
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.7, May 2011

33

Evaluating Service Business Logic using Finite State

Machine for Dynamic Service Integration

Thirumaran.M
Pondicherry Engg. college

Pondicherry

Dhavachelvan.P

Pondicherry University
Pondicherry

Aranganayagi.G
Pondicherry Engg. College

Pondicherry

ABSTRACT

Dynamic business environment drives enterprises to work more

closely, flexibly and carve up resources with their business

partners to provide comprehensive, efficient and customized

web services. This demand a mechanism to integrate the service

logics from diverse system by scrutinizing the dependency exist

on the service logics. To ascertain the dependency between the

service logics, developers need to comprehend the whole service

logics and must identify correct way to integrate them. It puts

developers in bottleneck. The framework proposed in this paper

discovers required service logics, ascertains the dependency

between the service logics and integrates them dynamically. It

employs FSM to recognize the dependency relation subsists on

located logics. The system studies the logic flow through FSM

and determines dependency relation exist on business rules,

functions and parameters. From the resolved dependency

relation, it decides proper way for integration. Integration

adapter in the framework integrates the service logics in run

time through the revealed style. FSM is also exploited to

measure the quality parameters of the integrated service through

the property evaluator. Thus this ascent to integrate the service

logics robotically without developer‟s intercession at any stage.

General Terms

Data sharing, Web based service, B2B collaboration, B2B

integration, Security

Keywords

Service integration, B2B integration, B2B collaboration, Web

service, Finite State Machine (FSM).

1. INTRODUCTION
In the current networked business environment, most

information systems need to interoperate with other internal and

external information systems to carry out the necessities. In this

web service has a great demand to correlate and work with other

services. Enterprise Application integration (EAI) is the process

of linking application in one organization with other in order to

simplify and automate business processes to the greatest extent,

while at the same time avoiding having to make sweeping

changes to the existing applications or data structures. EAI is the

“unrestricted sharing of data and business processes among any

connected application or data sources in the enterprise”. But the

current demand is not delighted with application integration, it

insists to integrate the web services in rule, functional or logic

level. Integrating web services in this level leads to exponential

problem in syntactic and semantic level. To tackle this,

developers must figure out the whole service and must ascertain

proper mode to integration which is complex and time

consuming task. So the present focus is to have a computerized

system to integrate the service logics automatically for the given

requirement. The proposed framework in this paper faces these

challenges and integrates the service logic robotically. The

proposed framework aims to extract the logics automatically and

integrates them dynamically for the given requisite. The

framework spots exact structure for integrating the service logics

by analyzing dependency between the rules, functions, and

parameters and vice versa. It scrutinizes the dependency

between them through transitions of Finite State Machine

(FSM). Finite State Machine, a framework of a computational

system, consisting of a set of states (including a start state), an

alphabet of symbols that serves as a set of possible inputs to the

machine, and a transition function that maps each state to

another state (or to itself) for any given input symbol. The

machine operates by being fed a string of symbols, and moves

through a series of states. The computational core of a Turing

machine is a finite state machine. also called finite state

automaton. Here the state transitions of FSM depict the swing of

the business logic. Through this, it ascertains the dependency

relation reside on rules, functions and parameters. From the

disclosed dependency relation, the system integrates the service

logics automatically. Also the framework evaluates quality

attributes of the developed service using FSM through

component called Property evaluator. The proposed work

focuses on two properties such as computability and traceability

which measures computational time, utilized memory space, etc.

Traceability verifies the flow, assesses the risk, checks

completeness and helps to improve the quality by tracing each

and every step of the service. The property evaluation

techniques are explained briefly in this paper.

The rest of the paper is organized as follows. Section 2 describes

the works in research field related to our work. Section 3 details

the design and operation of the proposed framework. Section 4

describes the property evaluation methodology. Section 5

presents concluding remark.

