
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

19

A New Proposed Cost Model for List Accessing
Problem using Buffering

Rakesh Mohanty
Dept. of Comp. Sc. & Engg.

Indian Institute of Technology
Madras, Chennai, India

Seetaya Bhoi
Dept. of Comp. Sc. & Engg

Veer Surendra Sai Institute of
Technology

Burla, Orissa, India

Sasmita Tripathy
Dept. of Comp. Sc. & Engg

Veer Surendra Sai Institute of
Technology

Burla, Orissa, India

ABSTRACT
There are many existing well known cost models for the list

accessing problem. The standard cost model developed by

Sleator and Tarjan is most widely used. In this paper, we have

made a comprehensive study of the existing cost models and

proposed a new cost model for the list accessing problem. In our

proposed cost model, for calculating the processing cost of

request sequence using a singly linked list, we consider the

access cost, matching cost and replacement cost. The cost of

processing a request sequence is the sum of access cost,

matching cost and replacement cost. We have proposed a novel

method for processing the request sequence which does not

consider the rearrangement of the list and uses the concept of

buffering, matching, look ahead and flag bit.

General Terms

Data Structures, Algorithms, Linked List, Linear List, Data

Compression.

Keywords
Data Structure, Linear List, List Accessing, Cost model,

buffering, look ahead, matching.

1.INTRODUCTION
The list accessing problem involves maintaining and organizing

a dictionary as a linear list. A dictionary is an abstract data type

that stores and maintains a set of elements and supports the

operations access, insert, and delete. For accessing an element,

the list is traversed from the start of the list until the requested

element is found. The insertion operation involves addition of an

element at the end of the list. An element is deleted by first

searching for the element and then removing it. As insertion and

deletion of an element can be considered as a special case of

access operation, therefore we can consider the access operation

only for maintaining and organizing the dictionary.

1.1 Problem Statement
In list accessing problem, an unsorted linear list L of l distinct

elements is given as input along with a finite sequence of

requests of size n such that (n≥ l). Here each input request is an

access operation. The list accessing algorithm takes an unsorted

linear list and a request sequence as input and serves the

requests in order of their arrival. A request is said to be served,

when an access operation is performed on the requested element

by incurring some access cost. Accessing an element „x‟ at

position „i‟ from the front of the list costS „i‟. Our goal is to

reduce the total access cost while serving a request sequence on

the list.

1.2 Applications
The list accessing technique is extensively used in storing and

maintaining small dictionaries. One important application of list

accessing technique is data compression. Other applications

include computing point maxima and convex hulls in

computational geometry, organizing the list of identifiers

maintained by a compiler and resolving collisions in a hash

table. The list accessing problem is also of significant interest in

the contest of self organizing data structures.

1.3 Related Work
The list accessing techniques were initiated by the pioneering

work of McCabe in 1965[1]. He investigated the problem of

maintaining a sequential file and developed two algorithms

Move To Front and Transpose. Sleator and Tarjan in 1985

proposed a standard full cost model for the list accessing

problem[2], which is the most widely used cost model. It

involves free exchanges and paid exchanges to rearrange the

input list. The partial cost model[3] assigns the cost by counting

the number of comparisons. A comprehensive survey of List

Accessing Problem along with various cost models has been

done in [4], [5], [6], [7], [8].

1.4 Our Contribution
In this paper, we have made a study of different existing cost

models for list accessing problem and proposed a new cost

model. The uniqueness of our proposed cost model is that it

assigns the cost using the concept of buffering, the look ahead

and matching. We have proposed an algorithm which involves

above concepts and calculate the cost by using our proposed

model. This algorithm does not involve the rearrangement of

the input list. We have also analysed the performance of

proposed cost model by using the developed algorithm.

1.5 Organization of Paper
This paper is organised as follows. Section II contains

description of well known cost models and some well known list

accessing algorithms. Section III presents our new proposed cost

model and evaluation of access cost using our model for the list

accessing problem.. Section IV provides the concluding

remarks and scope of future research work.

2. PRELIMINARIES

2.1 Cost Models
When an element is accessed in the linear list, a cost is assigned

to it. This assignment of cost is defined by different cost models.

There are various cost models for the list accessing problem

using singly linked list data structure such as full cot model,

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

20

partial cost model, paid exchange model etc. A start pointer is

pointed to the beginning of the list and the list is to be traversed

from the start pointer till the requested element is found in the

list. The two most widely used cost models for list accessing

problem using singly linked list are Full cost Model and Partial

cost Model. These models assume that after an item has been

requested, it may be moved free of charge closer to the front of

the list. This is called a free exchange. Any other exchange of

two consecutive items in the list incurs cost one and is called a

paid exchange.

2.1.1 Full Cost Model

The full cost model developed by Sleator and Tarjan[2] is

considered as the standard cost model for list accessing problem.

