
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

15

Implementation and Behavioural Analysis of Graph
Clustering using Restricted Neighborhood Search Algorithm

Mohit Kumar

K. K. Agrawal

Dr. Deepak Arora

Reena Mishra

Department of Computer Science and Engineering,
Amity University, Lucknow,
Uttar Pradesh, India.

ABSTRACT
Restricted Neighborhood Search Algorithm or RNSC is a cost-

based clustering technique for clustering the graph into separate

clusters, where each cluster has some similar properties. The

properties considered in this case are low inter-connectivity and

high intra-connectivity in clusters. This is implemented only for

un-weighted and undirected graphs. This algorithm applies a

heuristic approach in which we only consider the moves in the

restricted neighborhood of previous move, i.e., after a move has

been made the next move will only be allowed in the neighbor

clusters of that move. After a fixed number of moves we apply

diversification moves to avoid the solution reaching local-

minima in-spite of global solution. A tabu list is also maintained

to avoid same moves which it has made in the recent past. This

technique reduces the run-time of clustering algorithm many-

folds, as it skips those redundant cases which occur multiple

times and don’t improve the cost of the function. The plus point

of this algorithm is improvement in run-time due to the data-

structure it is maintaining to update the clustering. The updating

of the clustering is very fast and thus makes the algorithm fast.

The paper proposes an effective behaviour analysis of some

parameters of this algorithm which may help in the future

modification of this algorithm. For better analysis of RNSC

algorithm we have used Random Scaled-Free graphs having

more than 10,000 nodes. Thus in our approach RNSC algorithm

is successfully implemented in C++ for a graph of more than

10,000 nodes.

General Terms
Graph Clustering, Data mining et. al.

Keywords
Graph clustering, Tabu search, Destructive diversification,

Shuffling diversification, naïve move, Scaled move, Move cost,

Neighborhood search, RNSC.

1. INTRODUCTION
Restricted Neighborhood Search Algorithm (or RNSC) is a cost-

based clustering algorithm. It uses the local search method to

improve the clustering. The goal is to improve the clusters by

grouping nodes of high intra-connectivity inside a cluster and to

keep the inter-connectivity among different clusters minimum. It

can also be described as dense intra-connectivity of nodes in

same cluster and sparse inter-connectivity of nodes in different

clusters. The cost of the current clustering is computed at every

step and we try to minimize the cost to obtain better clustering.

After making a move, it searches only in the neighborhood of

the move to search for the next move. It selects the best move

available in the neighborhood and takes that move under certain

parameters, which will be discussed later. The neighborhood of

the move is described as those moves which either originate or

terminate at either the source or destination cluster of that move.

The main advantage of this algorithm is its large list of data

structure which decreases the run-time. The memory

requirement of this method is O (n2). This is due to storing the

graph in adjacency list format which has worst case memory

requirement of O (n2) when the graph is completely connected.

Also it searches the next move according to the performance

criteria, i.e. the cost function. Other algorithms first compute the

clustering then compute the performance criteria (like in MCL

[7]). It has also implemented some features to avoid local-

minima by taking some diversification moves, i.e. moves which

are not in accordance with the local searching technique and

making a diversification move to scatter the current cluster, as

we use in search annealing. It also uses a tabu list which

contains the list of all the nodes recently visited in the running

called tabu nodes and those nodes are avoided for some time as

retracing those nodes will not improve much the clustering. For

further details on the tabu search refer the paper referred in

bibliography. This algorithm uses the restricted neighborhood

search heuristic or also called the variable neighborhood search.

In the current case the two clustering are considered neighbour if

one can be reached from one cluster to another just by moving a

single vertex from first cluster to second or vice-versa. The

moves are allowed to only those clusters in which it already has

an adjacent node, otherwise that move is discarded because it

will not improve the cost of the cluster much. Also some to

empty clusters are made at regular interval, called ghost moves

to avoid local minima. RNSC is a type of local search algorithm,

because once a cluster is made, it will only looks at a new

clustering that it can reach by moving a single node. The

clustering algorithm uses a local search technique so an optimal

solution is not guaranteed but we expect better results by

running the algorithm multiple times on the same graph and

taking the best clustering out of those experiments. The

advantage of this algorithm is it first computes the moves and

then makes the best move available as compared to other

algorithms where first the move is made then the cluster cost is

computed. Using this method many moves are avoided which

increase the clustering cost. The first segment of the paper

depicts an overview of RNSC algorithm and the Scaled-Free

graph generator which is used in our comparison. The next

segment describes all the parameters to be used for comparison.