2. RELATED WORKS
There are plenty of publications in the area of using Web

Services to support B2B, service and application integration

since this area has attracted researches from various research

institutes. Many common services (such as electronic

authentication, Authorization Management and some other

services will be reused in modem service industry) were

duplication of development and the information in various fields

cannot be shared. As a result, it leads to not only a mass of waste

of resources but also various "isolated islands of information".

These have seriously affected the development of the modern

service industry.

To deal with these problems, Xu Huiyang proposed a

novel modern service industry service integration system based

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.7, May 2011

34

on SOA to integrate and compose common services. The system

establishes an agent layer between service users and platform

identifies actual service components required for the request,

orchestrates and composes the identified service components in

right way [1]. The system can only integrate the services in

component level but in many case it requires to integrate at

various level. Deng Hui-fang presented an approach to SOA

based service integration which makes the service granularity

flexible to change and makes the service components reusable at

different grade of granularities. As a result, a great number of

systems can maintain the existing good framework and mutually

provide all necessary and easy-to-use services when they need to

share information and interact with each other through

integration[2]. Hui Zhang proposed an agent-based Web

services integration framework which integrates the service

ensuring the QOS of integration system. To realize the QOS, he

constructed QoS-based integration path selection algorithm

which improves service integration efficiency and reduces the

integration cost through this selection mechanism[3]. Wen

Ouyang proposed Web service integration algorithm to integrate

the existing Web services in order to satisfy a pool of tasks and,

at the same time, to minimize the Web service hop count. The

proposed algorithm optimally assigns the Web services to tasks

waiting to be executed and finds suitable way to integrate Web

services so that the hop count between Web services is

minimized. This way, we can speed up the processing time of

these tasks. This problem plays important roles when the

response time is an important factor in evaluating the

performance of the application [4]. Liu Yong discussed research

progress of geography information service integration,

problem in of geography information service integration and

proposed service integration framework based on business

template which contains a set of business components, logic

relation of the components and allows Business user to find

suitable business template to build application [5]. Ka Cheuk

WU presented an integrated and personalized tour planning

portal based on Semantic Web service technologies for

knowledge management which employs ontology to classify and

manage service [6]. Camlon H. Asuncion presented an

innovative approach to increase the flexibility of integration

solutions in the context of service mediation by separating the

more dynamic aspects of the requirements as business rules

while keeping the more stable parts in the business process. In

his approach, initially the requirements are specified as goal

frameworks, over time it is represented in terms of business

rules. These business rules are then made executable by

exposing them as Web services and incorporating them into the

design of the business process[7]. Above works paves way to

semi-automatically integrates the services but there is no

standard approach to dynamically integrate the services.

ZhuorenJiang proposed an innovative framework,

„Multi-layer Structure for Dynamic Service Integration

(MSFDSI)‟ in SOA which adds authorized institution and a

service integration & analysis adapter to achieve the service

authorization, service analysis and dynamic service integration.

The service integration & analysis adapter judges the requested

service is already existed or need to be integrated. If it‟s the

service need to be dynamically integrated, searches and chooses

the suitable services in service registry, uses the interfaces

defined in service contract and integrates the services [8]. Lu

Liu presented an innovative approach of dependable dynamic

service integration for the delivery of rescue capability in

service-oriented peer-to-peer (ServP2P) networks. In this

approach for delivery of rescue capabilities, resources for

information provision and decision support are wrapped into

services with standard interfaces to enable better

interoperability. The set of services can be dynamically

integrated using workflows to form higher levels of functionality

to fulfill or support the achievement of mission objectives [9].

W.J.Yan proposed B2B integration approach for SME

by leveraging the characteristics of Web Services which utilizes

pull and push mechanisms for effective information exchange

and sharing between trading partners. This approach has been

incorporated in a B2Bi Gateway which enables SMEs to

participate in business-to-business collaboration by making use

of Web Services [10]. Liyi Zhang proposed a framework called

WSMX (Web Service Frameworking execution), a software

system that enables the creation and execution of Semantic Web

Services based on the Web Service Frameworking Ontology

(WSMO) for enterprise application integration. It improves

Service discovery, simplifies change management and supports

semi-automatic service composition and enhanced

interoperability between services [11]. Thomas Haselwanter

presented a framework based on the WSMX was build to tackle

heterogeneities in RosettaNet messages by using the

axiomatised knowledge and rules. It supports communication

between partners, data and process mediation using WSMX

integration middleware [12].

