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ABSTRACT 

Frequent pattern mining has been an emerging and active field in 

data mining research for over a decade. Abundant literature has 

been emerged from this research and tremendous progress has 

been made in numerous research frontiers. This article, provide an 

application of the modified Apriori algorithm in coordinate sets of 

trajectories to find the frequent trajectory coordinates. In this 

algorithm additional steps are added to prune the coordinate sets 

generated so that to reduce the unnecessary search time and space. 

This sequential pattern mining method is quite simple in nature 

but complex to implement. This paper explains the basics of data 

origination, database structure to hold the coordinate datasets and 

the implementation of the algorithm with the object oriented 

programming language by an illustration. It can be applied to 

interesting game domains to find the frequent trajectory of an 

object shot by a player which follows a trajectory path. 

General Terms 

Data Mining, Pattern Mining, Algorithms et. al. 

Keywords 

Data mining, Association mining, Frequent pattern mining, and 

trajectory pattern mining. 

1. INTRODUCTION 
Frequent trajectory coordinates play an essential role in many data 

mining tasks that try to find interesting patterns from trajectory 

databases consists coordinates of objects.  With the advancements 

in Science and Communication technology, sensors and control 

equipments data accrual of moving objects is made so easy. From 

these huge volumes of data, knowledge about the frequent 

trajectory pattern can be generated and observed [1]. This can be 

applied in different domains to predict the further movements of 

the objects. Finding frequent patterns plays an important role in 

mining associations, correlations, and many other interesting 

relationships among data.  

Frequent pattern mining was first proposed by Agrawal et al [2] 

[3] for market basket analysis in the form of association rule 

mining. It analyses customer buying habits by finding associations 

between the different items that customers place in their 

“shopping baskets”. Since its inception, hundreds of new 

algorithms or improvements on the existing algorithms have been 

evolved to solve the mining problems more efficiently as per the 

user requirements. The spatial and temporal attributes are 

considered simultaneously for mining trajectory patterns in 

Anthony et al [4]. Based on this and using association mining, 

frequent paths of moving objects are extracted. This may be of 

immense help in predicting the paths frequented by moving 

objects. Similarly frequent paths of flights, roads of commuters 

and migratory birds may be investigated. More precisely this 

concept can be applied in case of some games, to find the path of 

a frequent ball movement. That is get the coordinates of the ball 

moved out from the bat of a player X to a destination. These 

coordinates can be collected for player X for a set of games. 

Using this coordinates, discover a frequent trajectory pattern will 

give a most frequent path of the ball movement for player X. 

Based on this knowledge the opponent player or team get adjust to 

it; tackle the situation face the ball from player X and have more 

probability to win. Similar concept is adopted in [5], [6] but by 

different complex approach. 

The paper is organized as follows: Related works in the Apriori 

algorithm, frequent pattern mining and frequent trajectory mining 

are reviewed in Section 2; Preliminaries and problem description 

based on the proposed modified Apriori algorithm based method 

to find frequent trajectory patterns are described in Section 3; An 

example is given to illustrate the proposed method is in Section 4.  

Experimental results for showing the performance of the proposed 

method are provided in Section 5. Conclusions and future work 

are given in Section 6. Acknowledgements and references are 

given in Section 7 and 8 respectively.  

2. RELATED WORKS  
This work is mostly related to pattern discovery from sequential 

data, which include time series, event sequences, and spatio-

temporal trajectories except time component. 

Mining frequent itemsets is one of the fundamental problems in 

the active research area of data mining. An itemset is considered 

to be frequent if its support is greater than a user-specified 

minimum support threshold, where the support of an itemset is 

defined as the percentage of transactions in the database that 

contain the itemset. Agrawal et al [3] pioneered to mine frequent 

itemsets from transactional databases and proposed an Apriori 

approach. After this approach many other itemset mining 

algorithms [6]-[9] have been proposed for mining the frequent 

itemsets in a database. Sequential pattern mining algorithms   

[10]-[14] have also been proposed. Many graph mining 

algorithms [15]–[21] have been proposed. FFSM [16] exploits an 

algebraic graph framework called canonical adjacency matrix 

(CAM) tree to perform join-extension operations to 

unambiguously enumerate all frequent subgraphs and avoid 

subgraph isomorphism testing by maintaining an embedding set 

for each frequent subgraph. AGM [18] and FSG [20] use an 

Apriori-based approach to combine frequent subgraphs mined at 

the previous level to generate all candidates at the next level. The 

gSpan [21] generates the frequent subgraphs without candidate 

generation in a depth-first search manner. Yun [22] efficiently 

mine sequential patterns in large sequence databases by using the 

weight constraints. Garofalakis et al. [23] proposed an approach, 

called SPIRIT, to mine sequential patterns with regular expression 
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constraints. All these, sequential pattern, itemset, and graph 

