
International Journal of Computer Applications (0975 – 8887)

Volume 23– No.1, June 2011

6

Prioritized User Demand Approach for Scheduling

Meta Tasks on Heterogeneous Grid Environment

P.Suresh
Assistant Professor

Department of IT
Kongu Engineering College

Perundurai, Erode-52,

Tamilnadu

Dr.P.Balasubramanie
Professor

Department of CSE
Kongu Engineering College

Perundurai, Erode-52,

Tamilnadu

P.Keerthika
Assistant Professor

Department of CSE
Kongu Engineering College

Perundurai, Erode-52,

Tamilnadu

ABSTRACT

Due to the rapid evolution of grid computing, which deals with

the effective utilization of the globally distributed comp uter

resources to solve massive problems, grid scheduling is the

major focus. Efficient scheduling algorithms are the need of the

hour to achieve efficient utilization of the unused CPU cycles
distributed geographically in various locations. The existing job

scheduling algorithms in grid computing had mainly

concentrated on the system performance rather than the user

satisfaction. In this paper we have presented a new prioritized

user demand algorithm that mainly focuses on better meeting the
deadlines of the statically available jobs as expected by the

users. This algorithm also concentrates on the better utilization

of the available heterogeneous resources. The performance

analysis shows that the prioritized user demand algorithm

performs better than the other heuristic scheduling algorithms in

terms of makespan and resource utilization rate.

Keywords: Grid scheduling, User satisfaction, Resource

utilization, Makespan, Meta tasks.

1. INTRODUCTION
Even with the emergence of many super fast computers and the

high speed networks, the utilization of the geographically

distributed resources has gained huge importance. This

recognition is mainly because of the low cost services and the

best outcome offered by them.

While considering the scheduling of the resources many factors

such as CPU utilization rate, throughput, turnaround time,

waiting time, response time should be focused for all the

processors when assigned with the jobs [13]. The jobs are

assigned to the resources considering the system’s performance.
Thus the scheduling plays an important role in achieving the

best utilization of resources and the better completion of the

submitted jobs. The scheduling problem is a NP hard problem

and the solutions for these problems need heuristics [12]. Many

heuristic scheduling algorithms have been designed for this
purpose. Even then scheduling is a main focus. There are many

algorithms such as MCT, MET, OLB, Min-min, Max-min that

are mainly system centric i.e. they consider the effective

utilization of resources. But these traditional heuristic algorithms

mainly focus on the system performance for each job [14]. In
this paper we have presented a new algorithm that

considers the time expected for each job by the user and

schedules the job by concentrating on both the system

performance and the user satisfaction.

In section 2 we will discuss about the related heuristic

algorithms for scheduling meta tasks in grid environment such
as Opportunistic Load Balancing, Minimum Execution Time,

Minimum Completion Time, Min-min, Max-min, Duplex,

Genetic Algorithm, Simulated Annealing algorithm, Genetic

Simulated Annealing, Tabu, A* algorithms [3] and finally an

application demand aware scheduling algorithm [1]. Among all
these heuristic algorithms, min-min algorithm gives the best

results. In the experimental results section, the proposed

heuristic algorithm is tested with the benchmark model of Braun

et al [3]. In the section 7 the performance of our prioritized user

demand algorithm is compared with application demand aware
algorithm to show the reduced makespan and better resource

utilization rate that includes user satisfaction.

2. RELATED WORKS
Many researchers have proposed algorithms for static heuristic
mapping of independent tasks that resulted in improved resource

utilization and makespan. Makespan is the maximum time taken

for completing all the submitted jobs.

2.1 Opportunistic Load Balancing (OLB)

OLB allocates jobs in random order to the machine which is
idle. This algorithm does not consider the expected execution

time of job on the machine. It is very simple but has poor

makespan [6].

2.2 Minimum Execution Time (MET)
MET allocates jobs in random order to the machine with

minimum expected execution time. This algorithm does not

consider the expected completion time of jobs on the machine. It

assigns each job its best machine but produces severe load

imbalance [10].

2.3 Minimum Completion Time (MCT)
MCT allocates jobs in random order to the machine with

minimum expected completion time for that job. The

performance of this algorithm is better compared to OLB and

MET but the same problem of load imbalance occur [10].

