
International Journal of Computer Applications (0975 – 8887)

Volume 22– No.9, May 2011

1

Frequent Pattern Mining of Trajectory Coordinates

using Apriori Algorithm

Arthur.A.Shaw
Research Scholar

National Institute of Technology
Thiruchirappalli-620015, India

N.P. Gopalan
Professor

National Institute of Technology
Thiruchirappalli-620015, India

ABSTRACT

Frequent pattern mining has been an emerging and active field in

data mining research for over a decade. Abundant literature has

been emerged from this research and tremendous progress has

been made in numerous research frontiers. This article, provide an

application of the modified Apriori algorithm in coordinate sets of

trajectories to find the frequent trajectory coordinates. In this

algorithm additional steps are added to prune the coordinate sets

generated so that to reduce the unnecessary search time and space.

This sequential pattern mining method is quite simple in nature

but complex to implement. This paper explains the basics of data

origination, database structure to hold the coordinate datasets and

the implementation of the algorithm with the object oriented

programming language by an illustration. It can be applied to

interesting game domains to find the frequent trajectory of an

object shot by a player which follows a trajectory path.

General Terms

Data Mining, Pattern Mining, Algorithms et. al.

Keywords

Data mining, Association mining, Frequent pattern mining, and

trajectory pattern mining.

1. INTRODUCTION
Frequent trajectory coordinates play an essential role in many data

mining tasks that try to find interesting patterns from trajectory

databases consists coordinates of objects. With the advancements

in Science and Communication technology, sensors and control

equipments data accrual of moving objects is made so easy. From

these huge volumes of data, knowledge about the frequent

trajectory pattern can be generated and observed [1]. This can be

applied in different domains to predict the further movements of

the objects. Finding frequent patterns plays an important role in

mining associations, correlations, and many other interesting

relationships among data.

Frequent pattern mining was first proposed by Agrawal et al [2]

[3] for market basket analysis in the form of association rule

mining. It analyses customer buying habits by finding associations

between the different items that customers place in their

“shopping baskets”. Since its inception, hundreds of new

algorithms or improvements on the existing algorithms have been

evolved to solve the mining problems more efficiently as per the

user requirements. The spatial and temporal attributes are

considered simultaneously for mining trajectory patterns in

Anthony et al [4]. Based on this and using association mining,

frequent paths of moving objects are extracted. This may be of

immense help in predicting the paths frequented by moving

objects. Similarly frequent paths of flights, roads of commuters

and migratory birds may be investigated. More precisely this

concept can be applied in case of some games, to find the path of

a frequent ball movement. That is get the coordinates of the ball

moved out from the bat of a player X to a destination. These

coordinates can be collected for player X for a set of games.

Using this coordinates, discover a frequent trajectory pattern will

give a most frequent path of the ball movement for player X.

Based on this knowledge the opponent player or team get adjust to

it; tackle the situation face the ball from player X and have more

probability to win. Similar concept is adopted in [5], [6] but by

different complex approach.

The paper is organized as follows: Related works in the Apriori

algorithm, frequent pattern mining and frequent trajectory mining

are reviewed in Section 2; Preliminaries and problem description

based on the proposed modified Apriori algorithm based method

to find frequent trajectory patterns are described in Section 3; An

example is given to illustrate the proposed method is in Section 4.

Experimental results for showing the performance of the proposed

method are provided in Section 5. Conclusions and future work

are given in Section 6. Acknowledgements and references are

given in Section 7 and 8 respectively.

2. RELATED WORKS
This work is mostly related to pattern discovery from sequential

data, which include time series, event sequences, and spatio-

temporal trajectories except time component.

