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ABSTRACT 
Restricted Neighborhood Search Algorithm or RNSC is a cost-

based clustering technique for clustering the graph into separate 

clusters, where each cluster has some similar properties. The 

properties considered in this case are low inter-connectivity and 

high intra-connectivity in clusters. This is implemented only for 

un-weighted and undirected graphs. This algorithm applies a 

heuristic approach in which we only consider the moves in the 

restricted neighborhood of previous move, i.e., after a move has 

been made the next move will only be allowed in the neighbor 

clusters of that move. After a fixed number of moves we apply 

diversification moves to avoid the solution reaching local-

minima in-spite of global solution. A tabu list is also maintained 

to avoid same moves which it has made in the recent past. This 

technique reduces the run-time of clustering algorithm many-

folds, as it skips those redundant cases which occur multiple 

times and don’t improve the cost of the function. The plus point 

of this algorithm is improvement in run-time due to the data-

structure it is maintaining to update the clustering. The updating 

of the clustering is very fast and thus makes the algorithm fast. 

The paper proposes an effective behaviour analysis of some 

parameters of this algorithm which may help in the future 

modification of this algorithm. For better analysis of RNSC 

algorithm we have used Random Scaled-Free graphs having 

more than 10,000 nodes. Thus in our approach RNSC algorithm 

is successfully implemented in C++ for a graph of more than 

10,000 nodes.   

General Terms 
Graph Clustering, Data mining et. al. 

Keywords 
Graph clustering, Tabu search, Destructive diversification, 

Shuffling diversification, naïve move, Scaled move, Move cost, 

Neighborhood search, RNSC. 

1. INTRODUCTION 
Restricted Neighborhood Search Algorithm (or RNSC) is a cost-

based clustering algorithm. It uses the local search method to 

improve the clustering. The goal is to improve the clusters by 

grouping nodes of high intra-connectivity inside a cluster and to 

keep the inter-connectivity among different clusters minimum. It 

can also be described as dense intra-connectivity of nodes in 

same cluster and sparse inter-connectivity of nodes in different 

clusters. The cost of the current clustering is computed at every 

step and we try to minimize the cost to obtain better clustering. 

After making a move, it searches only in the neighborhood of 

the move to search for the next move. It selects the best move 

available in the neighborhood and takes that move under certain 

parameters, which will be discussed later. The neighborhood of 

the move is described as those moves which either originate or 

terminate at either the source or destination cluster of that move. 

The main advantage of this algorithm is its large list of data 

structure which decreases the run-time. The memory 

requirement of this method is O (n2). This is due to storing the 

graph in adjacency list format which has worst case memory 

requirement of O (n2) when the graph is completely connected. 

Also it searches the next move according to the performance 

criteria, i.e. the cost function. Other algorithms first compute the 

clustering then compute the performance criteria (like in MCL 

[7]). It has also implemented some features to avoid local-

minima by taking some diversification moves, i.e. moves which 

are not in accordance with the local searching technique and 

making a diversification move to scatter the current cluster, as 

we use in search annealing. It also uses a tabu list which 

contains the list of all the nodes recently visited in the running 

called tabu nodes and those nodes are avoided for some time as 

retracing those nodes will not improve much the clustering. For 

further details on the tabu search refer the paper referred in 

bibliography. This algorithm uses the restricted neighborhood 

search heuristic or also called the variable neighborhood search. 

In the current case the two clustering are considered neighbour if 

one can be reached from one cluster to another just by moving a 

single vertex from first cluster to second or vice-versa. The 

moves are allowed to only those clusters in which it already has 

an adjacent node, otherwise that move is discarded because it 

will not improve the cost of the cluster much. Also some to 

empty clusters are made at regular interval, called ghost moves 

to avoid local minima. RNSC is a type of local search algorithm, 

because once a cluster is made, it will only looks at a new 

clustering that it can reach by moving a single node. The 

clustering algorithm uses a local search technique so an optimal 

solution is not guaranteed but we expect better results by 

running the algorithm multiple times on the same graph and 

taking the best clustering out of those experiments. The 

advantage of this algorithm is it first computes the moves and 

then makes the best move available as compared to other 

algorithms where first the move is made then the cluster cost is 

computed. Using this method many moves are avoided which 

increase the clustering cost. The first segment of the paper 

depicts an overview of RNSC algorithm and the Scaled-Free 

graph generator which is used in our comparison. The next 

segment describes all the parameters to be used for comparison. 