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.1, June 2011

7

2.4 Min-min
This heuristic algorithm considers the set of unmapped jobs and

calculates the expected completion time for all the jobs in the set

in all the machines. For each job, the machine with minimum

expected completion time is identified. Finally the job with

minimum expected completion time among all the other jobs in
the set is allocated to the machine which has the MCT for that

job. This process is repeated for the remaining unmapped tasks.

In this algorithm, the makespan is comparatively improved but

the idleness of the machine remains unsolved [9, 11].

2.5 Max-min
This proceeds as the Min-min algorithm in calculating the

expected completion time for all the unmapped jobs in the set

and finding the machine with minimum expected completion
time for all jobs. The job with maximum expected completion

time is allocated to the machine which has MCT for that job.

This improves the makespan and balances the load to some

extent and performs best for jobs with longer execution time [2].

2.6 Duplex
The Duplex heuristic approach is a combination of Min-min and

Max-min algorithms. It performs both the techniques and then

uses the algorithm with better solution [3].

2.7 Genetic Algorithm (GA)
The Genetic Algorithm heuristic approach considers a

population of n chromosomes. Initially, the population
generation is done by two methods. In first method n number of

chromosome are generated from a uniform distribution and in

the second method called seeding, one chromosome is selected

using Min-min approach and the remaining n-1 has random

mapping. The best of all the mappings is considered as final
solution. The makespan is given by the fitness value within that

chromosome. Each chromosome is considered for selection,

cross over and mutation. The population is modified and again

the process is repeated for remaining chromosomes [18].

2.8 Simulated Annealing (SA)
This heuristic technique considers a single possible mapping for

each job at a time. It is an iterative technique in which the

probability is based on system temperature. This system

temperature gets reduced for each iteration. The mapping here is
same as in genetic algorithm and the first mapping is generated

form uniform distribution. For each iteration, a new makespan is

generated. The performance is poor when compared to Min-min

algorithm since SA has poor results in the intermediate stages

[16].

2.9 Genetic Simulated Annealing (GSA)
The GSA technique uses selection, crossover and mutation

processes as in Genetic Algorithm. In selection process,

Simulated Annealing is used for selecting the chromosomes.

The concepts of Genetic Algorithm and Simulated Annealing
are combinedly used. At the time of mutation or cross over the

new chromosome is compared with the original chromosome

[16, 18].

2.10 Tabu
Tabu search is for searching in a solution space by keeping track

of the regions of solution space that are already searched and

there will not be any repeated search near those areas. GA

approach is used for mapping. For producing the solution a short

hop [18] is performed. Each successful short hop is a solution.
After short hop, the new solution is added to the tabu list which

keeps track of the solutions that have been already searched. A

long hop is performed in which a random mapping is done

which differ from each mapping in tabu list. A short hop is

performed after each successful long hop [17].

2.11 A*
A* heuristic is a tree search technique which is based on µ-array

tree. The root is assumed with a null solution. The child nodes or

the intermediate nodes denote the partial mappings and the final

mapping is denoted by the leaf nodes. The node with largest cost
function is deleted at times in order to reduce the height of the

tree. A cost function f (n) is assigned to each node which is

calculated on the makespan of its best partial solution [2]. The

makespan is calculated as the sum of maximum of machine

availability times and lower bound estimate of the difference
between the makespan of node’s partial solution and makespan

of best solution. This is repeated until a leaf node that represents

the complete solution is reached.

2.12 Application demand aware
This approach concentrates on user satisfaction by improving

the resource utilization and throughput. This is both system

centric and application centric [1,15]. The user satisfaction is

achieved by allocating most suitable resources to jobs without

missing their expected completion time. The expected
completion time for each job in all the nodes is calculated. The

calculated expected completion time is compared with the

minimum completion time of each job that asks for the same

node. Depending upon the comparison results, the job with

smaller value is allocated to the resource [10].

All these heuristic scheduling algorithms have advantages and

also some disadvantages. The Opportunistic load balancing
algorithm does not consider the expected execution time and

henceforth its makespan is poor. Minimum Execution time

heuristic does not consider completion time of jobs that leads in

severe load imbalance. MCT also leads in poor makespan [4].