mining methods are not suitable for mining frequent trajectory 

patterns. The spatial and temporal attributes are considered 

simultaneously for mining trajectory patterns in certain 

approaches.  Itemset and sequential pattern mining algorithms do 

not consider the spatial attribute, while the graph mining 

algorithms do not consider the temporal attribute instead uses the 

edge. For frequent pattern mining of trajectory coordinates in this 

approach consider the 2D coordinates (x, y). 

Trajectory is defined as the path of flying object; the path that a 

projectile makes through space under the action of given forces 

such as thrust, wind, and gravity. It is also defined as the curve 

intersecting at constant angle; a curve or surface that intersects all 

of a family of curves or surfaces at a constant angle. Trajectory is 

a path of process or event; the way in which a process or event 

develops over a period of time. With the advancements in tracking 

the path of flying objects, a large amount of spatial-temporal data 

has been collected in databases. Getting knowledge from this data 

based on the observation of useful patterns has increased the 

attention of technocrats and decision makers recently. 

Frequent behavior of moving objects was analyzed in the 

sequential pattern mining paradigm by Giannotti et al [24]. In this 

approach both space and time components are considered for 

mining trajectory patterns. The geometry of moving objects can 

be of any spatial type and is defined by a function from a temporal 

domain to a range of spatial values by Stefano et al [25]. Here the 

trajectory is poly-line connecting the sample points that define 

discrete representation of movement in a sequence of spatio-

temporal segments. Components of a trajectory are defined when 

a trajectory starts, a spatio-temporal path it passes and ends. A 

graph based mining (GBM) for mining the frequent trajectory 

patterns in a spatio-temporal database is suggested by Lee et al 

[4]. This method scan the database to generate a mapping graph 

and trajectory information lists, from these it does a depth-first 

search manner to find all frequent trajectory patterns. 

Finding the frequently occurring trajectory patterns will guide to 

analyze and predict the movement of objects. Frequent trajectory 

pattern mining is the process of discovering the most frequently 

occurring coordinates in the set of trajectories. Different 

trajectories may arise from different coordinates passing through 

different coordinates and ending at different coordinates. If all the 

trajectories are originating from the same coordinates passing 

through the same coordinates and ending at the same coordinates, 

then all such trajectories are frequent. But in reality, obviously it 

is not so. So to find the frequent trajectory pattern using data 

mining is nothing but finding the frequent coordinates of the 

trajectories which met the user defined threshold value. After the 

mining process the output will be a set of frequently occurring 

coordinates of the trajectories. 

3. PRELIMINARIES AND PROBLEM 

DESCRIPTION  
The main objective of frequent pattern mining is to find all 

frequent trajectory patterns in a database with respect to the user 

specified minimum support threshold.  Initially the coordinate 

data set is in the form of text file consists of trajectory name and 

its corresponding coordinates in 2D, that is x and y values. These 

values are extracted from the text file and stored in a normalized 

relational database table consists of columns to hold trajectory 

number or identifier, coordinate number, x and y coordinates. 

There is a master table to hold the trajectory number and 

trajectory name. A coordinate set is a non-empty set of 

coordinates {(x1,y1), (x2,y2),…,(xn,yn)} where n is the maximum 

number of coordinates in the set. A coordinate sequence is an 

ordered list of coordinate set. For a same sequence number there 

will not be more than one coordinate. The sequence number is the 

contiguous integer. Initial processing like generating the possible 

one coordinates sets and their corresponding support count is 

found out by the programming procedural capability of the 

RDBMS. This will generate two output text files consists of the 

actual trajectory coordinates and one coordinate sets whose 

support count is not less than the user specified minimum support 

threshold. Using these files as input to an object oriented language 

will implement the Apriori algorithm and generate the output of a 

set of frequently occurring coordinates of the trajectories. 

The modified Apriori algorithm to find frequent trajectory pattern 

mining is based on the sequential pattern mining framework. 