According to this model, the cost for accessing a requested

element is equal to the position of that element from the front of

the list. For example, the cost of accessing an element „x‟ at the

ith position in the input list is equal to i.

2.1.2. Partial Cost Model

In partial cost model[3], the cost for accessing an element is

the number of comparisons required for accessing the requested

element in the input list. For example, the cost of accessing an

element „x‟ at the ith position in the input list is equal to i-1.

2.1.3 P
d
 Cost Model

Manasse et. al[6] and Reingold et.al[7] introduced the Pd cost

model. In this model there are no free exchanges and each paid

exchange costs d.

2.1.4. Centralized Cost Model

A cost model using doubly linked list, known as Centralised cost

model, was developed by R. Mohanty et.al [6]. According to

this cost model, access cost for a requested element is equal to

its distance from the central element of the list. Free movement

is moving the currently accessed element to any position

forward or backward in the list towards the centre of the list with

no cost. Paid movement is any exchanges other than the free

movement. The cost incurred for paid movement is the distance

between the elements to be exchanged.

2.2 List Accessing Algorithms
Many algorithms have been developed for the list accessing

problem . The primitive algorithms are MTF, TRANSPOSE,

and FC.

MTF: After accessing an element, the element is moved to the

front of the list with no cost, without changing the relative order

of the other elements in the list.

TRANSPOSE: After accessing an element of the list, it is

exchanged with the immediately preceding element.

FREQUENCY COUNT: It maintains a frequency count for each

element of the list, the count is initialised to zero. Then increase

the count of an element by one whenever it is accessed and

maintains the list so that the elements are in non-increasing

order of their frequency count.

3. OUR PROPOSED COST MODEL
We have proposed a new cost model using the concept of

buffering, look ahead and matching. In our proposed cost model,

we have defined and used the following terminologies. A List is

a sequence of unsorted distinct elements. Request sequence is a

sequence of elements. Visited list is the portion of the List

visited while searching for the requested element and it is

marked by a pointer. We call this pointer Visitor pointer.

Matched elements are the elements which results from parallel

matching of Visited list and the next „i‟ elements of the request

sequence, where „i‟ is the position of requested element in the

input List. Buffer is the temporary memory which stores the

matched elements. Flag is an extra bit given to the matched

elements for identification purpose. Flagged elements are the

elements, which are assigned a flag. The access of flagged item

from Buffer costs „i‟ if it is at the ith position in the buffer. The

non flagged elements are accessed from the list by incurring

access cost „i‟ for an element in ith position of the List.

3.1. Assumptions
In our proposed cost model, we have assumed that the list is a

singly linked list. For matching operation, we do the parallel

matching. The matching cost is assigned as „n‟ where „n‟ is the

number of matches. Maximum allowable Buffer size is given. If

numbers of matched elements present are more than given

buffer size, then the elements having higher ‟i‟ values in the list

(„i‟ is the position of element in the list) are placed in buffer.

The list size is quite large. The visitor pointer always starts from

starting of the list for each access in the list. In our proposed

method, we use look ahead of „i‟ from accessed element in

request sequence. Here we know next „i‟ elements from

accessed elements in request sequence.

3.2. Proposed Cost Model
There are many existing cost models for list accessing problem.

The previously existing cost models assume that the cost of

rearrangement is zero. In our cost model, the list is not

rearranged and we use buffer to store some elements for faster

accessing. Our cost model assigns the processing cost of the

request sequence as follows:

1. The cost of accessing an element x at the ith position in

the input list and buffer is equal to i.‟

2. The matching cost is n, where n is the number of

parallel matches .

3. As buffer space is limited, replacement occurs. The

replacement cost is m where m is the number of

elements replaced in buffer.

4. The processing cost of the request sequence is the sum

of access cost, matching cost and replacement cost.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