Max-min heuristic performs better when compared to all these
algorithms only for shortest jobs. The other heuristics such as

duplex, Simulated Annealing, Genetic simulated annealing,

Tabu, A*, Genetic Algorithm performs less [7,8]. Among all

these heuristic algorithms discussed earlier Min-min heuristic is

simple, fast and performs better while considering the system
performance by reduced makespan but user satisfact ion is not

considered. Application demand aware performs better when

user satisfaction is taken into account.

The experimental results show that our proposed algorithm has

reduced makespan, highest hit rate when compared to

application demand aware algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.1, June 2011

8

3. PROBLEM DEFINITION
The problem of job scheduling of meta-tasks in heterogeneous

computing environment is presented. The experimental study is

done based on the benchmark simulation model by Braun et al.

[3].

In our model, static heuristic mapping is considered for mapping

meta-tasks. Each machine executes a single task at a time. In

heterogeneous computing environment, the size of meta-tasks
and the number of machines are known priori. Also the

expected execution time of each job in every machine is known

priori which is in ETC (Expected Time to Compute) matrix.

ETC(t i,mj) is the estimated execution time of task i on machine

j.

The Expected Completion time for each task t i on each machine

Rj is given by

where RT is the ready time of each machine Rj . Ready Time of

a machine can be defined as the time needed by a machine to

complete already allocated jobs on it.

The makespan which is defined as the maximum time

taken to complete all the jobs is given by

The problem of scheduling meta tasks to resources

must include the following.

1. The number of meta tasks that are to be

scheduled
2. The number of resources available in the grid for

processing the meta tasks

3. The processing capacity of each resource in

MIPS

4. The size of jobs in millions of instructions
5. ETC matrix of size R×T where T is the number

of tasks and R is the number of resources.

4. SCHEDULING MODEL
Grid scheduling is the process of scheduling application tasks

over grid resources. There are two main concepts in this
scheduling process namely system’s performance and user

satisfaction. Grid Scheduler acts as a medium to receive tasks

from various users and allocate the appropriate resources [5]. An

efficient scheduler must improve the overall system

performance and reducing the waiting time for ind ividual task.

Our algorithm is both system centric and application centric.

The factors of our algorithm made it system centric are resource
utilization and throughput. Resource utilization is defined as the

percentage of a given period that measures the busyness of the

resource. Throughput is given by the amount of jobs processed

by a resource in a given period of time. The factor that the

priority is given to the user’s demand while scheduling makes it
application centric. These factors aim at optimizing the

performance of each application.

Our algorithm mainly deals with the statically available jobs and

hence it is of static scheduling mode. In particular our algorithm

deals with a list of jobs at a time and has two phases in
scheduling such as task prioritizing and resource selection. The

task prioritizing phase sets the priority of each task with the user

deadline as the parameter and generates a scheduling list by

sorting the tasks according to their priority. The resource

selection phase selects tasks in the order of their priorities and

maps each selected task to its optimal resource.

Let us consider the mathematical representations to denote the
relationships between the resources and jobs and also to

introduce the parameters involved in our algorithm such as

execution time, completion time, ready time, etc.

Notation Definition

 Completion time of the job or task

 in the resource

 Ready time of the resource

 Execution time of the job or task

in the resource

 Difference in time between the

deadline given by the user and the

calculated completion time for the

job in available resources

 The minimum value from the

difference values for the

given job

 User requisition time or the deadline

given by the user for the jobs in U

 Expected Completion Time of

task in resource

(1) The resource set is represented as

. As the grid environment

deals with the heterogeneously distributed grid resources
the number of resources available may be huge. As we

consider the static environment both the jobs submitted

and the resource available are taken as fixed and they do

not change over time.

(2) The jobs submitted can be enclosed within the job set

which is represented as .

The jobs submitted are considered as the independent

tasks that can be executed in parallel with other available

tasks. Also the jobs are considered as static i.e. they
number of tasks submitted are fixed and they do not

change with time.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.1, June 2011

9

(3) The users submitting their jobs for execution are

represented as . The
users submit the jobs with the requisition time i.e. within

which the job needs to be completed which can also be

called the demanded deadline of the user for the submitted

jobs.