Trajectory is considered to be tracking the paths of an object. A 

trajectory can be represented as a set of coordinates in sequence in 

Euclidian space. Trajectories are considered to be tracking the 

paths (P1,P2, …, Pn) of flying objects (O1,O2, …, On), a large 

amount of spatial data has been collected in a database D. Given a 

set of trajectories D = {P1,P2, …, Pn}, n is the number of paths of 

the flying object. Each trajectory path P consists of set of 

coordinates {V1, V2, … , Vk} , (1 ≤ k ≤ n) and n is the number of 

coordinate set, while considering the two dimension Euclidian 

space. Here k varies from 1 to n and is represented as (1 ≤ k ≤ n) 

where k is denoted as the length of the trajectory and n is the 

number of coordinates in it. In other words k-coordinate set is a 

set of coordinates having number of coordinates n where k = n. 

Each coordinate in a vertex V is represented in units in X-axis and 

Y-axis as (x,y). A sub-trajectory path p consists of set of 

coordinates {v1, v2, …, vk} , (1 ≤ k ≤ n) and n is the number of 

coordinate set. A sub-sequence coordinates set s = {c1, c2, …, ck} 

may contain in different set of trajectory paths. The set s is 

maximal if it is not contained in any other trajectory path P. 

Hence the trajectory path P of a flying object O consists of set of 

coordinates {v1, v2, …, vk} arranged in increasing sequence 

number. Such a sequence set of coordinates is called the trajectory 

path sequence. The support of a coordinate v is the percentage of 

coordinates in D that support the coordinate v. It is defined as the 

fraction of all the trajectories which support this coordinate. It can 

be written as, 

Support(v) = Number of coordinates v in D / Total number of 

trajectories in D 

A trajectory path or sub-trajectory path is frequent if its support 

exceeds the user-specified minimum support threshold value ξ. 

Such a set of coordinates is the large coordinate set which is also 

termed as frequent trajectory pattern.  

Let Ck be the set of k-coordinates with each member of this set 

has two fields (i) coordinate set and (ii) support count. Let Lk be 

the set of large k-coordinate sets with each member of this set has 

two fields (i) coordinate set and (ii) support count. This algorithm 

initially scan the database D to find the distinct coordinates, to 

form a set C1. Let this set be C1 = {(x1,y1), (x2,y2),…,(xm,ym)}, 

where m is the distinct coordinates in D. Then scan the database D 

to find the support count of each coordinates in C1. From this set 

consider the coordinates whose support is greater than the user-

specified minimum support threshold value ξ. Let the coordinates 

considered be L1. Idea is that if the trajectory coordinate set L is 
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frequent if and only if its subsequences Lk-1 are frequent. This step 

is the first step of the algorithm.  

Beginning of the second step is the generation of 2-coordinate 

candidate set C2 = L1  L1. That will be {(x1,y1) (x2,y2), (x1,y1) 

(x3,y3),  …, (x1,y1) (xm,ym), (x2,y2) (x3,y3), (x2,y2) (x4,y4),  …, 

(x2,y2) (xm,ym), …, (xm-1,ym-1) (xm,ym) }, where m denotes the 

number of coordinates in 1-coordinate set C1. Simultaneously do 

the pruning operation by verifying a 2-coordinate candidate 

generated is already exists in C2 and do not consider a 2-

coordinate candidate generated is of same coordinates appearing 

more than once, that is (x1,y1) (x1,y1). Again scan the database D 

to find the support count of each coordinates in C2. From this set 

consider the coordinates whose support is greater than the user-

specified minimum support threshold value ξ. Let this coordinates 

considered be L2. Join all the coordinates in the set and this set is 

the frequent 2-coordinate sets of the trajectories in D. Similarly 

continue the process until k+1 times finds a set of candidates 

generated is empty set. Then return all the frequent trajectory 

coordinate sets joined in the kth step. This output set is the set of 

frequent trajectory pattern. 

3.1 Modified Apriori Algorithm – An 

Efficient and Scalable Method for Mining 

Frequent Trajectory Patterns  
The Apriori Algorithm is an influential algorithm for mining 

frequent trajectory coordinates sets. This modified Apriori 

algorithm consists of two phases. As mentioned in the first 

paragraph of this section the frequent 1-coordinate set L1 obtained 

in a text file format is given as input to the algorithm. Also the 

second file which consists of the coordinates of the trajectories is 

used for searching for a pattern and counting the support of the k-

coordinate sets is used as input to this algorithm. This process will 

be the first phase of the algorithm. The second phase starts from 

candidate generation, pruning and match the coordinate for a 

specific pattern generated by reading the data file and find the 

support count are all memory resident. Then consider only the 

coordinates whose support count is greater than or equal to the 

user specified minimum support threshold value ξ. The output 

obtained at the end of this phase is the frequent trajectory pattern. 

