. 

Therefore, the catchment basins are the segmented objects 
in the image. The main disadvantage is that for most natural 

images the watershed transformation produces excessive 

over-segmentation caused by spurious gradients. Marker 

based segmentation is one of the best solutions to reduce 

oversegmentation. 

We have used a novel marker based solution by flooding 

basins from certain sources only rather than the minima. To 

achieve better segmentation performance we have adopted 

a modified flooding algorithm incorporating a technique 

based on sequential repeated scan which is described in 

detail in this paper.  

This paper is organized as follows. In section 2 we briefly 

review the dual tree complex wavelet transform, wavelet 

packet transform and texture gradient extraction 

methodology. Section 3 focuses on the novel algorithm for 

creation of marker image and the modified watershed 

algorithm. Experimental results are shown in section 4. 

Section 5 concludes with future works.  
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2.    TEXTURE GRADIENT 
The watershed technique is a region-growing algorithm that 
analyzes an image as a topographic surface. It detects the 

regional minima of the gradients in the gray level image and 

grows these minima according to the gradient values. 

Traditionally the gradient image is derived from the change in 

gray level intensity under the perception that region boundaries 

are likely where the intensity gradient is large. To use texture 
boundaries for segmentation of textured images, texture gradient 

introduced by Hill et al [26-27] is used in our work. Compared 

to [26], the texture gradient computation method is implemented 

as follows: 

The decimated dual tree complex wavelet packet transform 
(DDTXWPT) representation is used for simplicity, reduced 

redundancy and reduced computational complexity. Separable, 

orientation-adaptive weighted median filtering is used for post 

processing of texture features. 

2.1. The Dual Tree Complex Wavelet Packet 

Transform: A Review 
Complex wavelet transform introduced by Kingsbury has been 

found to solve the problems of DWT namely lack of shift 

variance and redundancy.  But since the filters work with 
complex coefficients, achieving perfect reconstruction beyond 

the first level of decomposition was a major issue. For many 

applications it is necessary that the transform be perfectly 

invertible. Hence the enhanced version of this was introduced as 

dual tree complex wavelet transform(DTXWT) which was able 

to retain the attractive properties of complex wavelets as shift 
invariance, good directional selectivity, limited redundancy and 

efficient N- order computation. The DTXWT comprises of two 

parallel wavelet filter bank trees that contain carefully designed 

filters of different delays that minimize the aliasing effects due 

to down sampling. However it decomposes a signal into a set of 

frequency channels that have narrower bandwidths in the lower 
frequency region. The transform is suitable for signals consisting 

primarily of smooth components so that their information is 

concentrated in the low frequency regions. However, it may not 

be suitable for texture signals whose dominant frequency 

channels are located in the middle frequency region. Thus, an 
appropriate way to perform the wavelet transform for textures is 

to detect the significant frequency channels and then to 

decompose them further. The ideal method to achieve good 

frequency localization whilst retaining the structure of a discrete 

decomposition is the so called wavelet packet transform 

decomposition (DWPT). But the real wavelet packet transform 
is not shift invariant, which produces artifacts. Also, it is not 

rotation invariant because of its separability. Hence the 

integration of these or the dual tree complex wavelet packet 

transform  has been used in our work [28]. 

 

The wavelet packets introduced by Coifman et al. [29] 
represents the generalization of the method of multi-resolution 

decomposition. In pyramid structured wavelet transform, the 

wavelet decomposition is recursively applied to the low 

frequency sub bands to generate the next level hierarchy. The 

key difference between the traditional pyramid algorithm and the 

wavelet packet algorithm is that the recursive decomposition is 
no longer applied to the low frequency sub-bands. Instead, it is 

applied to any of the frequency bands based on some criterion, 

leading to quad tree structure decomposition The concept of 

wavelet packet bases has 

been generalized to obtain multiresolution decomposition of an 

image. A given function, say 0Θ , can be used to generate a 

library of wavelet packet basis functions { }
Nqq ∈

Θ as follows: 
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where the function 0Θ and 1Θ can be identified with the 

scaling function φ  and the mother wavelet ψ , 

respectively. Equation (6) uniquely defines a library of 

wavelet packet bases as a set of orthonormal basis functions 

of the form ( )kxq −Θ 12   Each element in the library is 

determined by a subset of indices l, k, and q, which 

corresponds to the scaling, dilation, and oscillation 

parameters, respectively. A set of 2-D wavelet packet basis 

functions can be obtained from the tensor product of two 

separable 1-D wavelet basis functions in the horizontal and 

vertical directions. 