3. PROPOSED FRAMEWORK FOR WEB

SERVICE INTEGRATION
Fig 1 demonstrates proposed framework for service integration.

Requirement Analyzer analyzes the request, slices them into

number of parts and strips it into standard format. It searches

required services in the service repository to process the

formatted request and extracts the required service logics. From

the given request, it identifies the way in which the service logic

can be integrated. For instance, if the request is to develop a

advance search service which searches by file type and content

type. Here the two service logics must be merged together to

satisfy the request, so union prototype can be used to integrate

this two. In this way, Requirement Analyzer analyzes the sliced

request and identifies the way to integrate the service.

Dependency Analyzer analyzes the located logic and breaks up

into business rules, functions and parameters. It constructs Finite

State Machine (FSM) as the state transition depicts the

dependency between rules, functions, and parameters and vice

versa. FSM is a behavior framework composed of a finite

number of states, transitions between those states, and actions,

similar to a flow graph in which one can inspect the

way logic runs when certain conditions are met. It has finite

internal memory, an input feature that reads symbols in a

sequence, one at a time without going backward; and an output

feature, which may be in the form of a user interface, once the

framework is implemented. The operation of an FSM begins

from one of the states (called a start state), goes through

transitions depending on input to different states and can end in

any of those available, however only a certain set of states mark

a successful flow of operation (called accept states). Here FSM

begins with the beginning of the logic transits with the logic

flow and ends at the end of the logic.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.7, May 2011

35

Fig.1.Proposed Framework for Service Integration

Property Evaluator evaluates the constructed FSM and analyzes

the properties such as computability and traceability.

Dependency analyzer employs Rule bound analysis, Function

bound analysis and domain variable bound analysis using FSM

and verifies the logic is extracted completely. Rule bound

analysis analyzes the located rule is dependent with any other in

the logic. If so, it must be extorted with the dependent parts. It

detects this through transition states of FSM. Similarly, it

analyzes for function and domain variables using Function

bound and domain variable bound analysis. Computability

examines the ability to solve a particular problem within time

limit and in limited memory space. If a function has

arguments, i1, i2,…, ik, then these integers are initially placed on

the tape separated by 1's. On the input , if the TM halts with a

tape consisting of 0m for some m, after the computation on this

input, then we say that f(i1,i2, … , ik) = m, where f is

the function of k arguments computed by this Turing machine.

A function or a (decision type) problem is said to be

Request

Analyzer

Dependency

Analyzer

 Integration

Adaptor

Property

Evaluator

Run time

Manager

Computability Traceability

Service Request

 Service

Repository

 RuleSet

FunctionSet

 VariableSet

FSM Simulator

 Service list

 Integration

 method

 Evaluator Synchronizer

 Prototype
 Schema

 Deployment Engine

 BLI Schema

Service Builder

Exception Handler

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.7, May 2011

36

computable, if there exist a Turing machine which computes the

function or answer the problem. [i.e., the TM will halt on all the

inputs and gives the correct output for all the input].

Otherwise, the function is said to be non-computable.

Traceability in general is „ability to chronologically interrelate

the uniquely identifiable entities in a way that matters‟.