In the last section we have provided all the results and 

discussions. 
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2. AN OVERVIEW OF RNSC GRAPH 

CLUSTERING ALGORITHM AND THE 

SCALED-FREE GRAPH GENERATOR  
In our approach we have used two graph clustering algorithms 

and two types of graph generator tools which we will be 

discussing in this segment. 

2.1 RNSC 
Restricted Neighborhood Search Algorithm or RNSC is a cost-

based clustering technique for clustering the graph into separate 

clusters, where each cluster has some similar properties. The 

properties considered in this case are low inter-connectivity and 

high intra-connectivity in clusters. This is implemented only for 

un-weighted and undirected graphs. This algorithm applies a 

heuristic approach in which we only consider the moves in the 

restricted neighborhood of previous move, i.e., after a move has 

been made the next move will only be allowed in the neighbor 

clusters of that move. After a fixed number of moves we apply 

diversification moves to avoid the solution reaching local-

minima in-spite of global solution. A tabu list is also maintained 

to avoid same moves which it has made in the recent past. This 

technique reduces the run-time of clustering algorithm many-

folds, as it skips those redundant cases which occur multiple 

times and don’t improve the cost of the function. The plus point 

of this algorithm is improvement in run-time due to the data-

structure it is maintaining to update the clustering. The updating 

of the clustering is very fast and thus makes the algorithm fast. 

2.2 Scaled-Free graph  
It is also termed as Power-Law [3] and [6] Graph. It is also a 

graph generator tool but it is different from previous tool 

discussed. Scaled-Free [3], [4] and [6] graphs are good models 

for certain type of biological graph, web graphs and other 

naturally-occurring networks. In this graph the vertex degree 

follows a power-law distribution, i.e., there are large number of 

vertices with small degree and few vertices with very high 

degree (these vertices are also called hubs). The Scale free graph 

is represented by the notation GS (n, k), such that, GS represent 

the scale free graph, n is the number of vertices in the graph, k is 

used to construct the graph by the following method: 

Algorithm: 1 Scaled-Free generator (Scaled-Free generator 

code) [3], [5] and [8] 

These graphs are good models for certain type of biological 

graph, web graphs and other naturally-occurring networks. In 

this graph the vertex degree follows a power-law distribution, 

i.e., there are large number of vertices with small degree and few 

vertices with very high degree (these vertices are also called 

hubs).  

The Scale free graph is represented by the notation GS (n, k), 

such that, GS represent the scale free graph, n is the number of 

vertices in the graph, k is used to construct the graph by the 

following method: 

First take i=1, 2…k vertices and make a set out of these and call 

this set GK. For i= k+1, k+2 … n we construct G(i) from G(i-1) by 

adding a vertex i to the graph and joining it to k random vertices 

in G(i-1), choosing a vertex v with probability proportional to 1+  

degG
(i-1)(v) and not allowing multi edges. Thus GS (n, k) contains 

k (n-k) edges. 

Because the way we attach this new vertices to old vertices, the 

order of the vertices with high order are further increased and 

the vertices with low order remain low-ordered. 

3. SOFTWARE DESCRIPTION 
Restricted Neighborhood search algorithm is implemented in 

C++ programming language. The project is compiled using 

make utility. The whole project is divided into modules, each of 

which is responsible for performing a particular function in the 

implementation. The input to the algorithm is an adjacency list 

representation of the graph, which is supplied by input file as a 

command line argument. The algorithm has many parameters 

which can be altered as per the need of the program. All the 

parameters which can be modified are stored in the 

“definition.h” header file. If we need to change the number of 

clusters required or the naïve stopping tolerance, just change the 

value in the definition file and it will be changed in the whole 

program. 