 
Full wavelet packet decomposition at every scale will 

produce a large number of coefficients. Therefore, only the 

dominant frequency channels based on Shannon’s entropy 

criterion are used. The best-basis wavelet packet tree is 

computed as follows 

(i) Decompose a given image into four sub-images by 

convolution and decimation with a pair of  QMF’s, as 

shown in figure 2. The given image can be viewed as parent 

node and sub-images as the children nodes of a tree. 

(ii) Compute the Shannon’s entropy ( )iε  of the parent and 

children of this tree using equation (8). 

(iii) If the sum of the entropy of four children nodes is 
higher than the entropy of parent node, then decomposition 

for this parent node is aborted. 

(iv) If the sum of entropy of children nodes is lower than 

entropy of parent node, then above decomposition is further 

applied to each of the children nodes. 

 

2.2 Texture Gradient Derivation 
The aim of our work is to compute the texture gradient 
from these subband images which can be used for 

classification and segmentation. The integration of the 

gradient images formed from the subbands is the simplest 

option. But a simple summing of the gradient images will 

not produce the desired texture gradient. The solution is to 

smoothen the texture subband magnitudes before the 

application of the gradient operator. In this case, the 

“noise” in question is any wavelet response with a small 

spatial extent—indicating a local edge rather than an 

extended area of texture.  Median filtering is well known as 

a nonlinear edge-preserving smoothing or noise removal 
technique.  

The median filtering should reflect the size of the edges in 

the complex subbands produced by simple intensity 

boundaries. For this, we used a separable direction oriented 

weighted median filter. As indicated earlier, the aim is to 

preserve the step and provide smoothing. One method that 

tends to preserve 2-D step discontinuities well is to filter a 

2-D signal along the horizontal direction with a 1-D median 

filter and then filter the result along the vertical direction 

with another 1-D median filter or separable median 

filtering, and is often used in 2-D median filtering 

applications. The first median filter neighborhood extends 
in a line normal to the subband orientation. By choosing the 
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direction orthogonal to that of the artifact, the extent of the 

median filter may be minimized. This is desirable, as it avoids 

over smoothing and retains as much of the fine structure as 

possible, while at the same time minimizing computation. A 

second pass is then made with a neighborhood at right angles to 

the first (i.e., parallel to the subband orientation) to reduce noise. 

The replacement is computed using the weighted median filter 

supported with the directional information.  The  smoothing 

performance obtained by the separable oriented weighted 

median filter is indicated in Fig 1 (b). 

 

              
 
          Figure 1 (a) DTXWPT subband       (b) Directional 

Weighted     Median filtered output 
  

The filtered texture subbands are all up-sampled using simple 

linear interpolation , to give a set of images of identical 

dimensions. The filtered texture subband images are now 

suitable for gradient extraction. The gradient operator 

approximation used is the commonly used Gaussian derivative 

function. To obtain the combined gradient within the 

multidimensional feature space, we sum the gradients obtained 

for each of the individual subbands.  

 

TG (x,y)= ∑
=

n

i i

i
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                                                  (2) 

 
where TG(x,y) is the overall texture gradient, TGi(x,y) is that of 

each median filtered subband  normalized by its l2 norm energy . 

 

 In smooth regions, texture gradient may not give 

satisfactory results as intensity gradient dominates texture 

gradient. So intensity gradient modulated by a measure of 
texture activity also has to be taken into account. The aim is to 

suppress the intensity gradient in textured areas but leave it 

unmodified in smooth regions. When the texture gradient is then 

added, the combined result will be dominated by intensity 

gradient in smooth regions and texture gradient in textured 

regions, as required. The intensity gradient of the input image is 

obtained using the Gaussian derivative function and normalized 

by its l2 norm energy. Scaling as required for increasing the 

dynamic range of the values to suit the texture gradient values is 

done before summing the intensity gradient and texture gradient. 