Key Concepts : 

•Frequent Coordinate sets: Coordinate sets whose support count is 

not less than the minimum support value ξ, denoted by Li for ith- 

Coordinate set. 

•Apriori Property: Any subset of frequent coordinate set must be 

frequent. 

• Prune Operation: Deleting the generated candidate coordinates 

which are not required for further processing. 

•Join Operation (∪k Lk): To find Lk, a set of candidate k- 

coordinate set is generated by joining Lk-1 with itself. 

Input:  A trajectory of 1-coordinate sets data file and a minimum 

support value ξ. A data file which consists of the actual 

coordinates of the trajectories is used for searching for a pattern 

and counting the support of the k-coordinate sets. 

Output: Frequent trajectory coordinates which satisfies the 

minimum support value ξ. 

Method: Pseudo-code of modified Apriori algorithm : 

Ck: Candidate coordinate set of size k 

Lk: Frequent coordinate set of size k 

L1 = {frequent coordinate sets}; 

For (k = 2; Lk != ∅; k++) do begin 

   Ck =  Generate_Candidate_Coordinates (Lk-1); 

    For each trajectory coordinate sets in Ck do 

        Increment the support count of all candidate  

        coordinates in Ck that exists in the paths (P1,P2,  

        …, Pn) in the data file;  

        Lk = Take only the candidate coordinates  

        whose support count is greater than or equal to  

        the user specified minimum support threshold  

        value ξ from Ck; 

End 

Return (Frequent trajectory coordinates = ∪k Lk); 

Generate_Candidate_Coordinates (Lk-1) 

 A set of candidate k-coordinate sets is generated by   

  joining Lk-1 with itself  

   i.e., Ck =  Lk-1  Lk-1; 

  Prune if the candidate k-coordinate set generated  

  currently is already generated or else 

  if the candidate coordinates generated currently  

  consists of more than one same coordinate; 

Return(Ck); 

4. AN EXAMPLE  
Given below, is a simple example to illustrate the process of the 

modified Apriori Algorithm construction. Assume there are six 

trajectory transactions shown in Table 1. Here TID represents 

trajectory identifier. The trajectory column represents the two 

dimension coordinates of a trajectory. Normally a trajectory is 

represented by its coordinates along with its time component. For 

finding the frequent trajectory patterns the time component is not 

considered. More over for finding the frequent trajectory patterns 

the coordinates of a trajectory are enough. 

 

Table 1 

 

TID Trajectory 

T1 (1,1), (1,2), (2,2), (2,3), (3,4), (3,5) 

T2 (1,1), (1,2), (2,2), (2,3), (3,4), (3,5) 

T3 (1,3), (1,2), (2,2), (2,3), (3,4), (2,5), (1,5) 

T4 (2,1), (2,2), (2,3), (3,4), (2,5) 

T5 (1,1), (1,2), (2,2), (2,3), (3,4), (3,5) 

T6 (2,1), (2,2), (2,3), (3,4), (2,5), (1,5) 

 

The frequent one trajectory coordinate is constructed in the 

following way. Here support of a trajectory coordinate is the 

occurrence of the coordinate in all the trajectories. For example 

the support of coordinate (1,1) is 2/6. That is 33.33%. Initially 

assume the minimum support count is set at 50%.  That is if a 

coordinate occur in 50% and more of all the trajectories is the user 

specified minimum support threshold value. In short in this 

example the coordinates whose support count is 3 and more will 

be considered. First, the trajectory database is scanned to find the 

support of 1-coordinate sets. Let this coordinate set be C1. That is 
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the occurrence of each coordinates in the trajectory database D. 

All the 1-coordinate sets in the trajectory data set D with their 

support count are shown in Table 2. 

