
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

1

Software Next Release Planning Approach through
Exact Optimization

Fabrício G. Freitas, Daniel P. Coutinho, Jerffeson T. Souza

Optimization in Software Engineering Group (GOES)
Natural and Intelligent Computation Laboratory (LACONI)

State University of Ceará (UECE)
Avenue Paranjana, 1700, Fortaleza, Brazil

ABSTRACT

The Software Requirements phase has notable importance, since

it is responsible for the definition of the system itself. Several

customers indicate which functionalities they want to be present

in the software. However, constraints, such as budget, make it

impossible to implement all desired requirements at once. One

activity in this context is the release planning. The selection of

which requirements should be implemented to the next release is

necessary. In literature, metaheuristics have been employed to

solve this problem. The objective of this work is to propose the

use of exact optimization techniques in the problem, with the

advantage that the resolution through these techniques ensures

the best solutions. The results in several experiments show the

validity of such application, in comparison with the

metaheuristics approach.

General Terms

Exact Optimization, Software Requirements, Software

Engineering.

Keywords

Search Based Software Engineering, Next Release Planning,

Software Requirements.

1. INTRODUCTION
The software engineering plays an important role in the

development of quality systems. Through decades of research,

models and methodologies have been defined in order to support

the software development process [1], considering that the final

product quality is strongly related to the quality of the

development process [2].

Unfortunately, such methodologies may not be appropriate to

solve some software development problems, mainly in

inherently complex problems. In those cases, automated

methods should be used in order to solve the problems

efficiently.

One important area in the software development process is the

requirements engineering. This phase contains problems of high

complexity, such as the Next Release Problem (NRP) [3]. This

problem concerns on defining which requirements should be

implemented for the next version of the system, according to

customer satisfaction and budget constraints. Metaheuristics

have been used to solve the problem, and so far the definition of

the best solutions could not be guaranteed.

This paper proposes the resolution of the problem through exact

techniques. We aim to find better solutions to the software

development process, which is crucial to the area [4]. The

research questions to be investigated are:

• Exact Optimization Applicability: Can exact techniques be

applied to the problems?

• Exact Optimization Efficiency: Is exact optimization execution

time an issue?

In order to answer those questions, we perform both

effectiveness and efficiency comparison among exact techniques

and metaheuristics to some instances of the problem. The

instances were set in different sizes, in order to represent various

contexts of application.

2. RELATED WORK
The Next Release Problem (NRP) was originally considered in

2001 using as objective function the maximization of customers’

satisfaction [3]. The authors applied optimization techniques in

five instances of the problem, and they considered three budget

constraint scenarios: 30%, 50% and 70% of the total cost of all

requirements. The authors employed the metaheuristics

Simulated Annealing, Hill-Climbing, and a greedy technique. In

the experiments it was found that Simulated Annealing

technique yielded better results in comparison with other

techniques.

In contrast to the previous related work, the main contribution of

this work is to model and solve the NRP through exact

optimization technique. Such an approach encourages the

potential use of exact techniques on other problems of Software

Engineering. It also plays as a contribution the reinforcement of

the use of Operations Research techniques in Software

Engineering contexts, indicating a cross-disciplinary approach.

The NRP was revisited in 2007, and a multiobjective

formulation of maximization of customers’ satisfaction and

minimization of the implementing cost was taken [5]. In the

paper, the customers’ satisfaction function considers not only

the importance of each client, but also the importance level that

each customer has for each requirement. Multiobjective

metaheuristic NSGA-II was able to solve the problem, though it

could not guarantee the definition of the best set of solutions in

the instances used.

3. SEARCH BASED SOFTWARE

ENGINEERING
Software Engineering, as an engineering discipline, is a field

with mathematical aspects and problems [6]. Additionally, as

any engineering field, there are scenarios to optimize. An

efficient way to solve this kind of problem, usually with

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

2

structural complexity and constraints, is an automated

optimization approach [7].