The results obtained are presented in section 4. 

 

3. MARKER SELECTION AND 

WATERSHED ALGORITHM 
Watershed algorithm is a mathematical morphology tool for 

image segmentation.  The concept of watershed is based on 

visualizing an image in three dimensions, two spatial 

coordinates versus gray level. From, such a “topographic” 

interpretation we have to find the divide lines or watershed lines, 

which divide this topographic surface into catchment basins or 

watersheds. Ideally, there would be one (perceptual) region of 

the image for a single corresponding local minimum in the 

gradient function. However, factors like noise and other small 
structures in the image function can cause fluctuations in the 

gradient surface, resulting in the presence of many local minima. 

The solution often proposed is to use a marker-based watershed, 

transposing the problem to that of marker selection. The 

impact of noise in the gradient image has been smoothened 

to a large extent by the methodology in section 2. For 

reducing the effect of over segmentation due to the 

presence of small structures, we have developed a novel 

marker selection algorithm wherein size plays a major role 

in deciding the regional minima. 

 

The aim of marker identification is to identify regions that 

are homogeneous in terms of texture, color and intensity 

and of a significant size. To meet these criteria a minimum 

region size, moving threshold and region growing method 
was adopted as shown in Algorithm 3.1. This is similar to 

the strategy adopted in [26] but we have chosen the median 

for threshold computation instead of mean as median is not 

affected by outliers when compared to mean. This 

algorithm calculates the median and standard deviation of 

the gradient image (TG). Then several thresholded binary 

images are produced at reasonably spaced thresholds using 

the median and standard deviation of  TG. For each binary 
thresholded image, the number of closed and connected 

regions greater than the given minimum size is calculated. 

The threshold with the maximum number of connected 
regions is used as the output marker image.  

 

Algorithm 3.1: 

 

%%% msize =minimum marker size %%%. 

%%% G = input gradient image%%% 
std = standard deviation of G 

median = median of G 

thresh[11]={-0.5,-0.4,-0.3,-0.2,-   

0.1,0.0,0.1,0.2.0.3,0.4.0.5} 

for j = 1:11 

do     {  threshLvl    =  median + thresh[j] *  std 
threshImage   =  getThreshImage(threshLvl,G) 

markerImage[j]=getConnectedRegionsLessThan(msize) 

regionNumber[j]=noofRegions(markerImage[j])} 

indexLow= minValue(regionNumber) 

return (markerImage(indexLow)) 
 

The key parameter in deciding the regions obtained through 

segmentation is the minimum acceptable marker area which 

varies across images. We present the observations in 

section 4.  

To implement the watershed algorithm, we have adopted a 
different strategy of using appropriate arrays to store the 

labels and a repeated sequential scan based method for 

labeling as indicated in algorithm 3.2. 

 Algorithm 3.2: 

 

%%%%Initialization:%%%% 
Input image: The marker image, f 

Output image: s 

%%% arrays v and s initialized to zero%%%% 

Initialize arrays v and s to zero. 

vmax,smax,fmax= Infinity. 

Currentlabel=0 

min=0, smin=0 

Scan the image from top left and bottom right. 

Step1, step2, step 3 are done sequentially till no change  

is made in v and s. 

 
Step1  
%%%% edges of non local minima plateaus%%%% 

Scan the image from top left to bottom right and execute 
the following  
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if v(i,j) ≠1. 

{ 

In each 3*3 window, check all the neighbors of f(i,j).  

If any of the neighbors of f(i,j) is less than f(i,j),  

v(i,j) is set to1. 

} 

 

Step 2 

%% %% the inside of non-local minima plateaus%%%% 

Scan the image from top right to bottom left and execute the 

following 

 if v(i,j) ≠1. 
{min= vmax 

  In each 3*3 window, check all the neighbors of f(i,j).  