5. PROPOSED PRIORITIZED USER

 DEMAND (PUD) ALGORITHM
In this section, we present the brief description of our algorithm

which is based on user satisfaction and system performance. It

takes user’s deadlines into account and makes the job to be

executed within the expected deadline by assigning it to the
most suitable resource. It also concentrates on the system

performance by reducing the idle time of the resources and

distributing the unmapped tasks equally among the available

resources. It considers the ETC matrix and concentrates on the

completion time and hence the system’s performance is also the

major consideration in addition to user’s satisfaction.

Here we perform the scheduling process in two major steps. In

the first step, we concentrate on the user satisfaction and in the

second step we consider system performance. The ETC matrix is

constructed for the available resources with every available

resource. Secondly we consider the job with the minimum
deadline i.e. the job that needs to be completed quickly. Then we

compare the deadline of the selected job given by the user with

that of different ETC values. Then allocate the job to the

resource that has the minimum difference value. Then remove

the job from the job set. Then the waiting time of the resource is
changed and the ETC matrix is recalculated for the remaining

unmapped jobs. Then continue the above steps until all the jobs

are scheduled. Thus both the user satisfaction and system

performance can be taken into consideration effectively with this

algorithm. Now we will give the detailed algorithm description.

 Let us consider 5 meta-tasks (T1, T2, T3, T4, T5) that
must be executed on 3 heterogeneous resources (R1, R2, R3).

The user deadline is given for each task as below.

Tasks
User Deadline

(UT)

T1 9

T2 10

T3 5

T4 15

T5 12

The ETC matrix is constructed below.

 R1 R2 R3

T1 8 10 6

T2 15 18 12

T3 3 7 5

T4 10 7 9

T5 17 10 11

In this example, the user deadline for each task is given and
expected execution time for each task T i in every available

resource Rj is calculated.

The Application Demand aware algorithm allocates task T3 to

R1, T5 to R2, T1 to R3, T4 to R1 ,T2 to R3 with a makespan of

21 ms.

The proposed prioritized user demand algorithm works as

follows. The task with minimum deadline is chosen and the

difference value is calculated. The task is allocated to the
resource with minimum difference value. The task T3 is

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.1, June 2011

10

allocated to the resource R3, T1 to R1, T2 to R3, T5 to R2 and

T4 to R3 with a makespan of 17 ms.

The makespan results of both Application demand aware

algorithm and Prioritized user demand algorithm is shown figure

5.1.

Figure 5.1 Comparison of ADA and PUD algorithm

From the comparison result, our proposed algorithm proves

better with reduced makespan. We have presented our algorithm

based on user deadline satisfaction in detail, and it can ensure
most jobs to be completed within their expected completion

time. Even though the user satisfaction is taken mainly into

consideration, the system performance is preserved to a great

extent.

6. EXPERIMENTAL RESULTS
The experimental results are based on the benchmark of

instances by Braun et al. [3, 6]. The factors such as task

heterogeneity, machine heterogeneity and consistency are

considered while constructing ETC matrix. The task

heterogeneity depends upon the various execution times of the
jobs. The machine heterogeneity depends on the running time of

a particular job across all the processors. Both machine and task

heterogeneity can have the values high and low. Three ET

consistencies such as consistent, inconsistent, and semi

consistent are considered. An ETC matrix is said to be
consistent, if a resource Ri execute a task Ti faster than the

resource Rk, and Ri executes all other jobs faster than Rk. An

inconsistent matrix is one in which if a resource Ri executes

some jobs faster and some slower than Rj. A semi consistent

matrix is a sub matrix of inconsistent matrix with a predefined

size. The three consistencies are given by

c -consistent

s -semi consistent

i - inconsistent

The instances of bench mark problems are classified into twelve
different types of ET matrices. Each ET matrix consists of 100

instances. The instances depend upon task heterogeneity,

machine heterogeneity and consistency. The instances are

labeled as u_x_yy_zz.k where

u -uniform distribution, used to generate the matrix.

x -type of consistency (c/i/s)

 yy-indicates the heterogeneity of the tasks.
 (hi-high task, lw-low task)

 zz-indicates the heterogeneity of the resources

 (hi-high machine, lw-low machine)

ETC matrix is constructed with 512 jobs and 16 machines for all

the instances. The makespan is computed for both application
demand aware and prioritized user demand techniques.