Mining frequent itemsets is one of the fundamental problems in

the active research area of data mining. An itemset is considered

to be frequent if its support is greater than a user-specified

minimum support threshold, where the support of an itemset is

defined as the percentage of transactions in the database that

contain the itemset. Agrawal et al [3] pioneered to mine frequent

itemsets from transactional databases and proposed an Apriori

approach. After this approach many other itemset mining

algorithms [6]-[9] have been proposed for mining the frequent

itemsets in a database. Sequential pattern mining algorithms

[10]-[14] have also been proposed. Many graph mining

algorithms [15]–[21] have been proposed. FFSM [16] exploits an

algebraic graph framework called canonical adjacency matrix

(CAM) tree to perform join-extension operations to

unambiguously enumerate all frequent subgraphs and avoid

subgraph isomorphism testing by maintaining an embedding set

for each frequent subgraph. AGM [18] and FSG [20] use an

Apriori-based approach to combine frequent subgraphs mined at

the previous level to generate all candidates at the next level. The

gSpan [21] generates the frequent subgraphs without candidate

generation in a depth-first search manner. Yun [22] efficiently

mine sequential patterns in large sequence databases by using the

weight constraints. Garofalakis et al. [23] proposed an approach,

called SPIRIT, to mine sequential patterns with regular expression

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.9, May 2011

2

constraints. All these, sequential pattern, itemset, and graph

mining methods are not suitable for mining frequent trajectory

patterns. The spatial and temporal attributes are considered

simultaneously for mining trajectory patterns in certain

approaches. Itemset and sequential pattern mining algorithms do

not consider the spatial attribute, while the graph mining

algorithms do not consider the temporal attribute instead uses the

edge. For frequent pattern mining of trajectory coordinates in this

approach consider the 2D coordinates (x, y).

Trajectory is defined as the path of flying object; the path that a

projectile makes through space under the action of given forces

such as thrust, wind, and gravity. It is also defined as the curve

intersecting at constant angle; a curve or surface that intersects all

of a family of curves or surfaces at a constant angle. Trajectory is

a path of process or event; the way in which a process or event

develops over a period of time. With the advancements in tracking

the path of flying objects, a large amount of spatial-temporal data

has been collected in databases. Getting knowledge from this data

based on the observation of useful patterns has increased the

attention of technocrats and decision makers recently.

Frequent behavior of moving objects was analyzed in the

sequential pattern mining paradigm by Giannotti et al [24]. In this

approach both space and time components are considered for

mining trajectory patterns. The geometry of moving objects can

be of any spatial type and is defined by a function from a temporal

domain to a range of spatial values by Stefano et al [25]. Here the

trajectory is poly-line connecting the sample points that define

discrete representation of movement in a sequence of spatio-

temporal segments. Components of a trajectory are defined when

a trajectory starts, a spatio-temporal path it passes and ends. A

graph based mining (GBM) for mining the frequent trajectory

patterns in a spatio-temporal database is suggested by Lee et al

[4]. This method scan the database to generate a mapping graph

and trajectory information lists, from these it does a depth-first

search manner to find all frequent trajectory patterns.

Finding the frequently occurring trajectory patterns will guide to

analyze and predict the movement of objects. Frequent trajectory

pattern mining is the process of discovering the most frequently

occurring coordinates in the set of trajectories. Different

trajectories may arise from different coordinates passing through

different coordinates and ending at different coordinates. If all the

trajectories are originating from the same coordinates passing

through the same coordinates and ending at the same coordinates,

then all such trajectories are frequent. But in reality, obviously it

is not so. So to find the frequent trajectory pattern using data

mining is nothing but finding the frequent coordinates of the

trajectories which met the user defined threshold value. After the

mining process the output will be a set of frequently occurring

coordinates of the trajectories.

3. PRELIMINARIES AND PROBLEM

DESCRIPTION
The main objective of frequent pattern mining is to find all

frequent trajectory patterns in a database with respect to the user

specified minimum support threshold. Initially the coordinate

data set is in the form of text file consists of trajectory name and

its corresponding coordinates in 2D, that is x and y values. These

values are extracted from the text file and stored in a normalized

relational database table consists of columns to hold trajectory

number or identifier, coordinate number, x and y coordinates.

There is a master table to hold the trajectory number and

trajectory name. A coordinate set is a non-empty set of

coordinates {(x1,y1), (x2,y2),…,(xn,yn)} where n is the maximum

number of coordinates in the set. A coordinate sequence is an

ordered list of coordinate set. For a same sequence number there

will not be more than one coordinate. The sequence number is the

contiguous integer. Initial processing like generating the possible

one coordinates sets and their corresponding support count is

found out by the programming procedural capability of the

RDBMS. This will generate two output text files consists of the

actual trajectory coordinates and one coordinate sets whose

support count is not less than the user specified minimum support

threshold. Using these files as input to an object oriented language

will implement the Apriori algorithm and generate the output of a

set of frequently occurring coordinates of the trajectories.