  {if any neighbor pixel of f(i,j) and f(i,j) are equal and 

corresponding neighbor pixel of v(i,j) >0 

   {  {If any neighbor pixel of v(i,j) < min 

       min= the neighbor pixel of v(i,j) 

        } 

If min ≠ vmax and v(i,j) ≠ min +1 

{v(i,j) = min + 1 } 

     } 

} 
 

Step3 

%%%%: local minima plateaus %%%%% 

Scan the image from top right to bottom left and execute the 

following : 

if v(i,j) = 0. 
{ min = smax 

    If  any neighbor pixel of f(i,j) and f(i,j) are equal and 

neighbor  pixel of s(i,j) >0 

{ If neighbor pixel of s(i,j) < min  

   { min = neighbor pixel of s(i,j) 

[p,q] = pixel position of the above neighboring pixel of s(i,j) 
    } 

If s(i,j) = 0 

    {If min ≠ smax 

           {  s(i,j) = s(p,q) 

   Currentlabel = Currentlabel + 1 
            else If 

{min ≠ smax and s(p,q) < s(i,j) 

         s(i,j) = s(p,q)} 

          } 

} 

else  
         If v(i,j) = 1 

%%%%  edges of non- local minima plateaus %%%%% 

{min = fmax 

      smin = smax 

     If  any neighbor pixel of f(i,j) < f(i,j)  

       {(If  any neighbor pixel of f(i,j) < min or  any neighbor 
pixel of f(i,j) = min) and (any neighbor pixel of s(i,j) > 0 and any 

neighbor pixels of s(i,j) < smin ) 

{ min = neighbor pixel of f(i,j) 

   smin = neighbor pixel of s(i,j) 

 [p,q] =  pixel position of neighbor pixel of s(i,j) } 

} 
 } 

 else 

%%%%comment: the inside of non- local minima 

plateaus%%% 

{min = vmax 

  smin = smax 

   If  any neighbor pixel of f(i,j) and f(i,j) are equal and any 

neighbor pixel of v(i,j) >0 

     { If  any neighbor pixel of v(i,j) < min or  any neighbor 

pixel of v(i,j) = min) and (any neighbor  pixel of s(i,j) > 0 and 

any neighbor pixel of s(i,j) < smin ) 

{ min = neighbor pixel of v(i,j) 

    smin = neighbor pixel of s(i,j) 

  [p,q] = pixel position of the above neighbor pixel of 

s(i,j) 

     } 

   } 

 } 

If smin ≠ smax and s(p,q) ≠ s(i,j) 

{ s(i,j) = s(p,q)}} 

 

 In the above algorithm, two arrays v and s  are 
used. s is an array to store labels, while v is an array to store 

distance from its lower pixels or plateaus. v is used instead 

of  queue to divide non-minima plateaus evenly. The input 

is the marker image obtained from algorithm 3.1. 

Sequential scanning of pixels from top-left to bottom-right 

is done for each step until no values in s and v  are modified 

in the current scanning. We briefly describe the steps 

involved in the segmentation process as given below: 

 

Step 1: Finding the edges of non-local minima plateau. 

Consider each pixel in f.  For a 3x3 neighborhood, if any of 
its neighbors is less than the current pixel, the current pixel 

position in v is set to 1, if it is not equal to 1. If the pixel is 

on a plateau no lower neighbors are found. 

 

Step 2: Finding the inside of non-local minima plateau 

Consider each pixel in f ; For a 3x3 neighborhood, if any of 
its neighbors is equal to current pixel, current pixel position 

in v is 0,  neighbor pixel position in v is greater than 0 , min 

is made equal to the value of the neighbor pixel in v. 

Increment min by 1 and assign to current pixel in v . 

 

Step 3: Finding local minima plateau 
In this step, labels are given to pixels on local minima 

plateaus and those labels are delivered to its neighbors. A 

new label is assigned to each pixel whose v[i,j] is zero if all 

its neighbor pixels with same grey level have no labels. 

This may cause -assignment of new labels to pixels on non-
minima plateaus (if v[i,j] is not calculated yet), and -

assignment of different labels to pixels on same local 

minima plateau. However, those labels are overwritten by 

correct labels in the subsequent scans.  