In the last section we have provided all the results and

discussions.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

16

2. AN OVERVIEW OF RNSC GRAPH

CLUSTERING ALGORITHM AND THE

SCALED-FREE GRAPH GENERATOR
In our approach we have used two graph clustering algorithms

and two types of graph generator tools which we will be

discussing in this segment.

2.1 RNSC
Restricted Neighborhood Search Algorithm or RNSC is a cost-

based clustering technique for clustering the graph into separate

clusters, where each cluster has some similar properties. The

properties considered in this case are low inter-connectivity and

high intra-connectivity in clusters. This is implemented only for

un-weighted and undirected graphs. This algorithm applies a

heuristic approach in which we only consider the moves in the

restricted neighborhood of previous move, i.e., after a move has

been made the next move will only be allowed in the neighbor

clusters of that move. After a fixed number of moves we apply

diversification moves to avoid the solution reaching local-

minima in-spite of global solution. A tabu list is also maintained

to avoid same moves which it has made in the recent past. This

technique reduces the run-time of clustering algorithm many-

folds, as it skips those redundant cases which occur multiple

times and don’t improve the cost of the function. The plus point

of this algorithm is improvement in run-time due to the data-

structure it is maintaining to update the clustering. The updating

of the clustering is very fast and thus makes the algorithm fast.

2.2 Scaled-Free graph
It is also termed as Power-Law [3] and [6] Graph. It is also a

graph generator tool but it is different from previous tool

discussed. Scaled-Free [3], [4] and [6] graphs are good models

for certain type of biological graph, web graphs and other

naturally-occurring networks. In this graph the vertex degree

follows a power-law distribution, i.e., there are large number of

vertices with small degree and few vertices with very high

degree (these vertices are also called hubs). The Scale free graph

is represented by the notation GS (n, k), such that, GS represent

the scale free graph, n is the number of vertices in the graph, k is

used to construct the graph by the following method:

Algorithm: 1 Scaled-Free generator (Scaled-Free generator

code) [3], [5] and [8]

These graphs are good models for certain type of biological

graph, web graphs and other naturally-occurring networks. In

this graph the vertex degree follows a power-law distribution,

i.e., there are large number of vertices with small degree and few

vertices with very high degree (these vertices are also called

hubs).

The Scale free graph is represented by the notation GS (n, k),

such that, GS represent the scale free graph, n is the number of

vertices in the graph, k is used to construct the graph by the

following method:

First take i=1, 2…k vertices and make a set out of these and call

this set GK. For i= k+1, k+2 … n we construct G(i) from G(i-1) by

adding a vertex i to the graph and joining it to k random vertices

in G(i-1), choosing a vertex v with probability proportional to 1+

degG
(i-1)(v) and not allowing multi edges. Thus GS (n, k) contains

k (n-k) edges.

Because the way we attach this new vertices to old vertices, the

order of the vertices with high order are further increased and

the vertices with low order remain low-ordered.

3. SOFTWARE DESCRIPTION
Restricted Neighborhood search algorithm is implemented in

C++ programming language. The project is compiled using

make utility. The whole project is divided into modules, each of

which is responsible for performing a particular function in the

implementation. The input to the algorithm is an adjacency list

representation of the graph, which is supplied by input file as a

command line argument. The algorithm has many parameters

which can be altered as per the need of the program. All the

parameters which can be modified are stored in the

“definition.h” header file. If we need to change the number of

clusters required or the naïve stopping tolerance, just change the

value in the definition file and it will be changed in the whole

program.