 

Table 2 

1-Coordinate set Support count 

(1,1) 2 

(1,2) 4 

(2,2) 6 

(2,3) 6 

(3,4) 6 

(3,5) 3 

(1,3) 2 

(2,5) 3 

(1,5) 2 

(2,1) 2 

C1 

 

From this coordinate support count are compared with the 

minimum support count and consider only the coordinates which 

satisfies the criteria. Let this 1-coordinate set be L1 and is shown 

in Table 3. 

Table 3 

1-Coordinate set Support count 

(1,2) 4 

(2,2) 6 

(2,3) 6 

(3,4) 6 

(3,5) 3 

(2,5) 3 

L1 

 

Up to this point the first phase of the algorithm is done, each 

coordinate in L1 is a member of the candidate C1. Two output files 

created based on the first phase of the algorithm are, (i)the 

frequent 1-coordinate set L1 obtained in a text file format without 

support count and (ii) data file which consists of the coordinates 

of the trajectory paths (P1,P2, …, Pn).  

Next step is the second phase of the algorithm starts by generation 

of 2-coordinate frequent pattern after reading the frequent 1-

coordinate set L1 from the text file. In this step generate the 

various possible 2-coordinates that can occur from the coordinate 

set L1. Let this set be C2. Do a pruning operation, which is from 

the set of 2-coordinates in C2 check for the coordinates that are 

already in C2 also for similar coordinates, that is (1,2), (1,2) . If 

there is any such coordinate combinations exists then delete the 

entry. For lack of space the actual 2-coordinate sets generated and 

2-coordinate sets pruned are not shown.  

Then read a 2-coordinate set from the set C2 and open the data file 

and search for the coordinate set pattern. Here the coordinate set  

Till now the second iteration of the second phase of algorithm is 

done, each coordinate in L2 is a member of the candidate C2. Next 

step is the generation of 3-coordinate frequent pattern. In this step 

generate the various possible 3 coordinates that can occur from 

the coordinate set L2 and do a pruning operation as before. Let this 

set be C3. 

Then read a 2-coordinate set from the set C2 and open the data file 

and search for the coordinate set pattern. Here the coordinate set 

pattern (1,2),(2,2) means for example, either (1,2),(2,2) or 

(2,2),(1,2). Both are similar patterns. If similar patterns are found 

then increment the support count of the corresponding each 2-

coordinate set C2 just generated. Continue the process until all the 

2-coordinate sets are read and compared with the data file. This is 

shown in the Table 4. 

Table 4 

2-Coordinate set Support count 

(1,2),(2,2) 4 

(1,2),(2,3) 4 

(1,2),(3,4) 4 

(1,2),(3,5) 3 

(1,2),(2,5) 1 

(2,2),(2,3) 6 

(2,2),(3,4) 6 

(2,2),(3,5) 3 

(2,2),(2,5) 2 

(2,3),(3,4) 6 

(2,3),(3,5) 3 

(2,3),(2,5) 3 

(3,4),(3,5) 3 

(3,4),(2,5) 3 

(3,5),(2,5) 0 

C2 

Compare the support count of coordinates in C2 with the 

minimum support count and consider only the coordinates which 

satisfies the criteria. Let this 2-coordinate set be L2 and is shown 

in Table 5. 

Table 5 

2-Coordinate set Support count 

(1,2),(2,2) 4 

(1,2),(2,3) 4 

(1,2),(3,4) 4 

(1,2),(3,5) 3 

(2,2),(2,3) 6 

(2,2),(3,4) 6 

(2,2),(3,5) 3 

(2,3),(3,4) 6 

(2,3),(3,5) 3 

(2,3),(2,5) 3 

(3,4),(3,5) 3 

(3,4),(2,5) 3 

L2 

Till now the second iteration of the second phase of algorithm is 

done, each coordinate in L2 is a member of the candidate C2. Next 

step is the generation of 3-coordinate frequent pattern. In this step 

generate the various possible 3 coordinates that can occur from 

the coordinate set L2 and do a pruning operation as before. Let this 

set be C3. 