 

4. RESULTS 
The Brodatz image database with 116 images that have 

significant amount of texture information were chosen for 

performance evaluations. We used 40 textures for our 

experiments which are shown in Fig. 2. Every original 

image is of size 512 x 512 pixels with 256 gray levels. Each 

texture image class was broken down into 100 overlapping 

images of dimension 128x128 sub-samples for 

segmentation purpose.  
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Figure 2 
 

We present the results of our experiments for the various steps 

of texture characterization, post processing, gradient extraction, 

marker extraction and segmentation.  Both qualitative and 

quantitative measures are adopted for comparison of the 

performance obtained for the various test images taken for our 
experiments. 

 

 Texture characterization: In the experiments, for most 

of the images, the feature of DTXWPT is extracted from the 

selected frequency regions in the third scale, three middle and 

high frequency regions in the second scale and three middle and 
high frequency regions in the first scale. For a few images the 

selection was limited to the third scale and first scale while for 

two images  it was entirely from the third scale.  Although 

extensive simulations were done using the above images, only 

four sample images (D1 – D4)  (Fig 3)are chosen for 
demonstration. 

                 

 
D1      D2               D3                         D4 

 

Figure 3 Sample images D1 – D4 

 

The texture feature extraction results for these images are 

presented via table 1. The number of subbands  for dual tree 

complex wavelet packet transforms is of the order of multiples 

of  8. Hence for decompositions beyond second level, the 
number of subbands expands to 512. But since selective 

decomposition is applied, the final chosen list for the above 

images has come down to the presented figures. 
 

 

 

 

 

Table 1 

 
Image  No. of level of 

decomposition 

No. of selected subbands 

Level 

1 

Level 

2 

Level 

3 

Total 

D1 3 4 24 96 124 

D2 2 12 16 - 28 

D3 3 8 16 64 88 

D4 2 6 40 - 46 

 

We present the results of post processing the complex 

packet wavelet sub bands for texture gradient extraction  

quantitatively by the  measurement of PSNR, the peak-
signal-to-noise ratio. 

The PSNR value in each case is calculated by 

( )[ ] 
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where ν(i, j) and ω(i, j) are the gradient vectors at pixel (i, 

j) in the original( complex subband)   and final texture 

gradient images obtained after applying the post processing 

techniques  respectively and MAX denotes the maximum 

possible gradient magnitude in the image. It may be 

observed that the separable directional weighted median 

filter outperforms the ordinary median filtering technique.  

Table 2  : PSNR values of the complex subband of 

image D1 and the texture gradient images 

Original MF WMF DWMF 

12.12 8.14 11.02 13.38 
13.46 10.12 12.46 14.12 
14.24 11.34 13.02 14.98 
15.78 12.42 14.14 16.68 
16.44 12.18 15.12 18.02 

17.98 14.34 17.98 20.12 
19.22 16.76 19.24 22.88 
22.86 18.24 21.14 24.34 

 

 

 

Figure 4 Graphic plot of table 2 

Fig 5 gives a qualitative evaluation of the various texture 

gradient images obtained by combining the normalized 
cumulative gradient image from the subbands and the 

normalized intensity gradient image. The normalized 
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cumulative gradient image was scaled to 3 times the original 

value to increase the dynamic range of the gradient image. The 

normalized intensity gradient image was also scaled to 2 times 

the original value to emphasize the larger gradient values. 

 

        
 

         
 

       
 

    
 

(a)                  (b)   (c)                    (d) 
Figure 5 (a) original images of Cameraman, Lenna, MRI 

brain and ultrasound liver 

(b)  DTXWPT subbands of the above 

(c) Texture gradient images of the above 

(d) Combined gradient images 

 

The segmentation of the texture images shown in Fig. 6 shows 
how the variation of the minsize parameter changes the size of 

the segmented regions. By varying the threshold over the range 

of values mentioned in algorithm 3.1 and retaining only regions 

over a minsize of 1200 pixels we get a reasonable segmentation 

for the texture image in 6.1. Too small values of minsize may 

lead to oversegmentation and vice versa as illustrated by Fig 6. 
However the larger values may lead to separate regions being 

merged. This is a common problem for segmentation algorithms. 