The main parameters which we have put in the (definition.h) file

are:

• Number of times the experiment to be performed

• Number of clusters required

• Scaled stopping tolerance

• Naïve stopping tolerance

• Tabu length

• Tabu tolerance

• Shuffling frequency

• Shuffling length

• Destructive frequency

• Amount of display information to be generated

These parameters can be modified in the definition.h and their

value will change throughout the program. The number of

cluster required can be set by the user if he knows the input

graph and the clustering can be modified. If the input graph type

is not known then set the value of num_cluster to 0 and it will

initialize the initial number to the number of nodes. The number

of cluster decrease as the algorithm progresses to decrease the

cost of the clustering. Display parameter is set to display the

amount of information to be generated and shown to the user as

output. The amount of details generated is proportional to the

value like:

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

17

0: minimum details only describing the final clustering

and the amount of naïve and scaled steps taken.

1: It displays the above details plus the moves taken at

every step in reaching the final solution.

2: It displays the above information and the clustering

after every function, i.e., scaled and naïve in each experiment.

3: It displays the complete information of the

experiment, including the move list at each step.

• Tabu length [5], [13], [14] and [15], sets the length of

tabu list to be maintained. Tabu tolerance is the

maximum number of times a node can be present in

the tabu list. If a move is present in the tabu list for

tabu tolerance times then that move cannot be made.

• Big cost is just a big number which is taken as infinity,

so that all the values computed in this experiment are

smaller than that number.

• Naive stopping tolerance sets the maximum number of

moves the algorithm can take without any change in

cost. After these many moves without any change in

cost the naïve function stops and passes the control to

the scaled function.

• Similarly the scaled stopping tolerance is the

maximum number of moves the program can take if

there is no change in cost. If the cost has not improved

in past these many moves then the scaled function

stops and passes the best clustering so far as the final

clustering.

• Shuffling frequency is used as the number of moves

after which the shuffling moves take place and the

cluster is shuffled to avoid local-minima. Shuffling

length is the number of shuffling moves it takes after

shuffling frequency moves.

• Destructive frequency is the number of moves after

which the destructive diversification takes place.

4. RESULTS AND DISCUSSIONS

4.1 Results for Scaled-Free Graph
This section contains all the results and discussions regarding

Scaled-Free graphs.

4.1.1 Number of Nodes vs Scaled Cost with varying

FD
The table contains computed values of Number of Nodes versus

Scaled Cost with varying FD for RNSC algorithm.

Table 1. Dataset for Scaled-Free Graph

For a power-law graph of Alpha=2.5

Number

of Nodes

Cost (FD
=100)

Cost (FD
=150)

Cost (FD
=200)

Cost (FD
=500)

10000

1415546

1

1415613

1

1415648

6

1415644

1

11000

1727677

4

1727658

2

1727723

6

1727688

7

12000

2011671

0

2011516

7

2011656

7

2011552

3

13000

2394305

6

2394470

0

2394463

6

2394580

4

14000

2767961

1

2791266

7

2767885

0

2768037

6

15000

3182116

9

3181964

9

3182092

2

3181916

7

16000

3608949

0

3608857

1

3608913

4

3609249

1

17000

4094666

4

4094671

1

4094872

6

4094611

4

18000

4526777

7

4526827

3

4526641

0

4526651

0

19000

5145578

2

5145650

0

5145734

0

5145643

0

20000

5633675

6

5633751

0

5633796

2

5633692

3

0

10000000

20000000

30000000

40000000

50000000

60000000

C
o
s
t

Number of Nodes

NUMBER OF NODES vs COST

Cost(FD=100) Cost(FD=150) Cost(FD=200) Cost(FD=500)

Fig 1: A line graph representing Number of nodes vs Scaled

Cost with varying FD.