The main parameters which we have put in the (definition.h) file 

are: 

• Number of times the experiment to be performed 

• Number of clusters required 

• Scaled stopping tolerance 

• Naïve stopping tolerance 

• Tabu length 

• Tabu tolerance 

• Shuffling frequency 

• Shuffling length 

• Destructive frequency 

• Amount of display information to be generated 

These parameters can be modified in the definition.h and their 

value will change throughout the program. The number of 

cluster required can be set by the user if he knows the input 

graph and the clustering can be modified. If the input graph type 

is not known then set the value of num_cluster to 0 and it will 

initialize the initial number to the number of nodes. The number 

of cluster decrease as the algorithm progresses to decrease the 

cost of the clustering. Display parameter is set to display the 

amount of information to be generated and shown to the user as 

output. The amount of details generated is proportional to the 

value like: 
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0: minimum details only describing the final clustering 

and the amount of naïve and scaled steps taken. 

1: It displays the above details plus the moves taken at 

every step in reaching the final solution. 

2: It displays the above information and the clustering 

after every function, i.e., scaled and naïve in each experiment. 

3: It displays the complete information of the 

experiment, including the move list at each step. 

• Tabu length [5], [13], [14] and [15], sets the length of 

tabu list to be maintained. Tabu tolerance is the 

maximum number of times a node can be present in 

the tabu list. If a move is present in the tabu list for 

tabu tolerance times then that move cannot be made. 

• Big cost is just a big number which is taken as infinity, 

so that all the values computed in this experiment are 

smaller than that number. 

• Naive stopping tolerance sets the maximum number of 

moves the algorithm can take without any change in 

cost. After these many moves without any change in 

cost the naïve function stops and passes the control to 

the scaled function. 

• Similarly the scaled stopping tolerance is the 

maximum number of moves the program can take if 

there is no change in cost. If the cost has not improved 

in past these many moves then the scaled function 

stops and passes the best clustering so far as the final 

clustering. 

• Shuffling frequency is used as the number of moves 

after which the shuffling moves take place and the 

cluster is shuffled to avoid local-minima. Shuffling 

length is the number of shuffling moves it takes after 

shuffling frequency moves. 

• Destructive frequency is the number of moves after 

which the destructive diversification takes place. 

4. RESULTS AND DISCUSSIONS 

4.1 Results for Scaled-Free Graph 
This section contains all the results and discussions regarding 

Scaled-Free graphs. 

4.1.1 Number of Nodes vs Scaled Cost with varying 

FD 
The table contains computed values of Number of Nodes versus 

Scaled Cost with varying FD for RNSC algorithm. 

 

 

Table 1. Dataset for Scaled-Free Graph 

For a power-law graph of Alpha=2.5 

Number 

of Nodes 

Cost (FD 
=100) 

Cost (FD 
=150) 

Cost (FD 
=200) 

Cost (FD 
=500) 

10000 

1415546

1 

1415613

1 

1415648

6 

1415644

1 

11000 

1727677

4 

1727658

2 

1727723

6 

1727688

7 

12000 

2011671

0 

2011516

7 

2011656

7 

2011552

3 

13000 

2394305

6 

2394470

0 

2394463

6 

2394580

4 

14000 

2767961

1 

2791266

7 

2767885

0 

2768037

6 

15000 

3182116

9 

3181964

9 

3182092

2 

3181916

7 

16000 

3608949

0 

3608857

1 

3608913

4 

3609249

1 

17000 

4094666

4 

4094671

1 

4094872

6 

4094611

4 

18000 

4526777

7 

4526827

3 

4526641

0 

4526651

0 

19000 

5145578

2 

5145650

0 

5145734

0 

5145643

0 

20000 

5633675

6 

5633751

0 

5633796

2 

5633692

3 

 

0

10000000

20000000

30000000

40000000

50000000

60000000

C
o
s
t

Number of Nodes

NUMBER OF NODES vs COST

Cost(FD=100) Cost(FD=150) Cost(FD=200) Cost(FD=500)

 

Fig 1: A line graph representing Number of nodes vs Scaled 

Cost with varying FD. 