 

     
(a) original image (b) min size= 400 (c) min size= 800 (d) min size = 

1200             (e) min size = 1500     

1 

      
(a) original image(b) min size= 400(c) min size = 800(d) min size = 

1400           (e) min size= 1800 
2 

Figure 6.1 & 6.2 Original and segmented images 
 

The first image we find the best segmentation obtained for the 

min size parameter value of 1200 while for the second case it 

extends to 1400. Summarizing the results obtained for the 

test images chosen for our experiments, we find that the 

min size parameter varies from 1000 to 2000 for proper 

segmentation. In one case, as the no of regions in the image 

was around 9, perfect segmentation was obtained with a 

size of 800.  

The database used for the quantitative evaluation of our 

algorithm  includes 100 real images extracted from the 

Corel database for which manual segmentations provided 

by experts are available. To evaluate the segmentation 

algorithms, various metrics are available based on the 

availability of ground truth images. Segmentation 
evaluation metrics can be divided into boundary-based and 

region-based methods. For region-based evaluation, we 

investigate the widely used Global Consistency Error 

(GCE), as well as the Probabilistic Rand Index (PRI). The 

GCE measures the extent to which regions in one 

segmentation are subsets of regions in a second 

segmentation (i.e. the refinement). The PRI measures the 

consistency of labellings between a segmentation and its 

ground truth by the ratio of pairs of pixels having the same 

labels. The mean over all the human segmentations for an 

image takes their differences into account. As above, we 
plot the mean PRI (over all test images) against the number 

of regions to accentuate the relation between these two 

metrics.  

Table 3 

 
No: of 

regions 

PRI      GCE 

30 0.66 0.14 

70 0.75 0.155 

100 0.79 0.16 

180 0.77 0.12 

200 0.76 0.10 

300 0.76 0.08 

450 0.75 0.07 

    

Figure 7  Plot of the PRI and GCE against the no of 

regions for the test images 
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A striking feature of the PRI and GCE graphs (Fig 7) is the 

difference in the general shapes of the curves as per the number 

of regions. In the PRI graph, it is found that the maximum PRI 

for segmentations into close to 100 regions, and drop for a small 

number of regions. The rapid decrease in the number of regions 

for low PRI is also visible. For the GCE plot, it is important to 

remember that one cannot examine trends in the GCE value as 

the number of regions varies, as this metric only makes sense 

when comparing segmentations into a similar number of regions. 

For this plot, the GCE decreases rapidly for regions beyond 100. 

The highest pixel classification rate was achieved for the 

minsize parameter of 1400 for most of the test images. The 
misclassified pixel rate evaluation measures the average 

overlapping pixels with highest overlapped region to its ground 

truth region without counting over-segmentation or under-

segmentation. One important aspect in region  segmentation 

evaluation is to examine how a region is segmented by a certain 

segmentation algorithm  instead of measuring only misclassified 

pixels or correct regions. Oversegmentation rate indicates 

presence of regions falsely detected along the correct boundary 

or  regions confused in homogeneous regions. The issue of over-

segmentation has been handled by marker based segmentation to 

a large extent as evident in fig 7.  The under-segmentation  rate 
is found to be low generally for all the images. 

 

5. CONCLUSION 
This work focuses on the role of texture gradient in the 
segmentation of textured images. It has used the concept of 

region gradients to produce effective segmentation for natural 

and textured images. The first stage is the use of the combined 

complex wavelets and packet wavelets for feature extraction. 

The second stage proposes oriented weighted median filtering to 

correctly treat edge-responses in the texture features followed by 

computation of texture gradient.  A novel marker selection 

algorithm and watershed segmentation algorithm has been 

proposed.It can be used for the segmentation of natural images 

based on texture and intensity boundaries.The marker selection 

algorithm has been implemented to counteract the problem of 

over-segmentation whilst retaining key gradient boundaries 
whilst giving no small residual regions. Using these algorithms 

with a usual image gradient will often lead to effective 

segmentation for non-texture images. However, the inclusion of 

a texture gradient based on the actual frequency content of the 

image will ensure that differently textured regions will be 

segmented effectively. The method combines the efiiciency of 

morphological segmentation, moving threshold and region 

growing method. Qualitative and quantitative tests have 

confirmed the effectiveness of the method. 
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