21

Input

 list

 total cost

 request

 sequence

 Buffer

Fig 1: Representation of proposed cost model

3.3 Pseudo code For Our Proposed

Algorithm

Illustration
Given list L=A B C D E F G H I and Request sequence R= I

E G D I E D A B I and given buffer size is 3. We read I from

L and access it with cost 9 as it is the ninth element in list. The

visited list VL is marked by the visitor pointer and will be A B

C D E F G H I. The elements of the look ahead „i‟ are Next 9

elements of R from I i.e, NRi= E G I E D A B I. They are

matched with VL . Match(VL,NRi)= E I . Matching cost is 2 as

two matches occur in parallel matching . Then we store E I in

Buffer B. Give flag to E I within look ahead „i‟ i.e, within next 9

positions from I in R. Next requested element is E, which is

flagged. So access it from buffer with cost 1 as it is the first

element in buffer. Then requested element is G, as it is non-

flagged, it is accessed from L with cost 7. The visitor pointer

mark the visited list VL= A B C D E F G. Here NRi=D I E D A

B I

Match(VL, NRi) = D. Matching cost is 1. Already there are two

elements in buffer and D is the third element. As buffer size is 3,

no replacement needed. Now buffer contains E I D. Next

element is D in R, as it is flagged, it is accessed from buffer with

cost 3 as it is at the third position in buffer . The next request is

I, it is flagged so it is accessed from buffer with cost 2. Then E

is requested. As it is flagged, the item is accessed from buffer

with cost 1. Next request is for D, it is flagged. So it is accessed

from buffer with cost 3. Next request is for A. It is non flagged,

so it is accessed from list and VL marked by visitor pointer is

VL= A. NRi =B. No matches occur in parallel matching so

buffer content remains the same. Next requested element is B. It

is non-flagged. So it is accessed from L with cost 2. The VL

pointed by visitor pointer will be A B. NRi= I. No matching

occurs so buffer content remains same. Next request is I, it is

flagged so it is accessed from buffer with cost 2.. So the total

cost for the above request sequence according to proposed cost

model is 34.

I/P: List L, Request sequence R, Buffer

B.(parameters: List size, Request

sequence size, Buffer size)

Read the requested element from the list L and mark the

Visited list VL by visitor pointer

Match VL with elements of R in look ahead

„i‟(where „i‟ is the position of element in L) from

accessed element.

Match(NRi, VL)=(M1, M2,..............MJ)

 No

 Yes

Fig. 2 Flow Chart for Our Proposed Algorithm

 Access cost

 +

 Matching cost

 +

 Replacement cost

PAlgo(List, Request Sequence, Buffer)

1. Here given list is L= L1,L2,..........................,Ln,

Request sequence is R= R1,R2,.........................,Rm

 where m≥ n and Buffer size is b. where b<n.

2. For j=1 to m

3. Process (j)

4. Read Rj in L and find POSITION(Rj)=i in L. Mark

Visited list VL by visitor pointer.

5. Match NRi (next „i‟ elements of R from R1) with VL.

Match(NRi,VL)=M1,M2,......,MJ.

6. Store matched elements (M1,M2.........,MJ) in buffer B

according to buffer size. The replacement in buffer B

takes place according to FIFO policy.

7. Assign Flag bit in next i elements from Rj in R which are

placed in buffer B.

8. Access the flagged elements from buffer B and non-

flagged elements from L.

9. For accessing the non-flagged elements from L, Repeat

Steps 2 to 6.

Store (M1, M2,..............MJ) in buffer according to given

buffer size and if more numbers of matched elements are

there than the buffer size, then keep the elements having

higher „i‟ values(„i‟ is the position of element in List) in

buffer

Give Flag bit of 1 to elements which are stored in

buffer in R within look ahead of „i‟

Read next request of R

 Access from Buffer

Is the requested

element is

flagged?

STOP

START

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

22

Demonstration of Proposed Algorithm

Given list is L= A B C D E F G H I, request sequence R= I

E G D I E D B A I. Buffer size is 3.

First request is for I, it is read from L with cost 9 and the visited

list marked by visitor pointer is VL= A B C D E F G H I

.POSITION(I) in L= 9. So next 9 elements from I in R is NRi= E

G D I E D B A I. Match(VL,NRi) =E I with matching cost 2.

Given list is L= A B C D E F G H I , request sequence R= I

E G D I E D B A I . Buffer size is 3.First request is for I,

read it from L with cost 9 and the visited list marked by visitor

pointer is VL= A B C D E F G H I .POSITION(I) in L= 9. So

next 9 elements from I in R is NRi= E G D I E D B A I .

Match(VL,NRi) =E I with matching cost 2.

 Visitor pointer

 L= A B C D E F G H I

 VL

VL= A B C D E F G H I

 NRi= E G D I E D B A I

So store E I in buffer B. and give them flag in look ahead of „i‟

i.e, in next 9 elements from I in R.

 B =

The flagged elements in R are NRi = E1 G D I1 E1 D B A I1

Next requested element in R is E, it is flagged so access it from

buffer. The cost is 1 as it is at the first position in B. The next

request is G. It is non-flagged. POSITION(G)=7 in list.So

access from L with cost 7. The VL marked by visitor pointer is A

B C D E F G. The NRi=D I E D B A I. Match(VL,NRi)= D with

matching cost 1.

 Visitor pointer

L= A B C D E F G H I

 VL

VL= A B C E F G

NRi=D I E B A I

So store D in buffer B. now B=

And give flag to E I D in R within look ahead of „i‟ i.e, in

next 7 elements from G in R.