Discussion: Fig 1 shows a line graph representing Number of

Nodes versus Scaled Cost with varying FD for a graph of more

than 10,000 nodes. This graph shows that there is not much

change in the cost due to changing the shuffling diversification

frequency. Changing the shuffling frequency changes the scaled

moves as shown in the next graph, but there is not much change

in the cost due to the change in the shuffling frequency. The cost

is almost similar in all the cases of varying the shuffling

frequency. But we can observe that as the number of nodes in

the graph increases then the scaled cost of the clustering

increases linearly with the number of nodes. This can be shown

by the cost computation formula, which shows the contribution

of each node in computing the scaled cost. According to the

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

18

formula, as the number of nodes increase in the graph the

corresponding scaled cost in the graph also increases. (FD-
Shuffling diversification frequency)

4.1.2 Number of Nodes vs Scaled length by varying

Shuffle frequency
The table contains computed values of Number of Nodes versus

Scaled Length by varying Shuffle Frequency for RNSC

algorithms.

Table 2. Dataset for Scaled-Free Graph

For a power-law graph of Alpha=2.5

Number

of Nodes

Moves(Sh

uffling

Freq.=100

)

Moves(Sh

uffling

Freq.=150

)

Moves(Sh

uffling

Freq.=200

)

Moves(Sh

uffling

Freq.=50

0)

10000 5352 2636 3276 2110

11000 3501 2704 2611 2111

12000 4749 3311 2658 3025

13000 5051 3027 3611 2359

14000 5420 3370 2814 2381

15000 6150 3305 3457 2597

16000 4501 5919 3217 2745

17000 5350 4420 3236 2756

18000 5000 3860 3728 2946

19000 5500 3839 3460 2917

20000 5705 4124 3672 3138

0

1000

2000

3000

4000

5000

6000

7000

1
0
0
0
0

1
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

1
5
0
0
0

1
6
0
0
0

1
7
0
0
0

1
8
0
0
0

1
9
0
0
0

2
0
0
0
0

S
c
a
le
d
 L
e
n
g
t
h

Number of Nodes

NUMBER OF NODES vs SCALED
LENGTH(MOVES)

Moves(Shuffling
Freq.=100)

Moves(Shuffling
Freq.=150)

Moves(Shuffling
Freq.=200)

Moves(Shuffling
Freq.=500)

Fig 2: A line graph representing Number of Nodes vs Scaled

length by varying Shuffling frequency.

Discussion: Fig 2 shows a line graph representing Number of

Nodes vs Scaled length by varying Shuffling frequency for a

graph of more 10,000 nodes. For small values of shuffle

frequency, the scaled length of the RNSC algorithm increases.

The scaled length is directly proportional to the run-time of the

algorithm. If we keep the shuffling frequency small then

diversification takes place after a very small number of steps,

therefore it takes more steps to reach a global maxima as the

diversification disturb the process after very small number of

steps. On the other hand if the shuffling frequency is large then

diversification takes place after a large number of moves. In that

case the scaled moves is not increased to that much extent as it

was due to small shuffling frequency.

4.1.3 Number of Nodes vs Run-time by varying

Tabu Length
The table contains computed values of Number of Nodes versus

Run-time by varying Tabu Length for RNSC algorithms.

Table 3. Dataset for Scaled-Free Graph

For a power-law graph of Alpha=2.5

Number

of Nodes

Run

Time

(LT=

50)

Run

Time

(LT

=100

)

Run

Time(L

T =500)

Run

Time(

LT

=1000

)

Run

Time(

LT

=1500

)

Run

Time

(LT

=200

0)

10000 0.68 0.71 0.7 0.85 0.72 0.68

11000 1.15 1.4 1.11 1.07 1.09 1.16

12000 0.94 1.03 0.99 0.98 1.12 1.02

13000 1.23 1.32 1.15 1.22 1.22 1.2

14000 1.92 2.02 2.23 2.17 2.27 2.21

15000 1.63 1.82 1.77 1.64 1.63 1.8

16000 1.61 1.7 1.65 1.66 1.66 1.64

17000 2.29 2.06 2.16 2.29 2.06 2.16

18000 4.39 4.8 4.3 7.12 5.08 9.5

19000 3.08 3.04 3.04 3.16 2.96 3.04

20000 3.38 2.92 2.88 3.24 2.79 2.88

0

1

2

3

4

5

6

7

8

9

10

R
u
n
 T
im
e

Number of Nodes

NUMBER OF NODES vs RUN TIME(Varying tabu len.)