Informally a function f from N N is traceable if we can obtain,

in some simple way, a finite collection of possible values for

each f(x). This collection of possibilities is known as a trace for

f, and the most common requirement on the trace is that it

should be computable. A set A is jump traceable, if the function

JA(x) is traceable with respect to some computable order

function. Here JA(x) is the universal partial A-computable

function, JA(x) = Ax (x). We note that JA(x) denotes the output

of the universal function, rather than the value of A0(x). For this

reason, jump traceability is akin to, but not the same as being

super flow. A set A is strongly jump traceable, if for every

computable order function h, A is jump traceable with respect to

h. A strongly jump traceable set is very close to being

computable, because we can predict properties of A to any

degree of accuracy we require. There is an obvious connection

between a c.e. trace, and a system of descriptions (i.e. a pre_x-

free machine). The former can be viewed as a discrete" version

of the latter c.e. trace places discrete bounds on cardinality,

while a machine talks about measure.

 Runtime Manager renovates the extracted logic as a

complete service and builds it. While building the service, if

bugs or exception thrown, it handles and resolves it. Then it

carries the WSDL of the developed logic into common space to

integrate them. Integration adapter basically facilitates business

integration to integrate various applications developed in various

environments. Integration adapter evaluates the schema and

identified pattern for integration. If it is feasible to integrate with

observed pattern, it uses the prototype available in the system

for the explored pattern and integrates it using this prototype.

Finally deploys the integrated service in deployment engine and

builds Business Logic Integration (BLI) schema which holds

detailed information of this integration process such as pattern

employed, results of computability, traceability, accessibility

level, etc.

4. PROPERTY EVALUATION SYSTEM

4.1. Computability
 Computability is an essential criterion in web service which

determines whether the modified service is computable with in

time limit.

Theorem-The business logic problem is computable if it solves

the problem exactly in such a way it always terminates and

produces the correct output for all possible inputs to P. If not,

the BL is non computable. Proof- We considers programs that

take some arbitrary input (say from stdin). We denote the result

of a program P run with input x by P(x). We use the

mathematical technique of proof by contradiction, or reduction

ad absurdum. Suppose, for the sake of contradiction, that there

exists such a halting programHalt(P, x). (We will show that this

leads to an obvious contradiction, and therefore, we must

conclude that no such program exists.) It takes two inputs: a

program P and its input x. Program Halt(P,

x) outputs yes if P(x) halts, and no otherwise. Note that by our

hypothesis, Halt(P, x) itself always halts for any pair of inputs. If

(P,x) halts, it is computable, otherwise it is non computable.

Here computability is illustrated with an example. First Business

logic is represented as logic flow diagram, which signifies the

flow of business logic, transition states are identified and

indicated below. FSM is constructed whose states transits as the

described states. From FSM it evaluates computability property

as described above.

Example: The requirement is to create a service, e-payment to

calculate total price for the list of purchased items and to

transact the calculated amount. In the existing shopping

application, we have billing service which computes total cost

for the purchased items and transaction service in banking

application transacts the amount. By integrating these two

services, required new service e-payment can be developed.

Here integration should be done in such a way that the

processing time of the integrated service bounded within a time

limit.

logic1

BL1: public string billing(){

BF1: String username=username.get();

String password=password.get();

DRf1: String sql="select * from shopping where

username=”+username+” and password="+password;

ResultSet rs=st.executeQuery(sql);

CRr1: if(rs.next()){

BFr1: double amount=calculateamount();

String accno=accountno.get();

BFr2 String accno1=123456;

BFf1: String result=”Amount to be paid=”+amount;

P1: return result;

}}

logic 2

BL2: public string transact(){

BF21 String accno=accno.get();

String accno1=accno1.get();

String amount=amount.get();

BF22 String transid1=transid.set();

DRf1 Statement st=con.createStatement();

ResultSet rs=st.executeQuery("select Balance from

bank where Accountno=‟"+ accno+‟‟”);

DRr1 double balance=rs.getDouble("Balance");

CRr1 if((balance-amount)>1000){

DRrr1 st.executeUpdate("update bank set balance= balance-

"+amount+" where Accountno='”+accno+”'";);

 DRrr2 st.executeUpdate(update bank set balance=

balance+"+amount+" where Accountno='”+accno1+”'");