The first step in this direction in software engineering was in

1976, where the problem of generating test data was attacked by

numerical maximization [8]. Since 2001, however, this new

approach to software engineering, know as Search based

Software Engineering (SBSE), researchers and experts have

intensified the modeling of Software Engineering problems as

optimization problems [9].

The requirements engineering is a stage in which the software

itself is defined, and therefore the activities performed at this

point have an impact on all phases of development. Due to

budget constraint, it is usually not possible to implement all the

desired features. Thus, the selection of which requirements must

be implemented consists of a relevant task in this phase. This

problem can be tackled as an optimization problem.

The mathematical optimization problems are those with

functions to be maximized or minimized and defined from

coefficients and variables. The variables that define the

functions may be subject to restrictions, i.e., the variables must

satisfy a set of defined equations according to each instance of

the problem. Formally, the optimization problem is defined as:

)}(...,),(),({ 21 xfxfxfMinimize k

:toSubject

}...{,0)(1 piixg

}...{,0)(1 qiixh

In the mono-objective optimization, the search for solutions is

performed according to the values of only one function. Thus, in

a minimization problem, for example, if we take a solution A

with function value less than the value of a solution B, then A is

better than B.

3.1 Problem Definition
The mono-objective requirements selection [3] is defined by the

following aspects:

 Customers: Consider a set C = {c1, c2, , cm} with m

customers. Each client i has an importance value wi. Each

client indicates a list with the requirements desired.

 Requirements: Given a set R = {r1, r2, , rn} with n

requirements. Each requirement j has an implementation

cost costj, such as man-hours. The requirements also have

a precedence relation, since some requirements depend on

the implementation of others.

 Company: The development company has a maximum

budget available B for use by the next version.

The mathematical formulation of mono-objective NRP is as

follows:

m

i

ii Xw
1

max (1)

Subject to

BYstco j

n

j

j

1

 (2)

ijij rondependsrYY ,

The Boolean variable Xi indicates the selection state of customer

i. If customer ci is fully satisfied (all his desired requirements are

selected), then Xi is 1. As shown in (1), the requirements

selection considers maximizing the sum of importance of such

customers. The Boolean variable Yj represents the selection state

of requirement j: Yi is 1 if the requirement i is selected, and 0

otherwise. In (2), the restriction states that the selection is

limited by the budget B.

The restriction (3) indicates the dependence relation among the

requirements. Consider that some requirement rj depends on

other ri. Therefore, in order to rj be selected (Yi = 1), Xi has to

be greater or equal than 1, which in the binary context means

that it is 1, i.e., requirement ri is also selected in the solution.

The Figure 1 presents an example of the NRP structure, with 20

requirements (r1.to r20) and 10 customers (other c1 to c10). The

links between requirements are the dependency relation.

Fig 1: NRP illustrative example.

4. METHODS

4.1 Metaheuristics
The term metaheuristic [10] represents a class of generic search

algorithms. These methods use ideas from various fields as

inspiration to the process of trying to solve optimization

problems. Metaheuristics approaches attempt to solve the

problem by intelligently visiting only some solutions, but there

is no guarantee that the best solution is returned. The following

are summary on the mono-objective metaheuristics used.

 Simulated Annealing: The metaheuristic Simulated

Annealing [11] is based on a physical process that occurs in

the metals metallurgy. In the tempering process, a material

is heated to high temperatures and, thereafter, is cooled so

that at the end of the process the material is crystallized in a

state of minimal energy. The relation with the mathematical

optimization is the minimization of the objective function

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

3

value from the solutions found during the search process.

The Simulated Annealing algorithm allows the acceptance

of solutions that will not improve the value of the function.

These acceptances against the objective are controlled by a

statistical equation defined in the actual physical process.

In summary, the algorithm works as follows: if the new

solution is better than the current solution, then it is

accepted, otherwise, if the new solution worsens the

objective, then it is accepted with a certain probability

defined in terms of difference between the solutions, the

current value of the variable temperature and constant

physical. Figure 2 next simulates how the Simulated

Annealing works in a minimization problem.

Fig 2: Simulated Annealing search procedure.