Discussion: Fig 1 shows a line graph representing Number of 

Nodes versus Scaled Cost with varying FD for a graph of more 

than 10,000 nodes. This graph shows that there is not much 

change in the cost due to changing the shuffling diversification 

frequency. Changing the shuffling frequency changes the scaled 

moves as shown in the next graph, but there is not much change 

in the cost due to the change in the shuffling frequency. The cost 

is almost similar in all the cases of varying the shuffling 

frequency. But we can observe that as the number of nodes in 

the graph increases then the scaled cost of the clustering 

increases linearly with the number of nodes. This can be shown 

by the cost computation formula, which shows the contribution 

of each node in computing the scaled cost. According to the 
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formula, as the number of nodes increase in the graph the 

corresponding scaled cost in the graph also increases. (FD- 
Shuffling diversification frequency) 

4.1.2 Number of Nodes vs Scaled length by varying 

Shuffle frequency 
The table contains computed values of Number of Nodes versus 

Scaled Length by varying Shuffle Frequency for RNSC 

algorithms. 

Table 2. Dataset for Scaled-Free Graph 

For a power-law graph of Alpha=2.5 

Number 

of Nodes 

Moves(Sh

uffling 

Freq.=100

) 

Moves(Sh

uffling 

Freq.=150

) 

Moves(Sh

uffling 

Freq.=200

) 

Moves(Sh

uffling 

Freq.=50

0) 

10000 5352 2636 3276 2110 

11000 3501 2704 2611 2111 

12000 4749 3311 2658 3025 

13000 5051 3027 3611 2359 

14000 5420 3370 2814 2381 

15000 6150 3305 3457 2597 

16000 4501 5919 3217 2745 

17000 5350 4420 3236 2756 

18000 5000 3860 3728 2946 

19000 5500 3839 3460 2917 

20000 5705 4124 3672 3138 
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Fig 2: A line graph representing Number of Nodes vs Scaled 

length by varying Shuffling frequency. 

Discussion: Fig 2 shows a line graph representing Number of 

Nodes vs Scaled length by varying Shuffling frequency for a 

graph of more 10,000 nodes. For small values of shuffle 

frequency, the scaled length of the RNSC algorithm increases. 

The scaled length is directly proportional to the run-time of the 

algorithm. If we keep the shuffling frequency small then 

diversification takes place after a very small number of steps, 

therefore it takes more steps to reach a global maxima as the 

diversification disturb the process after very small number of 

steps. On the other hand if the shuffling frequency is large then 

diversification takes place after a large number of moves. In that 

case the scaled moves is not increased to that much extent as it 

was due to small shuffling frequency. 

4.1.3 Number of Nodes vs Run-time by varying 

Tabu Length 
The table contains computed values of Number of Nodes versus 

Run-time by varying Tabu Length for RNSC algorithms. 

Table 3. Dataset for Scaled-Free Graph 

For a power-law graph of Alpha=2.5 

Number 

of Nodes 

Run 

Time

(LT=

50) 

Run 

Time

(LT 

=100

) 

Run 

Time(L

T =500) 

Run 

Time(

LT 

=1000

) 

Run 

Time(

LT 

=1500

) 

Run 

Time

(LT 

=200

0) 

10000 0.68 0.71 0.7 0.85 0.72 0.68 

11000 1.15 1.4 1.11 1.07 1.09 1.16 

12000 0.94 1.03 0.99 0.98 1.12 1.02 

13000 1.23 1.32 1.15 1.22 1.22 1.2 

14000 1.92 2.02 2.23 2.17 2.27 2.21 

15000 1.63 1.82 1.77 1.64 1.63 1.8 

16000 1.61 1.7 1.65 1.66 1.66 1.64 

17000 2.29 2.06 2.16 2.29 2.06 2.16 

18000 4.39 4.8 4.3 7.12 5.08 9.5 

19000 3.08 3.04 3.04 3.16 2.96 3.04 

20000 3.38 2.92 2.88 3.24 2.79 2.88 
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Fig 3: A line graph representing Number of Nodes vs Run-time 

by varying Tabu Length. 