Run Time(tabu len.=50)

Run Time(tabu
len.=100)

Run Time(tabu
len.=500)

Run Time(tabu
len.=1000)

Run Time(tabu
len.=1500)

Run Time(tabu
len.=2000)

Fig 3: A line graph representing Number of Nodes vs Run-time

by varying Tabu Length.

Discussion: Fig 3 shows a line graph representing Number of

Nodes vs Run-time by varying Tabu Length for a graph of more

than 10,000 nodes. We notice that as the tabu length decreases

the run-time of the algorithm increases. Therefore large tabu

length should be used to achieve less time for a particular run of

the algorithm. As the tabu-length increases the number of moves

which cannot be retraced increases, so there are fewer choices to

make for the next move, thus the run-time decreases.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

19

4.1.4 Number of clusters vs Run time
The table contains computed values of Number of clusters

versus Run time for RNSC algorithms.

Table 4. Dataset for Scaled-Free Graph

Number of

Clusters

Run

Time(10000

0 Nodes)

Run

Time(15000

0 Nodes)

Run

Time(20000

0 Nodes)

5000 2.21 9.32 8.65

4500 1.88 10.68 10.45

4000 1.68 12.8 11.76

3500 1.41 15.32 13.28

3000 1.74 17.03 14.31

2500 2.2 19.99 15.38

2000 2.81 21.97 15.77

1500 3.22 23.02 16.93

1000 3.78 21.8 16.14

500 3.8 20.57 20.35

0

5

10

15

20

25

5000 4500 4000 3500 3000 2500 2000 1500 1000 500

R
u
n
 T
im
e

Number of Clusters

NUMBER OF CLUSTERS vs RUN TIME(VARYING
NUMBER OF NODES)

Run Time(10000 Nodes) Run Time(15000 Nodes)

Run Time(20000 Nodes)

Fig. 4: A line graph representing Number of clusters vs Run

time.

Discussion: Fig 4 shows a line graph representing Number of

clusters vs Run time for a graph of more than 10,000 nodes. The

RNSC algorithm support for predefinition of the maximum

number of clusters we want in output. So we compare the

performance of the algorithm by varying the number of nodes as

input to the algorithm. If the number of nodes in the graph is

small then the run-time will be corresponding smaller. As we

decrease the maximum number of cluster the run-time increases.

This is attributed due to the fact that as the maximum number of

clusters decreases then there are few choices for the nodes to

change cluster. The change in cost due to a move is very small

and the cost keeps on oscillating in the small-range for long

time. This increases the run-time of the algorithm as the

max_cluster decreases. But as we increase the number of nodes

in the input graph then we observe that for the graph of 2000

nodes, the run-time comes out to be slightly smaller than the

run-time of graph of 1500 nodes. This can be due to the reason

that the number of nodes is appropriate for the tabu list to

control the number of moves to come out of some local minima,

thus the run-time is decreased in that particular case.

5. CONCLUSIONS AND FUTURE WORK
In our approach we successfully implemented RNSC graph

clustering algorithm in C++ for graphs having more than 10,000

nodes. With the help of these graphs we are able to analyze

behavior of certain parameters of this algorithm. The RNSC
algorithm implemented is only applicable for un-weighted and

un-directed graphs. It is a local-search technique so only the

neighborhood moves are considered at every step, i.e. those

clusters which can be reached from current cluster by moving a

single vertex. Since it is a local search technique, it doesn’t have

a worst-case bound on running time. The worst-case time

complexity of naïve move is O (n) and that of scaled one is O

(n2). The number of moves is not fixed and there is no upper

limit but on observing we can see that the number of moves has

average time-complexity of O (n). So the total average time-

complexity of the algorithm can be said to be O (n3). The

performance of this is also aided by the local search techniques

like tabu list, diversification and multiple experiments. From the

results we can conclude that the performance is not much

affected by the choice of the diversification scheme selected.