The modified Apriori algorithm to find frequent trajectory pattern

mining is based on the sequential pattern mining framework.

Trajectory is considered to be tracking the paths of an object. A

trajectory can be represented as a set of coordinates in sequence in

Euclidian space. Trajectories are considered to be tracking the

paths (P1,P2, …, Pn) of flying objects (O1,O2, …, On), a large

amount of spatial data has been collected in a database D. Given a

set of trajectories D = {P1,P2, …, Pn}, n is the number of paths of

the flying object. Each trajectory path P consists of set of

coordinates {V1, V2, … , Vk} , (1 ≤ k ≤ n) and n is the number of

coordinate set, while considering the two dimension Euclidian

space. Here k varies from 1 to n and is represented as (1 ≤ k ≤ n)

where k is denoted as the length of the trajectory and n is the

number of coordinates in it. In other words k-coordinate set is a

set of coordinates having number of coordinates n where k = n.

Each coordinate in a vertex V is represented in units in X-axis and

Y-axis as (x,y). A sub-trajectory path p consists of set of

coordinates {v1, v2, …, vk} , (1 ≤ k ≤ n) and n is the number of

coordinate set. A sub-sequence coordinates set s = {c1, c2, …, ck}

may contain in different set of trajectory paths. The set s is

maximal if it is not contained in any other trajectory path P.

Hence the trajectory path P of a flying object O consists of set of

coordinates {v1, v2, …, vk} arranged in increasing sequence

number. Such a sequence set of coordinates is called the trajectory

path sequence. The support of a coordinate v is the percentage of

coordinates in D that support the coordinate v. It is defined as the

fraction of all the trajectories which support this coordinate. It can

be written as,

Support(v) = Number of coordinates v in D / Total number of

trajectories in D

A trajectory path or sub-trajectory path is frequent if its support

exceeds the user-specified minimum support threshold value ξ.

Such a set of coordinates is the large coordinate set which is also

termed as frequent trajectory pattern.

Let Ck be the set of k-coordinates with each member of this set

has two fields (i) coordinate set and (ii) support count. Let Lk be

the set of large k-coordinate sets with each member of this set has

two fields (i) coordinate set and (ii) support count. This algorithm

initially scan the database D to find the distinct coordinates, to

form a set C1. Let this set be C1 = {(x1,y1), (x2,y2),…,(xm,ym)},

where m is the distinct coordinates in D. Then scan the database D

to find the support count of each coordinates in C1. From this set

consider the coordinates whose support is greater than the user-

specified minimum support threshold value ξ. Let the coordinates

considered be L1. Idea is that if the trajectory coordinate set L is

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.9, May 2011

3

frequent if and only if its subsequences Lk-1 are frequent. This step

is the first step of the algorithm.

Beginning of the second step is the generation of 2-coordinate

candidate set C2 = L1 L1. That will be {(x1,y1) (x2,y2), (x1,y1)

(x3,y3), …, (x1,y1) (xm,ym), (x2,y2) (x3,y3), (x2,y2) (x4,y4), …,

(x2,y2) (xm,ym), …, (xm-1,ym-1) (xm,ym) }, where m denotes the

number of coordinates in 1-coordinate set C1. Simultaneously do

the pruning operation by verifying a 2-coordinate candidate

generated is already exists in C2 and do not consider a 2-

coordinate candidate generated is of same coordinates appearing

more than once, that is (x1,y1) (x1,y1). Again scan the database D

to find the support count of each coordinates in C2. From this set

consider the coordinates whose support is greater than the user-

specified minimum support threshold value ξ. Let this coordinates

considered be L2. Join all the coordinates in the set and this set is

the frequent 2-coordinate sets of the trajectories in D. Similarly

continue the process until k+1 times finds a set of candidates

generated is empty set. Then return all the frequent trajectory

coordinate sets joined in the kth step. This output set is the set of

frequent trajectory pattern.