 Genetic Algorithms: The metaheuristic Genetic

Algorithms [12] uses concepts of genetics, such as

population and mutation. The metaheuristic can be defined

in terms of two genetic operations: crossover, in which the

structural information of two solutions are crossed to

generate two new solutions; and the mutation process by

which some random changes may occur in the solutions

generated. The mutation is used in order to avoid the

generation of the same solutions, and therefore to explore

various search spaces. In summary, the current solutions

are evaluated to determine which will continue to the next

iteration ("generation"). Thus, the solutions are

continuously selected according to performance in relation

to the objective function. As new solutions are generated

from these solutions that have been selected, the process

"evolve" in order to generate better solutions.

4.2 Exact Optimization
The exact techniques are methods that use mathematical

operations in order to solve the problem. The most known

method for problems with linear both functions and constraints

is the simplex method [13]. This method uses the formulation of

the problem in matrix form, and applies matrix mathematical

operations to achieve the global optimum, if any. The method is

based on the geometric representation of the optimization

problem in which the linear equations form a "polytope" in the

search space. According to theorems in the field of linear

programming, the optimal solution of the optimization problem

is found in one of the vertices of the polytope considered as the

system of linear equations of the formulation. Thus, from a valid

initial solution, usually at the origin of space, the simplex

method visits the adjacent vertices in the search for better values

for the objective function. This approach is also based on the

argument that indicates that the number of vertices of the

polytope to a linear optimization problem is a finite number, and

so the search will eventually end.

The process of visiting the adjacent vertices until it finds the

global optimum is achieved by matrix operations including the

exchange between the basic variables of the system of equations.

This is accomplished by manipulation of the equations of the

linear system that represents the model. In this work, the version

used is the revised Simplex in the product form of inverse. For

solving Integer Programming, the method used is Branch-and-

Bound. This approach first solves the problem by using linear

methods or nonlinear (depending on the problem treated)

without the restriction of the integer solution in order to find the

limits (bounds) of the solution. Additionally, the problem is

divided into sub-problems in a tree structure (branch) in

accordance with divisions of the domains of variables, and the

divisions that are worse than the limit are discarded. The process

is performed until the sub-problems have been considered.

5. METHODOLOGY

5.1 Instances
We generated random data sets for the simulation of various

contexts. Although they are artificial data, this does not affect

the present analysis, given that the data represent a random

simulation of a context where the problems can happen, and thus

serve as a basis for simulation. For the mono-objective Next

Release Problem (NRP), we generated five instances of different

sizes.

For the definition of the values domain, we followed the

directions suggested in the original article that defined the

problem [3]:

• Customers’ value (w): 1 to 10

• Requirements cost: depends on the level;

– 1 to 5 for the basic requirements,

– 2 to 8 for second level,

– 5 to 10 for third level.

• Number of basic requirements by customer: 1 to 2.

Table 1 shows the characteristics of each instance. Figure 1

shows the structure of instance

Table 1. Instances used in experiments.

Instance Requirements Customers

NRP-A 20 10

NRP-B 40 20

NRP-C 100 50

NRP-D 140 70

NRP-E 200 100

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

4

Fig 3: Instance NRP-B, with 20 clients and 40 interdependent requirements.

5.2 Resolution
The resolution by metaheuristic is carried out with frameworks

EasyMeta [14] for the mono-objective problem. The framework

is implemented in JAVA language, and implements several

metaheuristics algorithms. Since metaheuristic algorithms are

non-deterministic, one execution is not enough to analyze its

performance. So, each metaheuristic was executed 100 times.

The results shown indicate the average of 100 runs, and the

variation of standard deviation of the values of the objective

function.

The metaheuristics Simulated Annealing and Genetic

Algorithms were chosen because of their widespread use in

optimization problems. The configuration of genetic algorithms

was cross-over rate of 0.9 and mutation rate of 5% (0.05). The

maximum number of evaluations was 10,000, as well as in

Simulated Annealing. These parameters were chosen by

previous experimentation and tuning. A resolution by random

approach was also performed.