BFf1 String transid=” Amount”+amount+”transferred

from”+accno+” to ”+accno1;

BFr2 String result= “Ur transaction id is ”+transid1+” Ur

transaction completed successfully”;

P2 return result;}

Solution : Integrated logic

BL1 public string ebilling(){

BFl1 String username=username.get();

String password=password.get();

DRfl1: String sql="select * from shopping where

username=”+username+” and password="+password;

ResultSet rs=st.executeQuery(sql);

CRlfr1 if(rs.next()){

BFlfrr1 double amount=calculateamount();

String accno=accountno.get();

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.7, May 2011

37

String accno1=123456;

BFlfrr1 transact(accno,amt,accno1);

} BL2 public String transact(String accno, double amt, String

accno1){

BFl1 String transid1=transid.get();

DRlf1ResultSet rs=st.executeQuery("select Balance from bank

where Accountno=‟"+ accno+‟‟”);

DRlfr1 double balance=rs.getDouble("Balance");

CRlfrr1 if((balance-amount)>1000){

DRlfrrr1String sql="update bank set balance= balance-

"+amount+" where Accountno='”+accno+”'";

st.executeUpdate(sql);

DRlfrrrr1 sql="update bank set balance= balance+"+amount+"

where Accountno='”+accno1+”'";

 st.executeUpdate(sql);

Plfrrrr1String transid=” Amount”+amount+”transferred

from”+accno+” to ”+accno1;

Plfrrr2String result= “Ur transaction id is ”+transid1+” Ur

transaction completed successfully”;

}

Logic Flow Diagram

 P1

 Plfrrff1 Plfrrff1

Fig 2. Flow Diagrams for Computability Evaluation

Transition States

BL1{ BF1} BL2{[BFlf1,BF11]} BLT1{ BF11}

BF1{DRf1} BFlf1 { DRlfr1}BF11{BFlf1} BF11{DRlf1}

DRf1{ CRr1} DRlfr1 {CRlfrr1} DRlf1{ CRlfr1}

CRr1{ BFr1} CRlfrr1 {[DRlfrrf1],[BFlf1]} CRlfr1{ BFlfrr1}

BFr1{ BFf1} DRlfrrf1 {DRlfrrf1} BFlfrr1{BFlfrrf1}

BFf1 {P1} DRlfrrf1 { Plfrrf1} BFlfrr1{ BLT2}

 BLT2{[BFlf1,BF11]},BF11= BFlfrr1

 BFlf1 { DRlfr1}BF11{BFlf1}

4.2. Traceability
Traceability in general is „ability to chronologically interrelate

the uniquely identifiable entities in a way that matters‟. It

verifies the flow, assesses the risk, checks completeness and

helps to improve the quality by tracing each and every step of

the service.

Let h : N ! N be computable.

Theorem 1- A computable trace with bound h is a sequence

(Tn)n2N of non-empty sets such that |Tn| ϵ h(n) for each n .

From n, one can compute the finite set Tn. (Tn)n2N is a trace for

the function f : N ! N if f (n) 2 Tn for each n. We say that A is

computably traceable if there is a fixed h such that each function

f _T A has a computable trace with bound h. [13].

Here traceability with illustrated with example. Logic flow

diagram is presented with transition representation for the

business logic. Also traceability path is implied.

Example: The requirement is to develop a service for telecom

department to calculate monthly bill for every customer, e-mail

the bill automatically, facility to pay the bill online and email the

transaction status. Our integrated E-billing service calculates

monthly bill for every customer and has facility to pay the bill

BL1

DR1

BFr1

BF1

CRr1

BFf1

BL2

DRlf1

CRlfrr1

BF11

DRlfr1

DRlfrrf1

BLT1

DRlf1

BFlfrr1

BF11

CRlfr1

BFlfrrf1

DRlfrrf1

BFlf1

BLT2

DRlf1

CRlfrr1

BF11

DRlfr1

DRlfrrf1

DRlfrrf1

BFlf1

BFf2

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.7, May 2011

38

online. Additional functions in the requirement can be added to

this service.