7. PERFORMANCE ANALYSIS
The efficiency of prioritized user demand algorithm is proved by

comparing the results with application demand aware algorithm

tabulated in table 6.1 based on the benchmark instances. The
makespan is calculated for all the 12 different types of instances.

The comparison results show that the prioritized user demand

algorithm has reduced makespan than application demand aware

algorithm.

 Table: 7.1 Makespan for Application Demand Aware(ADA) and

Prioritized User Demand Algorithm (PUD)

Instances

Application
Demand Aware

Algorithm

Prioritized User
Demand

Algorithm

u_c_hi_hi 9618108 2308179

u_c_hi_lw 735913 469402

u_c_lw_hi 84511 58645

u_c_lw_lw 11583 4947

u_i_hi_hi 6804441 5403760

u_i_hi_lw 1061204 855583

u_i_lw_hi 145245 122041

u_i_lw_lw 10591 5429

u_s_hi_hi 5774893 4504474

u_s_hi_lw 1470189 546691

u_s_lw_hi 106230 60084

u_s_lw_lw 15524 13854

Figure 7.1 shows the comparison results of makespan for high
task high machine for consistent, inconsistent and semi

consistent values. Figure 7.2 shows the comparison results of

makespan for high task low machine. Figure 7.3 shows the

comparison results of makespan for low task high machine.

Figure 7.4 shows the comparison results of makespan for low

task low machine.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.1, June 2011

11

Figure 7.1 Graphical representation of makespan values

(arbitrary time units) for High Task High Machine

Figure 7.2 Graphical representation of makespan values

(arbitrary time units) for High Task Low Machine

Figure 7.3 Graphical representation of makespan values

(arbitrary time units) for Low Task High Machine

Figure 7.4 Graphical representation of makespan values

(arbitrary time units) for Low Task Low Machine

The above results show that PUD algorithm has less makespan

than ADA algorithm. The percentage of improvement of PUD

over ADA is given by the table 7.2.

Table: 7.2 The percentage of makespan values of PUD over

ADA

Instances
Improvement of PUD

over ADA (%)

u_c_hi_hi 76%

u_c_hi_lw 36.22%

u_c_lw_hi 30.61%

u_c_lw_lw 57.29%

u_i_hi_hi 20.59%

u_i_hi_lw 19.38%

u_i_lw_hi 15.98%

u_i_lw_lw 48.74%

u_s_hi_hi 21.99%

u_s_hi_lw 62.8%

u_s_lw_hi 43.44%

u_s_lw_lw 10.76%

8. CONCLUSION AND FUTURE WORK
The proposed prioritized user demand algorithm is implemented

and tested with benchmark simulation model for hetero geneous
systems by Braun et al. The experimental results and preference

analysis show that PUD algorithm preference better with

reduced makespan than applications demand a wave algorithm.

Proposed Our algorithm delivers reduced makespan on various

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.1, June 2011

12

heterogeneous environments such as task heterogeneity which

includes high & low task, machine heterogeneous which

includes high & low task, machine and consistency which
includes consistent, inconsistent, semi consistent values. This

proposed research focuses of static heterogeneous environment

on independent tasks. This can be further enhanced for

dependent tasks in which jobs are dependent on others. In

addition, factors other than makespan such as common delay,

CPU load factor can also be considered.

REFERENCES
[1] Jie Lin, Bin Gong, Hui Liu, Chaoying Yang, Yuhui Tian,

2007. An Application Demand aware Scheduling

Algorithm in Heterogeneous Environment. IEEE
Proceedings of the 11th International Conference on

Computer Supported Cooperative Work in Design., IEEE

Xplore press, Melbourne, Vic, pp509-604,

DOI:10.1109/CSCWD.2007.4281504

[2] Li Wenzheng, Zhang Wenyue, 2009. An Improved
Scheduling Algorithm for Grid Tasks. International

Symposium on Intelligent Ubiquitous Computing and

Education, pp 9-12, DOI:10.1109/IUCE.2009.35

[3] Tracy D.Braun, Howard Jay Siegel, and Noah Beck, 2001. A

Comparison of Eleven Static Heuristics for Mapping a
Class of Independent Tasks onto Heterogeneous

Distributed Computing Systems. Journal of Parallel and

Distributed Computing 61, pp.810-837,

DOI:10.1006/jpdc.2000.1714

[4] Ivan Rodero, Francesc Guim, and Julita Corbalan, 2009.
Evaluation of Coordinated Grid Scheduling Strategies. 11th

IEEE International Conference on High Performance

Computing and Communications,

DOI:10.1109/HPCC.2009.28

[5] J.M.Schopf, “A General Architecture for Scheduling on the

Grid, 2002. special issue of JPDC on Grid Computing.