The resolution in exact optimization was performed, as the

problem tackled in this paper is of integer programming, with

Branch-and-Bound method [15].

Resolution by humans subjects were also carried out in order to

validate the better result for the problem are found by the

automated technique. The solutions of the experts were collected

on forms specifically design for the task. In total, 21 people

solved both NRP-A. In instances NRP-B the number of

participants reached 13 software engineering specialists [16].

For the other instances of the problems the resolution was not

carried out by specialists, because of the high complexity of

such instances. The analysis presented next was based on the

average value and standard deviation of the objective function

among the solutions of the participants.

6. RESULTS

6.1 Solutions
The results of the instances NRP-A and NRP-B are presented

initially, because these are the ones that have answers of all

techniques, including experts, which answered to the scenario of

70% of budget. The Table 2 shows the values of the objective

function (to be maximized) for these results.

Table 2. Results for NRP-A and NRP-B with 70%.

Method NRP-A 70% NRP-B 70%

Exact Technique 27 96

Genetic Algorithm 26.45±0.500 95.41±0.190

Simulated Annealing 25.74±0.949 90.47±7.023

Human Experts 16.19±6.934 77.85±13.459

Random 15.03±5.950 45.74±11.819

The results from Exact Optimization and Metaheuristics are

similar. Genetic Algorithm performed 2.03% worse than exact

technique in NRP-A, and 0.61% in NRP-B. The Simulated

Annealing metaheuristic was 4.67% and 5.76% worse in NRP-A

and NRP-B, respectively.

However, the main information in Table 2 is the results achieved

by experts. In the instance NRP-A, the average objective

function value was 16.19, whilst the global optimum found by

the exact optimization is 27. Thus, the average solution of

specialists was 40.74% worse. In the instance NRP-B, the

average of the experts was 18.90% worse when compared to the

optimal solution found by exact optimization. The results

indicate the validity of the use of automated optimization

techniques to solve this problem and, as expected, the best

results are obtained by exact optimization.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

5

Table 3 below shows the results for the instance NRP-C for the

three scenarios, 30%, 50% and 70% of budget. In such instance,

as well as for NRP-D and NRP-E, the experiments were

performed with the exact optimization and metaheuristics.

Table 3. Results for NRP-C, for 30%, 50% and 70%.

Method
NRP-C

30%
NRP-C 50% NRP-C 70%

Exact

Technique
96 146 206

Genetic

Algorithm
80.45±9.34 124.25±9.60 199.07±4.37

Simulated

Annealing
71.89±9.50 107.00±10.69 170.63±13.11

The results confirm that the exact optimization finds the best

solutions to the problem. As for the behavior related to budget

scenarios, the metaheuristics achieve worse results for scenarios

with restricted available budget. For example, in the instance

NRP-C, the average objective function values of genetic

algorithms compared to the exact optimization are 3.36% lower

in the case of budget 70%, 14.89% worse for the scenario of

50%, and 16.19% lower in the case of 30%. Therefore, the use

of exact optimization is even more valid in practical contexts

with more restricted budget. For Simulated Annealing, the

results are: 17.17%, 26.71%, and 25.11% worse than exact

optimization in scenarios of 70%, 50% and 30% of budget,

respectively. These values are presented below in Figure 4 for

visualization.

Fig 4: Results for metaheuristics against exact in NRP-C.

From the Figure 4 it can be perceived the evolution of

worsening of both the metaheuristics with the greater budget

constraint. Another aspect observed is that between 70% and

50% there is a major change in the variation of the techniques.

Between 50% e 30%, however, a minor change occurs. This

shows that the performance of the metaheuristics is strongly

affected even by the reduction of 70% for 50%. This result

shows the importance of exact optimization approach in the

context. The values of the variations are: from 70% to 50%,

Genetic Algorithm gets 343.15% worse and Simulated

Annealing gets 55.56%. From 50% to 30% of budget, the values

are -8.02% for Genetic Algorithm (the metaheuristic got better)

and 6.37% for Simulated Annealing.