3.1 Modified Apriori Algorithm – An

Efficient and Scalable Method for Mining

Frequent Trajectory Patterns
The Apriori Algorithm is an influential algorithm for mining

frequent trajectory coordinates sets. This modified Apriori

algorithm consists of two phases. As mentioned in the first

paragraph of this section the frequent 1-coordinate set L1 obtained

in a text file format is given as input to the algorithm. Also the

second file which consists of the coordinates of the trajectories is

used for searching for a pattern and counting the support of the k-

coordinate sets is used as input to this algorithm. This process will

be the first phase of the algorithm. The second phase starts from

candidate generation, pruning and match the coordinate for a

specific pattern generated by reading the data file and find the

support count are all memory resident. Then consider only the

coordinates whose support count is greater than or equal to the

user specified minimum support threshold value ξ. The output

obtained at the end of this phase is the frequent trajectory pattern.

Key Concepts :

•Frequent Coordinate sets: Coordinate sets whose support count is

not less than the minimum support value ξ, denoted by Li for ith-

Coordinate set.

•Apriori Property: Any subset of frequent coordinate set must be

frequent.

• Prune Operation: Deleting the generated candidate coordinates

which are not required for further processing.

•Join Operation (∪k Lk): To find Lk, a set of candidate k-

coordinate set is generated by joining Lk-1 with itself.

Input: A trajectory of 1-coordinate sets data file and a minimum

support value ξ. A data file which consists of the actual

coordinates of the trajectories is used for searching for a pattern

and counting the support of the k-coordinate sets.

Output: Frequent trajectory coordinates which satisfies the

minimum support value ξ.

Method: Pseudo-code of modified Apriori algorithm :

Ck: Candidate coordinate set of size k

Lk: Frequent coordinate set of size k

L1 = {frequent coordinate sets};

For (k = 2; Lk != ∅; k++) do begin

 Ck = Generate_Candidate_Coordinates (Lk-1);

 For each trajectory coordinate sets in Ck do

 Increment the support count of all candidate

 coordinates in Ck that exists in the paths (P1,P2,

 …, Pn) in the data file;

 Lk = Take only the candidate coordinates

 whose support count is greater than or equal to

 the user specified minimum support threshold

 value ξ from Ck;

End

Return (Frequent trajectory coordinates = ∪k Lk);

Generate_Candidate_Coordinates (Lk-1)

 A set of candidate k-coordinate sets is generated by

 joining Lk-1 with itself

 i.e., Ck = Lk-1 Lk-1;

 Prune if the candidate k-coordinate set generated

 currently is already generated or else

 if the candidate coordinates generated currently

 consists of more than one same coordinate;

Return(Ck);

4. AN EXAMPLE
Given below, is a simple example to illustrate the process of the

modified Apriori Algorithm construction. Assume there are six

trajectory transactions shown in Table 1. Here TID represents

trajectory identifier. The trajectory column represents the two

dimension coordinates of a trajectory. Normally a trajectory is

represented by its coordinates along with its time component. For

finding the frequent trajectory patterns the time component is not

considered. More over for finding the frequent trajectory patterns

the coordinates of a trajectory are enough.

Table 1

TID Trajectory

T1 (1,1), (1,2), (2,2), (2,3), (3,4), (3,5)

T2 (1,1), (1,2), (2,2), (2,3), (3,4), (3,5)

T3 (1,3), (1,2), (2,2), (2,3), (3,4), (2,5), (1,5)

T4 (2,1), (2,2), (2,3), (3,4), (2,5)

T5 (1,1), (1,2), (2,2), (2,3), (3,4), (3,5)

T6 (2,1), (2,2), (2,3), (3,4), (2,5), (1,5)

The frequent one trajectory coordinate is constructed in the

following way. Here support of a trajectory coordinate is the

occurrence of the coordinate in all the trajectories. For example

the support of coordinate (1,1) is 2/6. That is 33.33%. Initially

assume the minimum support count is set at 50%. That is if a

coordinate occur in 50% and more of all the trajectories is the user

specified minimum support threshold value. In short in this

example the coordinates whose support count is 3 and more will

be considered. First, the trajectory database is scanned to find the

support of 1-coordinate sets. Let this coordinate set be C1. That is

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.9, May 2011

4

the occurrence of each coordinates in the trajectory database D.