Discussion: Fig 3 shows a line graph representing Number of 

Nodes vs Run-time by varying Tabu Length for a graph of more 

than 10,000 nodes. We notice that as the tabu length decreases 

the run-time of the algorithm increases. Therefore large tabu 

length should be used to achieve less time for a particular run of 

the algorithm. As the tabu-length increases the number of moves 

which cannot be retraced increases, so there are fewer choices to 

make for the next move, thus the run-time decreases. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 22– No.6, May 2011 

19 

4.1.4 Number of clusters vs Run time 
The table contains computed values of Number of clusters 

versus Run time for RNSC algorithms. 

Table 4. Dataset for Scaled-Free Graph 

Number of 

Clusters 

Run 

Time(10000

0 Nodes) 

Run 

Time(15000

0 Nodes) 

Run 

Time(20000

0 Nodes) 

5000 2.21 9.32 8.65 

4500 1.88 10.68 10.45 

4000 1.68 12.8 11.76 

3500 1.41 15.32 13.28 

3000 1.74 17.03 14.31 

2500 2.2 19.99 15.38 

2000 2.81 21.97 15.77 

1500 3.22 23.02 16.93 

1000 3.78 21.8 16.14 

500 3.8 20.57 20.35 
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Fig. 4: A line graph representing Number of clusters vs Run 

time. 

Discussion: Fig 4 shows a line graph representing Number of 

clusters vs Run time for a graph of more than 10,000 nodes. The 

RNSC algorithm support for predefinition of the maximum 

number of clusters we want in output. So we compare the 

performance of the algorithm by varying the number of nodes as 

input to the algorithm. If the number of nodes in the graph is 

small then the run-time will be corresponding smaller. As we 

decrease the maximum number of cluster the run-time increases. 

This is attributed due to the fact that as the maximum number of 

clusters decreases then there are few choices for the nodes to 

change cluster. The change in cost due to a move is very small 

and the cost keeps on oscillating in the small-range for long 

time. This increases the run-time of the algorithm as the 

max_cluster decreases. But as we increase the number of nodes 

in the input graph then we observe that for the graph of 2000 

nodes, the run-time comes out to be slightly smaller than the 

run-time of graph of 1500 nodes. This can be due to the reason 

that the number of nodes is appropriate for the tabu list to 

control the number of moves to come out of some local minima, 

thus the run-time is decreased in that particular case. 

5. CONCLUSIONS AND FUTURE WORK 
In our approach we successfully implemented RNSC graph 

clustering algorithm in C++ for graphs having more than 10,000 

nodes. With the help of these graphs we are able to analyze 

behavior of certain parameters of this algorithm. The RNSC 
algorithm implemented is only applicable for un-weighted and 

un-directed graphs. It is a local-search technique so only the 

neighborhood moves are considered at every step, i.e. those 

clusters which can be reached from current cluster by moving a 

single vertex. Since it is a local search technique, it doesn’t have 

a worst-case bound on running time. The worst-case time 

complexity of naïve move is O (n) and that of scaled one is O 

(n2). The number of moves is not fixed and there is no upper 

limit but on observing we can see that the number of moves has 

average time-complexity of O (n). So the total average time-

complexity of the algorithm can be said to be O (n3). The 

performance of this is also aided by the local search techniques 

like tabu list, diversification and multiple experiments. From the 

results we can conclude that the performance is not much 

affected by the choice of the diversification scheme selected. 

Setting LD=FD/3 is a costly choice, we spent twice as much time 

clustering as diversifying. In general, for large diversification 

frequency, destructive diversification will run faster than 

shuffling diversification. Future work will focus in optimizing 

the run time of RNSC algorithm by integrating it with genetic 

algorithm. This algorithm depicts heuristic approach which 

increases its run time so by integrating some portions of it by 

genetic algorithm we may succeed in optimizing its run time to a 

certain effect. This algorithm can be further extended to the 

weighted and directed graphs [5]. In the weighted graphs the 

weight can be added to the cost function and the naïve and 

scaled function will be slightly modified to inherit the change. 

The performance of the algorithm can also be improved by 

parallelizing the task of clustering. Single run of the experiment 

is difficult to divide in thread but different runs of the 

experiment can be threaded to produce result in lesser time. We 

can also apply some other higher-level parallelism to improve 

the run-time of experiment. 
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