In order to show the overall performance of the techniques, we

also present the results for the bigger instances, The instance

NRP-D, for example, is twice the size of the previous NRP-C.

Table 4 next presents the results for NRP-D.

Table 4. Results for NRP-D, for 30%, 50% and 70%.

Method
NRP-D

30%
NRP-D 50% NRP-D 70%

Exact

Technique
128 205 278

Genetic

Algorithm
87.60±13.91 160.88±16.92 270.70±15.17

Simulated

Annealing
79.02±12.36 133.96±17.33 211.70±15.99

As for NRP-C, the results for the instance NRP-D shows the

better performance of exact techniques. Regarding the behavior

to budget scenarios, the metaheuristics also achieve worse

values compared to the exact optimization by the increase in the

restriction of the budget. The average results of genetic

algorithms are 2.62%, 21.52% and 31.56 worse in the limits of

70%, 50%, and 30%, respectively. The Simulated Annealing had

the following results of worse variations than exact

optimization: 23.84%, 34.65%, and 38.26 in scenarios of 70%,

50% and 30% of budget. So, in this instance it is also applicable

the fact that the use of exact optimization is valid in practical

contexts, because they may eventually present restricted budget.

As done for NRP-C, the Figure 5 shows these values for better

visualization.

Fig 5: Results for metaheuristics against exact in NRP-D.

The Figure 5 indicates a growth of worsening more smooth than

Figure 4. It indicates that for an instance with the twice size, the

metaheuristics stated to show a regular level of worsening with

more constrained scenarios. Despite that, the minor variation

between 70% and 50% compared to that between 50% and 30%

also happens in NRP-D. This result reinforces the importance of

exact optimization in the problem. The values for variations for

Genetic Algorithm are: from 70% to 50%, 721.37% worse and

from 50% to 30%, it is 46.65% worse. Simulated Annealing gets

45.34% between 70% and 50% of budget constraint, and

10.41% for 50% and 30%. Another aspect is that in this case

there was not a better result between 50% and 30%, as presented

in the previous case.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

6

Finally, the results for NRP-E are shown in Table 5 below.

Table 5. Results for NRP-E, for 30%, 50% and 70%.

Method NRP-E 30% NRP-E 50% NRP-E 70%

Exact

Technique
205 299 314

Genetic

Algorithm
177.09±9.60 293.94±3.19 313.85±0.41

Simulated

Annealing
147.29±14.81 265.75±13.47 314.00±0.00

The results for the NRP-E indicate the better performance of

exact techniques in all scenarios. Despite the result for

Simulated Annealing in the 70% constraint budget shows that

the metaheuristic has achieved the best solution, the

performance of exact optimization was better in all scenarios.

The behavior regarding the budget scenarios is as follows: the

Genetic Algorithm had in average results 0.04%, 1.69%, and

13.61% worse in the limits of 70%, 50%, and 30%, respectively.

The metaheuristic Simulated Annealing was worse than exact

optimization by 0.00%, 11.37%, and 28.15% in scenarios of

70%, 50% and 30% of budget. This result shows that, as for

NRP-C and NRP-D, in NRP-E the metaheuristics got worse with

the increase in the restriction of the budget. As for the previous

instances, the Figure 6 shows the variation values.

Fig 6: Results for metaheuristics against exact in NRP-E.

6.2 Execution Time
Beyond the analysis of accuracy of solutions, the runtime of

executions of the techniques is also an aspect to be investigated.

The time results shown below are presented in milliseconds.

This data were collect from the metaheuristics by the average

and standard deviation of 100 executions. In the exact technique,

the time is of the only execution of the method. In the results for

human subjects, the data were collected by the time the experts

needed to resolve the problem. Then, the values were taken in

average and standard deviation. While the other automated

techniques used milliseconds or seconds of execution, the

humans took minutes to solve the instances. This is why the

values presented below for human are much greater than the

values for the others techniques.

Initially, the results of NRP-A and NRP-B are presented in

Table 6. The results are from the constraint of 70% of budget.