Logic 1.

BL1 public string ebilling(){

BFl1 String username=username.get();

String password=password.get();

String email-id=email-id.get();

DRfl1: String sql="select* from shopping where

username=”+username+” and password="+password;

ResultSet rs=st.executeQuery(sql);

CRlfr1 if(rs.next()){

BFlfrr1 double amount=calculateamount();

String accno=accountno.get();String accno1=123456;

BFlfrr1 send(email-id,amount);

BFlfrr2 transact(accno,amt,accno1);}

BL2public String transact(String accno, double amt, String

accno1){

BFl1 String transid1=transid.get();

DRlf1ResultSet rs=st.executeQuery("select Balance from bank

where Accountno=‟"+ accno+‟‟”);

DRlfr1 double balance=rs.getDouble("Balance");

CRlfrr1 if((balance-amount)>1000){

DRlfrrr1String sql="update bank set balance= balance-

"+amount+" where Accountno='”+accno+”'";

st.executeUpdate(sql);

DRlfrrrr1 sql="update bank set balance= balance+"+amount+"

where Accountno='”+accno1+”'";

 st.executeUpdate(sql);

Plfr String transid=” Amount”+amount+”transferred

from”+accno+” to ”+accno1;

BFlf1String result= “Ur transaction id is ”+transid1+” Ur

transaction completed successfully”;

BFlff1 send(email-id,result);

Plfrrr1 returnresult;}}

Logic Flow Diagram

 Plfrrf1 Plfrrf1

Fig 3. Flow Diagrams for Traceability Evaluation

State Transition

BL1{ BF11} BL1{ BF11}

BF11{DRlf1} BF11{DRlf1}

DRlf1{ CRlfr1} DRlf1{ CRlfr1}

CRlfr1{ BFlfrr1} CRlfr1{ BFlfrr1}

BFlfrr1{BFlfrrf1} BFlfrr1{BFlfrrf1}

BFlfrrf1 {BL2 } BFlfrr1{BFlfrrf2}

 BL2{[BFlf1,BF11]} BFlfrrf1 {BL2}

BFlf1 { DRlfr1}BF11{BFlf1} BL2{[BFlf1,BF11]}

DRlfr1 {CRlfrr1} BFlf1 { DRlfr1}BF11{BFlf1}

CRlfrr1 {[DRlfrrf1],[BFlf1]} DRlfr1 {CRlfrr1}

DRlfrrf1 {DRlfrrf1} CRlfrr1 {[DRlfrrf1],[BFlf1]}

DRlfrrf1 { Plfrrf1} DRlfrrf1 {DRlfrrf1}

 BFlf1 { BFlff1}

5. EVALUATION RESULTS
We evaluated the proposed work by developing number of

services and examined integration capability for various

requisite. Accordingly measured time taken for functioning each

and every component in the framework. The total service

integration time is calculated by summing up the time taken to

execute each and every service of the component in the

framework. S.I.T= R.A.T + D.A.T + P.E.T + S.B.T + S.D.T.

R.A.T (Request Analysis Time) is time taken to execute the

request analyzer component, D.A.T (Dependency Analysis

Time) be time taken to analyze the dependency through FSM

using Rule bound, function bound and domain variable bound

analysis, P.E.T (Property Evaluation Time) is time taken to

evaluate the properties such as computability and traceability

through FSM, S.B.T (Service Build Time) is time taken to build

BL1

DRlf1

BFlfrr

1

BF11

CRlfr

1

BFlfrrf1

BL2

DRlf1

CRlfrr

1

BF11

DRlfr

1

DRlfrrf

1

DRlfrrf

1

BFlf1

BL1

DRlf1

BFlfrr

1

BF11

CRlfr

1

BFlfrrf1

BL2

DRlf1

CRlfrr

1

BF11

DRlfr

1

DRlfrrf

1

DRlfrrf

1

BFlf1 BFlfrrf2

BFlff

1

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.7, May 2011

39

the extracted logic and handle the bugs and exception and S.D.T

(Service Deployment time) is time taken to integrate the built

services and to deploy it in deployment engine. Performance

evaluation of each service is compared and it is depicted

graphically in fig 2.