Then read a 3-coordinate set from the set C3 and open the data file 

and search for the coordinate set pattern. Here the coordinate set 

pattern (1,2),(2,2),(2,3) means for example, either (1,2), (2,2),(2,3) 

or (1,2),(2,3),(2,2) or (2,2),(1,2),(2,3) or (2,3),(2,2),(1,2). All are 

similar patterns. If such similar patterns are found then increment 

the support count of the corresponding each 3-coordinate set C3 

just generated. Continue the process until all the 3-coordinate sets 

are read and compared with the data file. Compare the support 

count of coordinates in C3 with the minimum support count and 

consider only the coordinates which satisfies the criteria. Let this 

3-coordinate set be L3 and is shown in Table 6. 
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Table 6 

3-Coordinate set Support count 

(1,2),(2,2),(2,3) 4 

(1,2),(2,2),(3,4) 4 

(1,2),(2,2),(3,5) 3 

(1,2),(2,3),(3,4) 4 

(1,2),(2,3),(3,5) 3 

(1,2),(3,4),(3,5) 3 

(2,2),(2,3), (3,4) 6 

(2,2),(2,3), (3,5) 3 

(2,2),(2,3), (2,5) 3 

(2,2),(3,4),(3,5) 3 

(2,3),(3,4),(3,5) 3 

(2,3),(3,4),(2,5) 3 

L3 
 

Table 7 

5-Coordinate set Support count 

(1,2),(2,2),(2,3),(3,4),(3,5) 3 

L5 

The same process is continued and at the end of the fifth 

iteration the result obtained is shown in table 7 above. Next step is 

the generation of 6-coordinate frequent pattern. In this step 

generate the various possible 6-coordinates that can occur from 

the coordinate set L5. Let this set be C6. Since there is only one 

row in L5, from that no candidate generation is possible. So the set 

C6 will be null and that makes L6 an empty set. This results the 

termination of for loop in the Apriori algorithm. Now the Apriori 

algorithm will return the set {(1,2), (2,2), (2,3), (3,4), (3,5)} as 

frequent trajectory coordinates. 

 

5. EXPERIMENTAL RESULTS  
Based on the modified Apriori Algorithm method of finding the 

frequent trajectory patterns experiments were made to find out the 

performance of the construction algorithm and the results were 

shown in the charts. Since data mining operations are performed 

in data warehouse, the processing performed is similar to batch 

processing. So in this case no frequent new or modified 

transaction will occur. The process we perform is exactly as 

mentioned in section 3. 

The experiments were performed with the instructions of Net 

Beans IDE 6.7.1 with JavaFX on a PC having an Intel Pentium D 

CPU with a 3.40 GHz processor and 1 GB RAM and running the 

Microsoft Windows XP Professional version 2002 operating 

system. The dataset used in this experiment is the synthetic 

dataset obtained from Yi-An chen [4]. Each transaction in this 

dataset consisted of the x, y coordinates of the trajectories with 

time interval. There were 83 transactions with 2045 coordinates in 

the dataset. The maximal length of a transaction was 964 and the 

average length of the transactions was 24.64. The transactions 

were generated from the synthetic dataset with the following 

parameters. The number of trajectories: 50–300, The length of the 

reference space: 30–70, The average length of the trajectories: 10 

– 100, The maximum time span: 30, The number of potential 

frequent patterns: 1000, The average length of the potential 

frequent patterns: 25. The minimum support was set as 50%. A 

comparative study is made after the implementation of the 

modified Apriori based mining (ABM) with the graph based 

mining [4] (GBM) across their execution time in milliseconds 

(ms) over various minimum support threshold is obtained and is 

rounded up to nearest tenth places and tabulated in table 8. With 

these results a graph is plotted and shown in Figure 1. The 

experiment is executed with various trajectories and their 

corresponding execution time milliseconds (ms) are noted and is 

rounded up to their nearest tenth places and tabulated in table 9. 

Based upon these values a graph is plotted and shown in Figure 2. 

Based on these results, it is clear that the modified Apriori based 

mining is better than existing graph based mining. 

Table 8 

Minimum 

support 

threshold 

Execution time(ms) 

% ABM GBM 

10 900 1200 

20 850 950 

30 730 830 

40 650 775 

50 550 650 

 

Table 9 

No of 

Trajectories 
Execution time(ms) 

  GBM ABM 

500 600 450 

1000 650 500 

1500 700 530 

2000 800 600 

2500 830 630 

3000 860 650 

   

 

Figure 1 Execution time Vs minimum support threshold 
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Figure 2 Execution time Vs various number of trajectories 

 

6. CONCLUSION AND FUTURE WORK 
In this paper, proposes the Apriori Algorithm based frequent 

trajectory pattern mining algorithm to efficiently and effectively 

handle the trajectory database transaction. Prior to that the 

trajectory dataset is extracted from a text file and is imported to a 

Oracle database after doing the initial data cleaning process. 