Table 6. Runtime results for NRP-A and NRP-B with 70%.

Method NRP-A 70% NRP-B 70%

Exact

Technique
520 1030

Genetic

Algorithm
40.92±11.112 504.72±95.665

Simulated

Annealing
23.01±7.476 292.62±55.548

Human Experts
1,731,428.57

±2,587,005.57

3,084,000.00

±2,542,943.10

Random 0.00±0.002 0.06±0.016

The results indicate the exact optimization technique has

runtime greater than the average of metaheuristics. In NRP-A,

the runtime of exact technique was 12.70 times of the Genetic

Algorithms, and 22.59 times than the execution runtime of

Simulated Annealing. However, the time of exact technique was

about half second, and then it is a valid execution time for the

context. Other aspect regarding this issue is that the time from

exact technique was lower that the time required for the human

experts. The results for B show similar behavior: execution

runtime of exact approach is 2.04 times than Genetic Algorithm

and 3.51 than Simulated Annealing.

Table 7 and Figure 7 show the results for execution runtime for

NRP-C.

Table 7. Execution results for NRP-C (30%, 50% and 70%).

Method
NRP-C

30%
NRP-C 50% NRP-C 70%

Exact

Technique
5520 8410 1850

Genetic

Algorithm

1718.56

±259.97

1735.41

±182.42

2162.30

±287.98

Simulated

Annealing

3264.88

±668.00

2150.93

±345.49

1384.98

±186.31

Fig 7: Runtime results in NRP-C.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

7

Despite the greater execution time in most cases, the exact

technique still has a reasonable time. For example, the greater

value in NRP-C is 8,410 milliseconds, which is about 8.4

seconds. This value, even greater than the ones required by the

metaheuristics, is of valid use in the context.

The results of execution runtime for NRP-D are shown in Table

8 and Figure 8 below.

Table 8. Execution results for NRP-D (30%, 50% and 70%).

Method
NRP-D

30%
NRP-D 50% NRP-D 70%

Exact

Technique
8520 1441 5070

Genetic

Algorithm

36649.20

±10792.79

42794.11

±15531.51

37698.60

±3790.49

Simulated

Annealing

80568.10

±26046.21

56605.51

±21300.49

31820.10

±5967.78

Fig 8: Runtime results in NRP-D.

In this case, the time of exact technique was lower than the

metaheuristics. That happens mainly because for a bigger

instance, the metaheuristics are set to have more evaluations and

operations. Nonetheless, a result that can be taken from the

graphic is that the Genetic Algorithm had similar times, while

Simulated Annealing has presented an increasing runtime by the

increase in budget constraint.

Finally, Table 9 and Figure 9 show the results for execution

runtime for NRP-E.

Table 9. Execution results for NRP-E (30%, 50% and 70%).

Method
NRP-E

30%
NRP-E 50% NRP-E 70%

Exact

Technique
1850 1070 1380

Genetic

Algorithm

6760.64

±1653.32

6130.74

±1165.81

6191.47

±650.08

Simulated

Annealing

7132.54

±1898.25

3446.03

±670.57

2841.17

±283.82

Fig 9: Runtime results in NRP-E.

A result that can be taken from the Figure 9 is that Simulated

Annealing strongly increase its time by the 30% budget

constraint.

7. CONCLUSION
Given the importance of software systems in today's society, it is

important that their development is done in the best possible

way. During such a development, some complex problems can

occur and to solve them by those software experts involved may

be a highly difficult task. In the phase of requirements

engineering, for instance, a complex problem occurs when

dealing with the selection of which requirements should be

implemented to the next release, based on values of importance

and in budget constraints.

In literature, this problem has been tackled by metaheuristics,

and in this work we propose the resolution by exact techniques,

which have the advantage of finding the best solutions to the

problem. From tests carried out in several instances, we can

indicate the validity of such an approach. Besides, as expected,

the exact optimization results were better than the

metaheuristics, the execution time has shown to be reasonable.