All the 1-coordinate sets in the trajectory data set D with their

support count are shown in Table 2.

Table 2

1-Coordinate set Support count

(1,1) 2

(1,2) 4

(2,2) 6

(2,3) 6

(3,4) 6

(3,5) 3

(1,3) 2

(2,5) 3

(1,5) 2

(2,1) 2

C1

From this coordinate support count are compared with the

minimum support count and consider only the coordinates which

satisfies the criteria. Let this 1-coordinate set be L1 and is shown

in Table 3.

Table 3

1-Coordinate set Support count

(1,2) 4

(2,2) 6

(2,3) 6

(3,4) 6

(3,5) 3

(2,5) 3

L1

Up to this point the first phase of the algorithm is done, each

coordinate in L1 is a member of the candidate C1. Two output files

created based on the first phase of the algorithm are, (i)the

frequent 1-coordinate set L1 obtained in a text file format without

support count and (ii) data file which consists of the coordinates

of the trajectory paths (P1,P2, …, Pn).

Next step is the second phase of the algorithm starts by generation

of 2-coordinate frequent pattern after reading the frequent 1-

coordinate set L1 from the text file. In this step generate the

various possible 2-coordinates that can occur from the coordinate

set L1. Let this set be C2. Do a pruning operation, which is from

the set of 2-coordinates in C2 check for the coordinates that are

already in C2 also for similar coordinates, that is (1,2), (1,2) . If

there is any such coordinate combinations exists then delete the

entry. For lack of space the actual 2-coordinate sets generated and

2-coordinate sets pruned are not shown.

Then read a 2-coordinate set from the set C2 and open the data file

and search for the coordinate set pattern. Here the coordinate set

Till now the second iteration of the second phase of algorithm is

done, each coordinate in L2 is a member of the candidate C2. Next

step is the generation of 3-coordinate frequent pattern. In this step

generate the various possible 3 coordinates that can occur from

the coordinate set L2 and do a pruning operation as before. Let this

set be C3.

Then read a 2-coordinate set from the set C2 and open the data file

and search for the coordinate set pattern. Here the coordinate set

pattern (1,2),(2,2) means for example, either (1,2),(2,2) or

(2,2),(1,2). Both are similar patterns. If similar patterns are found

then increment the support count of the corresponding each 2-

coordinate set C2 just generated. Continue the process until all the

2-coordinate sets are read and compared with the data file. This is

shown in the Table 4.

Table 4

2-Coordinate set Support count

(1,2),(2,2) 4

(1,2),(2,3) 4

(1,2),(3,4) 4

(1,2),(3,5) 3

(1,2),(2,5) 1

(2,2),(2,3) 6

(2,2),(3,4) 6

(2,2),(3,5) 3

(2,2),(2,5) 2

(2,3),(3,4) 6

(2,3),(3,5) 3

(2,3),(2,5) 3

(3,4),(3,5) 3

(3,4),(2,5) 3

(3,5),(2,5) 0

C2

Compare the support count of coordinates in C2 with the

minimum support count and consider only the coordinates which

satisfies the criteria. Let this 2-coordinate set be L2 and is shown

in Table 5.

Table 5

2-Coordinate set Support count

(1,2),(2,2) 4

(1,2),(2,3) 4

(1,2),(3,4) 4

(1,2),(3,5) 3

(2,2),(2,3) 6

(2,2),(3,4) 6

(2,2),(3,5) 3

(2,3),(3,4) 6

(2,3),(3,5) 3

(2,3),(2,5) 3

(3,4),(3,5) 3

(3,4),(2,5) 3

L2

Till now the second iteration of the second phase of algorithm is

done, each coordinate in L2 is a member of the candidate C2. Next

step is the generation of 3-coordinate frequent pattern. In this step

generate the various possible 3 coordinates that can occur from

the coordinate set L2 and do a pruning operation as before. Let this

set be C3.