[6] T.Braun, H.Siegel, N.Beck, L.Boloni, M.Maheshwaran,

A.Reuther, J.Robertson, M.Theys, B.Yao, D.Hensgen, and

R.Freund, 1999. A Comparison Study of Static Mapping
Heuristics for a Class of Meta-tasks on Heterogeneous

Computing Systems. In 8th IEEE Heterogeneous

Computing Workshop(HCW’99), IEEE Computer Society

Washington, DC, USA. pp.15-29.

DOI:10.1109/HCW.1999.765093

[7] R.F.Freund, and M.Gherrity, 1998. Scheduling Resources in

Multi-user Heterogeneous Computing Environment with

Smart Net. In Proceedings of the 7th IEEE HCW,

DOI:10.1109/HCW.1998.666558

[8] Thomas G.Robertazzi and Dantong Yu, 2006.Multi-Source
Grid Scheduling for Divisible Loads. 40th Annual

Conference on Information Sciences and Systems,

Princeton University, IEEE,

DOI:10.1109/CISS.2006.286459

[9] Zhang Qian, Li Zhen, 2009. Design of Grid Resource

Management System Based on Divided Min-min

scheduling Algorithm. IEEE First International Workshop

on Education Technology and Computer Science, pp. 613-

618, DOI:10.1109/ETCS.2009.670

[10] Hojjat Baghban, Amir Masoud Rahmani, 2008. A Heuristic

on Job Scheduling in Grid Computing Environment. In

Proceedings of the seventh IEEE International Conference

on Grid and Cooperative Computing, pp. 141-146,

DOI:10.1109/GCC.2008.22

[11] He Xiaoshan, Xia-He Sun, Gregor Von Laszewski, 2003.

QoS Guided Min-min Heuristic for Grid Task Scheduling.

Journal of Computer Science and Technology, pp. 442-451,

DOI:10.1007/BF02948918

[12] He Xiaoshan, Xia-He Sun, Gregor Von Laszewski, 2003.
QoS Guided Min-min Heuristic for Grid Task Scheduling.

Journal of Computer Science and Technology, pp. 442-451,

DOI:10.1007/BF02948918.

[13] Fangpeng Dong and Selim G. Akl, 2006. Scheduling

Algorithms for Grid Computing: State of the Art and Open
Problems. Technical Report, School of Computing, Queen's

University, Canada.

[14] Y. Zhu, 2003. A Survey on Grid Scheduling Systems,

Department of Computer Science, Hong Kong University

of science and Technology.

[15] Wantao Liu, Rajkumar Kettimuthu, Bo Li, Ian Foster,

2010. An Adaptive Strategy for Scheduling Data-Intensive

Applications in Grid Environments. IEEE 17th

International Conference on Telecommunications,

DOI:10.1109/ICTEL.2010.5478755

[16] H.Chen, N.S.Flann, and D.W.Watson, 1998. Parallel

Genetic Simulated Annealing: A Massively Parallel SIMD

Approach. IEEE transactions on Parallel and distributed

Computing, 9(2), pp. 126-136, DOI:10.1109/71.663870

[17] I.D.Falco, R.D.Balio, E.Tarantino, and R.Vaccaro, 1994.
Improving Search by Incorporating Evolution Principles in

Parallel Tabu Search. IEEE Conference on Evolutionary

Computation, pp. 823-828.

[18] L.Wang, H.J.Siegel, V.P.Roychowdhury, and

A.A.Macicjewski,1997. Task Matching and Scheduling in
Heterogeneous Computing Environments Using a Genetic

Algorithm Based Approach. Journal of Parallel and

Distributed Computing, 47(1), pp. 1-15.