In this case, it was observed that the solutions of the

metaheuristic genetic algorithms, which performed better

compared to Simulated Annealing, were up 31.56% worse

compared to those found by the exact method. Moreover, it was

noticed that for bigger problems, more complex, the overall

performance of metaheuristics deteriorated. An additional fact

taken from metaheuristics is that the average performance of

these techniques gets worse with a more restricted limit of

budget constraint of the problem.

Regarding execution time, the approach based on exact

techniques presented, indeed, in general, more time to resolve

the instances of the problems. However, for example, the longer

runtime stated in the mono-objective problem was 8.52 seconds,

in the instance NRP-D, which shows that, despite being a higher

value when compared to those of metaheuristics, it constitutes

an acceptable execution time.

This study also carried out comparisons with solutions from

experts involved in the area. From the results, we verify the

necessity of applying the automatic techniques and based on

mathematical optimization in solving the problems, because in

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.8, May 2011

8

general the results found by experts proved worse. In the case of

the mono-objective selection requirements, we found that on

average the solutions given by experts were 40% and 18.9%

worse than the optimal solution in NRP-A and NRP-B,

respectively.

As future work, we indicate performing experiments in larger

instances, as well as tests with different data in order to

demonstrate the validity of the approach in different scenarios.

Other research is to deal with testing the approach with real data

from software projects.

8. REFERENCES
[1] T. Dyba, “An empirical investigation of the key factors

for success in software process improvement”, IEEE

Transactions on Software Engineering, May 2005, pp. 410-

424.

[2] Fuggetta, A. 2000. Software process: a roadmap, The

Future of Software Engineering, A. Finkelstein (ed).

[3] A. Bagnall, V. Rayward-Smith, L. Whittley, “The next

release problem”, Information and Software Technology,

2001, pp. 883–890.

[4] Yoo, S. and Harman, M. 2007. Pareto Efficient Multi-

Objective Test Case Selection. In Proceedings of the

International Symposium on Software Testing and

Analysis, pp. 140-150.

[5] Zhang, Y., Harman, M. and Mansouri, A. 2007. The multi-

objective next release problem. In Proceedings of the 9th

annual conference on Genetic and evolutionary

computation (GECCO '07). ACM, pp. 1129-1137.

[6] Harman, M. 2006. Search Based Software Engineering, In

Workshop on Computational Science in Software

Engineering.

[7] J. Clarke, et al. “Reformulating software engineering as a

search problem”, IEE Proceedings Software, Vol. 150, No.

3, June 2003, pp. 161-175.

[8] W. Miller and D. Spooner, “Automatic Generation of

Floating-Point Test Data”, IEEE Transactions on Software

Engineering, Vol. 2(3), pp. 223-226, 1976.

[9] M. Harman, and B.F. Jones, “Search-based software

engineering”, Information and Software Technology, 2001,

pp. 833-839.

[10] Glover, F. 1986. Future paths for integer programming and

links to artificial intelligence, Computer Operational

Research 13, pp. 533-549.

[11] S. Kirkpatrick, D. C. Gellat, M. P. Vecchi, “Optimizations

by simulated annealing”, Science v. 220, pp. 671-680,

1983.

[12] Holland, J., 1975. Adaptation in Natural and Artificial

Systems.

[13] Dantzig, G. B. Inductive proof of the simplex method. IBM

J. Res. Development, 505-506, 1960.

[14] Carmo, R. A. F, Campos. G. A. L., Souza, J. T. Easymeta:

a framework of metaheuristics for mono-Objective

optimization problems. In Proceedings of the XL Simpósio

Brasileiro de Pesquisa Operacional (SBPO´2008), 2008.

[15] Land, A. H., Doig, A. G.; An automatic method of solving

discrete programming problems. Econometrica 28(3): 497-

520, July 1960.

[16] Souza, J., Maia, C., Freitas, F. and Coutinho D. 2010. The

Human Competitiveness of Search Based Software

Engineering. In Proceedings of the 2nd International

Symposium on Search Based Software Engineering

(SSBSE '10), pp. 143-152.