Then read a 3-coordinate set from the set C3 and open the data file

and search for the coordinate set pattern. Here the coordinate set

pattern (1,2),(2,2),(2,3) means for example, either (1,2), (2,2),(2,3)

or (1,2),(2,3),(2,2) or (2,2),(1,2),(2,3) or (2,3),(2,2),(1,2). All are

similar patterns. If such similar patterns are found then increment

the support count of the corresponding each 3-coordinate set C3

just generated. Continue the process until all the 3-coordinate sets

are read and compared with the data file. Compare the support

count of coordinates in C3 with the minimum support count and

consider only the coordinates which satisfies the criteria. Let this

3-coordinate set be L3 and is shown in Table 6.

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.9, May 2011

5

Table 6

3-Coordinate set Support count

(1,2),(2,2),(2,3) 4

(1,2),(2,2),(3,4) 4

(1,2),(2,2),(3,5) 3

(1,2),(2,3),(3,4) 4

(1,2),(2,3),(3,5) 3

(1,2),(3,4),(3,5) 3

(2,2),(2,3), (3,4) 6

(2,2),(2,3), (3,5) 3

(2,2),(2,3), (2,5) 3

(2,2),(3,4),(3,5) 3

(2,3),(3,4),(3,5) 3

(2,3),(3,4),(2,5) 3

L3

Table 7

5-Coordinate set Support count

(1,2),(2,2),(2,3),(3,4),(3,5) 3

L5

The same process is continued and at the end of the fifth

iteration the result obtained is shown in table 7 above. Next step is

the generation of 6-coordinate frequent pattern. In this step

generate the various possible 6-coordinates that can occur from

the coordinate set L5. Let this set be C6. Since there is only one

row in L5, from that no candidate generation is possible. So the set

C6 will be null and that makes L6 an empty set. This results the

termination of for loop in the Apriori algorithm. Now the Apriori

algorithm will return the set {(1,2), (2,2), (2,3), (3,4), (3,5)} as

frequent trajectory coordinates.

5. EXPERIMENTAL RESULTS
Based on the modified Apriori Algorithm method of finding the

frequent trajectory patterns experiments were made to find out the

performance of the construction algorithm and the results were

shown in the charts. Since data mining operations are performed

in data warehouse, the processing performed is similar to batch

processing. So in this case no frequent new or modified

transaction will occur. The process we perform is exactly as

mentioned in section 3.

The experiments were performed with the instructions of Net

Beans IDE 6.7.1 with JavaFX on a PC having an Intel Pentium D

CPU with a 3.40 GHz processor and 1 GB RAM and running the

Microsoft Windows XP Professional version 2002 operating

system. The dataset used in this experiment is the synthetic

dataset obtained from Yi-An chen [4]. Each transaction in this

dataset consisted of the x, y coordinates of the trajectories with

time interval. There were 83 transactions with 2045 coordinates in

the dataset. The maximal length of a transaction was 964 and the

average length of the transactions was 24.64. The transactions

were generated from the synthetic dataset with the following

parameters. The number of trajectories: 50–300, The length of the

reference space: 30–70, The average length of the trajectories: 10

– 100, The maximum time span: 30, The number of potential

frequent patterns: 1000, The average length of the potential

frequent patterns: 25. The minimum support was set as 50%. A

comparative study is made after the implementation of the

modified Apriori based mining (ABM) with the graph based

mining [4] (GBM) across their execution time in milliseconds

(ms) over various minimum support threshold is obtained and is

rounded up to nearest tenth places and tabulated in table 8. With

these results a graph is plotted and shown in Figure 1. The

experiment is executed with various trajectories and their

corresponding execution time milliseconds (ms) are noted and is

rounded up to their nearest tenth places and tabulated in table 9.

Based upon these values a graph is plotted and shown in Figure 2.

Based on these results, it is clear that the modified Apriori based

mining is better than existing graph based mining.

Table 8

Minimum

support

threshold

Execution time(ms)

% ABM GBM

10 900 1200

20 850 950

30 730 830

40 650 775

50 550 650

Table 9

No of

Trajectories
Execution time(ms)

 GBM ABM

500 600 450

1000 650 500

1500 700 530

2000 800 600

2500 830 630

3000 860 650

Figure 1 Execution time Vs minimum support threshold

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.9, May 2011

6

Figure 2 Execution time Vs various number of trajectories

6. CONCLUSION AND FUTURE WORK
In this paper, proposes the Apriori Algorithm based frequent

trajectory pattern mining algorithm to efficiently and effectively

handle the trajectory database transaction. Prior to that the

trajectory dataset is extracted from a text file and is imported to a

Oracle database after doing the initial data cleaning process.