Setting LD=FD/3 is a costly choice, we spent twice as much time

clustering as diversifying. In general, for large diversification

frequency, destructive diversification will run faster than

shuffling diversification. Future work will focus in optimizing

the run time of RNSC algorithm by integrating it with genetic

algorithm. This algorithm depicts heuristic approach which

increases its run time so by integrating some portions of it by

genetic algorithm we may succeed in optimizing its run time to a

certain effect. This algorithm can be further extended to the

weighted and directed graphs [5]. In the weighted graphs the

weight can be added to the cost function and the naïve and

scaled function will be slightly modified to inherit the change.

The performance of the algorithm can also be improved by

parallelizing the task of clustering. Single run of the experiment

is difficult to divide in thread but different runs of the

experiment can be threaded to produce result in lesser time. We

can also apply some other higher-level parallelism to improve

the run-time of experiment.

6. ACKNOWLEDGMENTS
The authors are very thankful to their respected Mr. Aseem

Chauhan, Additional President, Amity University, Lucknow,

Maj. Gen. K.K. Ohri, AVSM (Retd.), Director General, Amity

University, Lucknow, India, for providing excellent computation

facilities in the University campus. Authors also pay their

regards to Prof. S.T.H. Abidi, Director and Brig. U.K. Chopra,

Deputy Director, Amity School of Engineering, Amity

University, Lucknow for giving their moral support and help to

carry out this research work. I am also thankful to Mr. Andrew

Douglas King, author of RNSC algorithm, for his support for

understanding the concepts used in the design and

implementation of our project. His report was very helpful in

understanding the algorithm. Lastly we thank all of our

colleagues who directly or indirectly supported us.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.6, May 2011

20

7. REFERENCES
[1] Sauta Elisa Schaeffer, “Survey Graph clustering,” Elsevier

Computer Science Review, vol. I, pp. 27-64, 2007.

[2] P. Erdos and A. Renyi. On the evolution of random graphs.
Publ. Math. Inst. Hungar. Acad. Sci., 5:17-61, 1960.

[3] A.-L. Barabasi and R. Albert. Emergence of scaling in
random networks. Science 286(5439) (1999) 509-512.

[4] A.-L. Barabasi and Z. N. Oltvai. Network biology:
Understanding the cell’s functional organization. Nature

Reviews Genetics, 5:101-113, 2004.

[5] A.D. King, Graph clustering with restricted neighbourhood
search. Master’s Thesis, University of Toronto, 2004.

[6] X. Hu and J. Han. Discovering clusters from large scale-
free network graph. In ACM SIG KDD Second Workshop

on Fractals, Power Laws and Other Next Generation Data

Mining Tools, August 2003.

[7] S. Enright, A.j.van Dongen, C.A. Ouzounis, An efficient
algorithm for large-scale detection of protein families,

Nucleic Acids Res. 30(7) (2002) 1575-1584.

[8] Scaled-Free graph generator code. [Online].Available:
http://www-rp.lip6.fr/~latapy/FV/

[9] King, A. D., Przulj, N., and Jurisica, I. (2004)

Bioinformatics 20, 3013-20.

[10] King, A. D. (2005), McGill University, Montreal.

[11] C. Avanthay, A. Hertz and N. Zuerey. A variable
neighbourhood search for graph coloring. European Journal

of Operational Research, 151:379 388, 2003.

[12] J. U. Brandes, M. Gaertler and D. Wagner. Experiments on

graph clustering algorithms. In Proc. 11th Europ. Symp.

Algorithms (ESA'03), Lecture Notes in Computer Science,

volume2832, pages568-579. Springer-Verlag, 2003.

[13] F. Glover. Tabu search, part I. ORSA Journal on
Computing, 1(3):190-206, summer 1989. “ORSA" is called

Informs today.

[14] F. Glover. Tabu search, part II. ORSA Journal on
Computing, 2(1): 4-32, Winter 1990. “ORSA" is called

Informs today.

[15] A. Hertz and D. de Werra. Using tabu search techniques for

graph colouring. Computing, 39(4), 1987.

[16] Unix Make utility, online documentation:

http://www.gnu.org/software/make/manual/.