Fig 4. Evaluation Result

6. CONCLUSION
This paper introduces an innovative framework for service

integration. It proposes a novel concept to ascertain the

dependency between the service logics through Finite State

Machine (FSM). Also the paper evaluates various quality

criteria through FSM using Property evaluator and it is

explained briefly. The proposed framework is evaluated and the

results are tabulated and pictured graphically. As the proposed

framework has the characteristics of flexibility and platform

independence, we can reduce the development difficulty while

saving development time and development investment.

7. REFERENCES
[1] Xu Huiyang, Song Meina and Song Junde, “A New Service

Integration System for Modern Service Industry Based on

SOA”, IEEE Conference.

[2] Deng Hui-fang and Xu Guang-feng, “A Study and Design

of SOA-based Service Integration for Logistics Customs-

clearance”, International Symposium on Parallel and

Distributed Processing with Applications,2010.

[3] Hui Zhang and Kerong Ben, “Agent-based Web Services

Integration Framework“,1st International Conference on

Information Science and Engineering ,2009.

[4] Wen Ouyang and Min-Lang Chen, “An Optimal Web

Services Integration Using Greedy Strategy”, IEEE Asia-

Pacific Services Computing Conference, 2008.

[5] Liu Yong, “Study on geography information service

semantic integration method based on business template”,

Interational Conference on Computer and Communication

Techologies in Agriculture Engineering,2010.

[6] Ka Cheuk WU and Dickson K.W. Chiu, “Toward Tourist

Service Integration and Personalization with Semantic Web

Services: A Case Study in Hong Kong”, IEEE International

Conference on e-Business Engineering, 2008.

[7] Camlon H. Asuncion , Maria-Eugenia Iacob and Marten J.

van Sinderen, “Towards a flexible service integration

through separation of business rules”, 14th IEEE

International Enterprise Distributed Object Computing

Conference, 2010.

[8] Zhuoren Jiang, Yan Chen and Ming Yang, “A research on

multi-layer structure for dynamic service integration”,

IEEE international conference, 2010.

[9] Lu Liu, , Jie Xu, Duncan Russell, KP Lam, Zongyang Luo,

Kaigui Wu and Dave Collins, “Dependable Dynamic

Service Integration on Service-Oriented Peer-to-Peer

Networks”, First International Conference on Advances in

P2P Systems, 2009.

[10] W.J. Yan, P.S. Tan and E.W. Lee,” A Web Services-

enabled B2B Integration Approach for SMEs”, IEEE

international Conference on Industrial Informatics, July 13-

16, 2008.

[11] Liyi Zhang and Si Zhou, “A Semantic Service Oriented

Architecture for Enterprise Application Integration”,

Second International Symposium on Electronic Commerce

and Security, 2009.

[12] Thomas Haselwanter, Paavo Kotinurmi, Matthew Moran,

Tomas Vitvar, and Maciej Zaremba, “WSMX: A Semantic

Service Oriented Middleware for B2B Integration”,

available at http://www.vitvar.com/tomas/!publications/

icsoc2006-WSMX.pdf.

[13] André Nies , “Superhighness and strong jump traceability”,

The University of Auckland ICALP 2009, available at

http://www.cs.auckland.ac.nz/~nies/talklinks/ICALP09We

b.pdf

2.4

2.6

2.8

3

3.2

Semantic Search

Semantic
Search

Security
Service

Ebilling

Registration

http://www.cs.auckland.ac.nz/~nies/talklinks/ICALP09Web.pdf
http://www.cs.auckland.ac.nz/~nies/talklinks/ICALP09Web.pdf