Initial frequency count is done in Oracle database using its

programming feature. Then the data is written in the operating

system then further processing is done to find the frequent

trajectory pattern. Advantage of this method is later iterations are

much faster than the initial iterations of the algorithm. The results

obtained by this method are more accurate and reliable. This

algorithm uses large coordinate set property. Each iteration in this

algorithm can be parallelized so that execution time can be

reduced. More over this algorithm is easy to implement.

Disadvantage of this method are, it uses a generate, prune and test

approach generates candidate coordinate sets (1-coordinate, 2-

coordinate, 3-coordinate,…), to check the generated sequence of

coordinates are already generated or not, and tests if they are

frequent by scanning the database and counting their support each

time. Generation of candidate coordinate sets is expensive (in

both space and time). Since generation and pruning steps are in

memory resident, it needs more RAM. Another disadvantage is it

needs n+1 database scans, n is the length of the coordinates in the

longest pattern.

The same algorithm can be applied to mine frequent curve

patterns, also to mine frequent patterns of molecules which are

dealt in biomedical applications. The same algorithm can be

modified little to accommodate the frequent trajectory pattern

mining in 3D space. Further enhancements of this algorithm can

be done to improve performance by pruning method. Also other

enhancements like the Partitioning technique, Sampling approach,

Dynamic itemset counting and Integrating mining with relational

database systems can be done to improve the performance. Based

on the observed frequent trajectory pattern and apply the

advanced techniques to predict the path of the object. In this way

the frequently occurring trajectory patterns will help to analyze

and predict the future movement of objects.

7. ACKNOWLEDGMENTS
The main author is grateful to the research supported by the

TATA Consultancy Services scholarship.

8. REFERENCES
[1] Arthur.A.Shaw, Mining Frequent Curve Patterns using

Apriori Algorithm. In: Proceedings of the International

Conference on Innovative Research In Engineering And

Technology, ICIRET 2010, Coimbatore, India.

[2] Jiawei Han, Hong Cheng,Dong Xin, Xifeng Yan (2007)

Frequent pattern mining: current status and future directions.

In the Journal of Data Min Knowl Disc (2007) 15:55–86,

Springer Science+Business Media, LLC 2007.

[3] Agrawal R, Imielinski T, and Swami A (1993) Mining

association rules between sets of items in large databases. In:

Proceedings of the 1993ACM-SIGMOD International

conference on management of data (SIGMOD’93),

Washington, DC, pp 207–216.

[4] Anthony J.T. Lee, Yi-An Chen, Weng-Chong Ip (2009).

Mining frequent trajectory patterns in spatial–temporal

databases. In the Journal of Information Sciences 179 (2009)

2218–2231.

[5] United States Patent Application Publication – Baseball

Practice Systems, Pub. No.: US2009/0163301 A1, Inventors:

John Flading, Marietta, GA (US) and Larry Duan Cripe,

Seattle, WA (US).

[6] United States Patent Application Publication – Trajectory

Detection And Feedback System For Tennis, Pub. No.:

US2008/0200287 A1, Inventors: Marty, Alan W. (Menlo

Park, CA, US) and Edwards, Thomas A. (Menlo Park, CA,

US).

[7] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.C.

Hsu, Mining frequent patterns without candidate generation,

in: Proceedings of the ACM SIGMOD International

Conference on Management of Data, 2000, pp. 1–12.

[8] T. Hu, S.Y. Sung, H. Xiong, Q. Fu, Discovery of maximum

length frequent itemsets, Information Sciences 178 (1) (2008)

69–87.

[9] J.X. Yu, Z. Chong, H. Lu, Z. Zhang, A. Zhou, A false

negative approach to mining frequent itemsets from high

speed transactional data streams, Information Sciences 176

(14) (2006) 1986–2015.

[10] M.J. Zaki, SPADE: an efficient algorithm for mining

frequent sequences, Machine Learning 11(5)(2001)31–60.

[11] J, Ayres, J.E. Gehrke, T. Yiu, J. Flannick, Sequential pattern

mining using a bitmap representation, in: Proceedings of the

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2002, pp. 429–435.