Initial frequency count is done in Oracle database using its 

programming feature. Then the data is written in the operating 

system then further processing is done to find the frequent 

trajectory pattern.  Advantage of this method is later iterations are 

much faster than the initial iterations of the algorithm.  The results 

obtained by this method are more accurate and reliable.  This 

algorithm uses large coordinate set property. Each iteration in this 

algorithm can be parallelized so that execution time can be 

reduced. More over this algorithm is easy to implement. 

Disadvantage of this method are, it uses a generate, prune and test 

approach generates candidate coordinate sets (1-coordinate, 2-

coordinate, 3-coordinate,…), to check the generated sequence of 

coordinates are already generated or not, and tests if they are 

frequent by scanning the database and counting their support each 

time.  Generation of candidate coordinate sets is expensive (in 

both space and time). Since generation and pruning steps are in 

memory resident, it needs more RAM. Another disadvantage is it 

needs n+1 database scans, n is the length of the coordinates in the 

longest pattern. 

The same algorithm can be applied to mine frequent curve 

patterns, also to mine frequent patterns of molecules which are 

dealt in biomedical applications. The same algorithm can be 

modified little to accommodate the frequent trajectory pattern 

mining in 3D space. Further enhancements of this algorithm can 

be done to improve performance by pruning method. Also other 

enhancements like the Partitioning technique, Sampling approach, 

Dynamic itemset counting and Integrating mining with relational 

database systems can be done to improve the performance. Based 

on the observed frequent trajectory pattern and apply the 

advanced techniques to predict the path of the object. In this way 

the frequently occurring trajectory patterns will help to analyze 

and predict the future movement of objects. 

7. ACKNOWLEDGMENTS 
The main author is grateful to the research supported by the 

TATA Consultancy Services scholarship. 

8. REFERENCES 
[1] Arthur.A.Shaw, Mining Frequent Curve Patterns using 

Apriori Algorithm. In: Proceedings of the International 

Conference on Innovative Research In Engineering And 

Technology, ICIRET 2010, Coimbatore, India. 

[2] Jiawei Han, Hong Cheng,Dong Xin, Xifeng Yan (2007) 

Frequent pattern mining: current status and future directions. 

In the Journal of Data Min Knowl Disc (2007) 15:55–86, 

Springer Science+Business Media, LLC 2007.  

[3] Agrawal R, Imielinski T, and Swami A (1993) Mining 

association rules between sets of items in large databases. In: 

Proceedings of the 1993ACM-SIGMOD International 

conference on management of data (SIGMOD’93), 

Washington, DC, pp 207–216.  

[4] Anthony J.T. Lee, Yi-An Chen, Weng-Chong Ip (2009). 

Mining frequent trajectory patterns in spatial–temporal 

databases. In the Journal of Information Sciences 179 (2009) 

2218–2231. 

[5] United States Patent Application Publication – Baseball 

Practice Systems, Pub. No.: US2009/0163301 A1, Inventors: 

John Flading, Marietta, GA (US) and Larry Duan Cripe, 

Seattle, WA (US). 

[6] United States Patent Application Publication – Trajectory 

Detection And Feedback System For Tennis, Pub. No.: 

US2008/0200287 A1, Inventors: Marty, Alan W. (Menlo 

Park, CA, US) and Edwards, Thomas A. (Menlo Park, CA, 

US). 

[7] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.C. 

Hsu, Mining frequent patterns without candidate generation, 

in: Proceedings of the ACM SIGMOD International 

Conference on Management of Data, 2000, pp. 1–12.  

[8] T. Hu, S.Y. Sung, H. Xiong, Q. Fu, Discovery of maximum 

length frequent itemsets, Information Sciences 178 (1) (2008) 

69–87. 

[9] J.X. Yu, Z. Chong, H. Lu, Z. Zhang, A. Zhou, A false 

negative approach to mining frequent itemsets from high 

speed transactional data streams, Information Sciences 176 

(14) (2006) 1986–2015.  

[10] M.J. Zaki, SPADE: an efficient algorithm for mining 

frequent sequences, Machine Learning 11(5)(2001)31–60. 

[11] J, Ayres, J.E. Gehrke, T. Yiu, J. Flannick, Sequential pattern 

mining using a bitmap representation, in: Proceedings of the 

ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, 2002, pp. 429–435. 

[12] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal and M.C. 