NRi= D1 I1 E1 D1 B A I1

Next request is D in R, it is flagged so access it from buffer with

cost 3. Next request is for I. It is flagged so it is accessed from

buffer with cost 2. Next element in R is E. It is flagged so it is

accessed from buffer with cost 1. Next request is D. It is flagged

and is accessed from buffer with cost 3. Next request is B, it is

non-flagged. POSITION(B)=2 in list and it is accessed from L.

The visited list marked by visitor pointer is VL=A B. NRi= A I.

Match(VL, NRi)= A with matching cost 1.

Visitor pointer

L= A B C D E F G H I

 VL

 B

 NRi = I

So, store A in buffer B. But buffer already contains three

elements so we have to replace one element by FIFO policy. So,

E will be replaced by A with replacement cost 1

 Now B=

flag is given to A I D in NRi.

NRi= A1 I1 .

Next requested element in R is A. It is flagged so access it from

buffer B with cost 1. Next request is for I, as it is flagged ,access

it from buffer with cost 2. The total cost for above request

sequence according to proposed cost model is the sum of access

cost, matching cost and replacement cost is 36

3.3 Comparison of proposed cost model

with standard cost model
We have performed experiment by implementing our proposed

algorithm using AMR cost model and MTF algorithm using full

cost model. We have calculated total cost of each method for

different list configuration and request sequence. We have

compared the total cost of our proposed algorithm using AMR

cost model with the MTF algorithm using full cost model. Here

we have observed that our algorithm using AMR model

performs better than the MTF algorithm as shown in table-1.

Figure-3 shows the comparative cost of MTF algorithm using

Full cost model and the new proposed algorithm using AMR

cost model.

From the analysis, we have observed that when the elements

having higher „i‟ values (where „i‟ is the position of element in

the input list) are the buffered elements, then the gain is more.

When the buffered elements are frequently present in the request

sequence, then this cost model gives significant gain. When no

matching occurs and the elements having higher „i‟ values are

repeatedly present in the request sequence, then it performs

worst.

4. CONCLUSION AND FUTURE WORK
In this paper, we have presented new cost model using singly

linked list data structure, which considers access cost, matching

cost, and replacement cost . Here we have proposed one method

which involves the matching, buffering, look ahead and flag bit.

This method calculates the processing cost of request sequence

using our proposed cost model. We have compared our work

with MTF which calculates the cost using standard cost model.

E I

A I D

I

I

I

I

I

I

I

E

E

D

D

D

A

A

E I D

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

23

We have analysed our work and given the cases when it

performs best and worst.

For matching operation, here we have used the parallel matching

technique. By using improved matching techniques the proposed

cost model can be improved. In our proposed cost model, we

have assumed that the buffer size is given and it is static. In

future work, it can be made dynamic for improve the efficiency.

Different list update algorithms can be developed by using this

cost model. For replacement in buffer, we have used FIFO

policy; other advanced paging policy can be included for

extension.

Fig. 3 Comparison of AMR Model with Standard Cost

Model

5. REFERENCES
[1] J. McCabe , “On serial files with relocatable records”,

Operations Research, vol. 12. pp 609-618, 1965.

[2] J. L. Bentley and C. C. McGeoch, “Amortized analysis of

self organizing sequential search heuristics,” CACM, vol.

28, pp. 404-411, 1985.

[3] G. H. Gonnet, J.I. Munro, and H. Suwanda, “Towards self-

organizing linear search.”IEEE, pp.169-174, 1979.

[4] R. Rivest, “On self organizing sequential search heuristics,”

Communication of the ACM, vol 10. 19,63- 67, 1976.

[5] G.H. Gonet, J.I. Munro, and H. Suwanda, “Towards

selforganising linear search.” SIAM journal of computing,

vol. 10, no. 3,pp. 613-637, 1981.

[6] J. H. Hester and D. S. Hirschberg, “Self –organizing linear

search,” CACM, vol. 17, pp. 295-312, 1985.

[7] D. D. Sleator and R.E. Tarjan, “Amortized efficiency of list

update and paging rules.” Common. ACM, vol. 28, no. 2,

202-208, 1985.

[8] A. Borodin, N. Linial, and M. Saks, “An optimal online

algorithm for material task systems,” JACM, vol. 52, pp.

46-52, 1985.

0

20

40

60

80

100

120

140

Standard Model

Prposed Model

Sl. No

Request

sequence

size

Request

sequence

Access Cost

of MTF using

Standard cost

model

Cost

Using

Proposed

Cost

Model

1 11

K J I H G

F E D C B

A

121 66

2 19 H B B A

A E E G

H J J A J

C E H B

H H

80

58

3 20 G B A D

D G F D

B A A H

G C B A

H G F H

87 48

4 21 K B B A I

I J K I I J

K H I B B

A A K J I

92 54

5

22

J B J J J E

J G G E J

I J I J I J I

J I I I

66 64

6

23

K J A B A

H K B H

H J K I I

J D C J K

B K I

125

63