[12] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal and M.C.

Hsu. FreeSpan: frequent pattern-projected sequential pattern

mining, in: Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

2000, pp. 355–359.

[13] J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal and M.C.

Hsu. PrefixSpan: mining sequential patterns efficiently by

prefix-projected pattern growth, in: Proceedings of the IEEE

International Journal of Computer Applications (0975 – 8887)

Volume 22– No.9, May 2011

7

International Conference on Data Engineering, 2001, pp.

215–224.

[14] R. Srikant, R. Agrawal, Mining sequential patterns:

generalizations and performance improvements, in:

Proceedings of the 5th International Conference on

Extending Database Technology: Advances in Database

Technology, 1996, pp. 3–17.

[15] E. Gudes, E. Shimony, N. Vanetik, Discovering frequent

graph patterns using disjoint paths, IEEE Transactions on

Knowledge and Data Engineering 18(11) (2006) 1441–1456.

[16] J. Huan, W. Wang, J. Prins, Efficient mining of frequent

subgraphs in the presence of isomorphism, in: Proceedings of

the IEEE International Conference on Data mining, 2003, pp.

549–552.

[17] Y. Huang, H. Xiong, W. Wu, P. Deng, Z. Zhang, Mining

maximal hyperclique pattern: a hybrid search strategy,

Information Sciences 177 (3) (2007) 703–721.

[18] A. Inokuchi, T. Washio, H. Motoda, An Apriori-based

algorithm for mining frequent substructures from graph data,

in: Proceedings of the European Conference on Principles

and Practice of Knowledge in Databases, 2000, pp. 13–23.

[19] R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, G.

Agarwal, Discovery frequent topological structures from

graph datasets, in: Proceedings of the Eleventh ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining, 2005, pp. 606–611.

[20] M. Kuramochi, G. Karypis, Frequent subgraph discovery, in:

Proceedings of the IEEE International Conference on Data

Mining, 2001, pp. 313–320.

[21] X. Yan, J. Han, gSpan: graph-based substructure pattern

mining, in: Proceedings of International Conference on Data

Mining, 2002, pp. 721–724.

[22] U. Yun, A new framework for detecting weighted sequential

patterns in large sequence databases, Knowledge-Based

Systems 21 (2) (2008) 110–122.

[23] M. Garofalakis, R. Rastogi, K. Shim, Mining sequential

patterns with regular expression constraints, IEEE

Transactions on Knowledge and Data Engineering 14(3)

(2002) 530–552.

[24] F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, Trajectory

Pattern Mining, In: Proceedings of the 13th ACM SIGKDD

International Conference on KDD’07, USA, pp. 330–339.

[25] Stefano Spaccapietra, Christine Parent, Maria Luisa

Damiani, Jose Antonio de Macedo, Fabio Porto and

Christelle Vangenot, A conceptual view on trajectories, In:

Elsevier Data & Knowledge Engineering 65 (2008) 126-146.

9. AUTHORS PROFILE

Arthur.A.Shaw received the MCA degree from Madurai

Kamaraj University, through AC College of Engineering and

Technology, Karaikudi. Obtained first class with distinction in M.

Tech., from MS University, Tirunelveli.

He worked as business application developer in 3GL and 4GLs

during 1992 to 1998. Migrated to CRM as Clarify solution

architect. Consultant for HP – Cupertino, QualComm – San

Diego, F5 Networks – Seattle and Sprint PCS – Kansas City in

US between 1998 and 2002 and served as Assistant Professor of

Computer Applications in Engineering College affiliated to

University of Kerala from 2005 to 2008. Currently pursuing

research in Data Mining at National Institute of Technology,

Tiruchirappalli 620015 from 2008 onwards. His research interests

include database management, Software Engineering, MIS and

Computer languages.

N.P. Gopalan received the M.Sc. from Madras University in

1978 and the PhD in applied mathematics from Indian Institute of

Science, Bangalore, in 1983. Currently he is a Professor with the

Department of Computer Applications in the National Institute of

Technology Tiruchirapalli, Tamil Nadu, India. His research

interests include algorithms, combinatorics, data mining, and

distributed, parallel and grid computing.