Hsu. FreeSpan: frequent pattern-projected sequential pattern 

mining, in: Proceedings of the ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, 

2000, pp. 355–359. 

[13] J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal and M.C. 

Hsu. PrefixSpan: mining sequential patterns efficiently by 

prefix-projected pattern growth, in: Proceedings of the IEEE 



International Journal of Computer Applications (0975 – 8887) 

Volume 22– No.9, May 2011 

7 

International Conference on Data Engineering, 2001, pp. 

215–224. 

[14] R. Srikant, R. Agrawal, Mining sequential patterns: 

generalizations and performance improvements, in: 

Proceedings of the 5th International Conference on 

Extending Database Technology: Advances in Database 

Technology, 1996, pp. 3–17. 

[15] E. Gudes, E. Shimony, N. Vanetik, Discovering frequent 

graph patterns using disjoint paths, IEEE Transactions on 

Knowledge and Data Engineering 18(11) (2006) 1441–1456. 

[16] J. Huan, W. Wang, J. Prins, Efficient mining of frequent 

subgraphs in the presence of isomorphism, in: Proceedings of 

the IEEE International Conference on Data mining, 2003, pp. 

549–552. 

[17] Y. Huang, H. Xiong, W. Wu, P. Deng, Z. Zhang, Mining 

maximal hyperclique pattern: a hybrid search strategy, 

Information Sciences 177 (3) (2007) 703–721. 

[18] A. Inokuchi, T. Washio, H. Motoda, An Apriori-based 

algorithm for mining frequent substructures from graph data, 

in: Proceedings of the European Conference on Principles 

and Practice of Knowledge in Databases, 2000, pp. 13–23. 

[19] R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, G. 

Agarwal, Discovery frequent topological structures from 

graph datasets, in: Proceedings of the Eleventh ACM 

SIGKDD International Conference on Knowledge Discovery 

and Data Mining, 2005, pp. 606–611. 

[20] M. Kuramochi, G. Karypis, Frequent subgraph discovery, in: 

Proceedings of the IEEE International Conference on Data 

Mining, 2001, pp. 313–320. 

[21] X. Yan, J. Han, gSpan: graph-based substructure pattern 

mining, in: Proceedings of International Conference on Data 

Mining, 2002, pp. 721–724. 

[22] U. Yun, A new framework for detecting weighted sequential 

patterns in large sequence databases, Knowledge-Based 

Systems 21 (2) (2008) 110–122. 

[23] M. Garofalakis, R. Rastogi, K. Shim, Mining sequential 

patterns with regular expression constraints, IEEE 

Transactions on Knowledge and Data Engineering 14(3) 

(2002) 530–552. 

[24] F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, Trajectory 

Pattern Mining, In: Proceedings of the 13th ACM SIGKDD 

International Conference on KDD’07, USA, pp. 330–339. 

[25] Stefano Spaccapietra, Christine Parent, Maria Luisa 

Damiani, Jose Antonio de Macedo, Fabio Porto and 

Christelle Vangenot, A conceptual view on trajectories, In: 

Elsevier Data & Knowledge Engineering 65 (2008) 126-146. 

 

9. AUTHORS PROFILE 

Arthur.A.Shaw received the MCA degree from Madurai          

Kamaraj University, through AC College of Engineering and          

Technology, Karaikudi. Obtained first class with distinction in M. 

Tech., from MS University, Tirunelveli. 

He worked as business application developer in 3GL and 4GLs 

during 1992 to 1998. Migrated to CRM as Clarify solution 

architect. Consultant for HP – Cupertino, QualComm – San 

Diego, F5 Networks – Seattle and Sprint PCS – Kansas City in 

US between 1998 and 2002 and served as Assistant Professor of 

Computer Applications in Engineering College affiliated to 

University of Kerala from 2005 to 2008. Currently pursuing 

research in Data Mining at National Institute of Technology, 

Tiruchirappalli 620015 from 2008 onwards. His research interests 

include database management, Software Engineering, MIS and 

Computer languages. 

N.P. Gopalan received the M.Sc. from Madras University in 

1978 and the PhD in applied mathematics from Indian Institute of 

Science, Bangalore, in 1983. Currently he is a Professor with the 

Department of Computer Applications in the National Institute of 

Technology Tiruchirapalli, Tamil Nadu, India. His research 

interests include algorithms, combinatorics, data mining, and 

distributed, parallel and grid computing. 

 


