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ABSTRACT 
An empirical model incorporating the effects of vegetation 

and surface roughness has been proposed which uses the least 

square fit of a third order polynomial using real time data. 

Further an Artificial Neural Network (ANN) architecture has 

been developed using back propagation algorithm to train the 

neural network which predicts coefficients of the model for a 

given radiometer data. The accuracy of the proposed model 

and the performance of the ANN architecture have been 

ascertained by comparing the results with the in-situ measured 

values of soil moisture. 
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1. INTRODUCTION 
Remote sensing of soil moisture from satellites is a promising 

alternative to ground measurement. Microwave frequencies 

are most often used both in active and passive remote sensing 

instruments to estimate soil moisture [1].The advantage of 

microwave remote sensing is that it provides extended soil 

moisture estimations, girded on averaged surface (foot prints) 

from tens of meters to 50km resolution and the measurement 

can be made directly while the target or the sensor is under 

motion. 

The theory behind microwave remote sensing of soil moisture 

is based on the large contrast between the dielectric properties 

of liquid water (~80) and dry soil (<4). 

The dielectric properties of wet soil were studied by several 

investigators [2],[3], [4]. As the moisture content increases, 

the dielectric constant of the soil water mixture increases and 

the change is detectable by microwave sensors [5]. The effect 

of moisture on the dielectric properties of soil is a very active 

area of research and several researchers have proposed many 

models. John .O. Curtis [6] has demonstrated the strong 

dependence of dielectric permittivity on the volumetric 

moisture of a sample at a given frequency. Several researchers 

[7- 12] have proposed such models and developed soil 

moisture probes based on this principle. However these 

models have not incorporated the necessary corrections for 

vegetation and surface roughness. Hence an empirical model 

which accounts for the above effects have been proposed in 

this paper and the accuracy of the model has been ascertained 

by comparing the computed soil moisture values using the 

proposed model and the measured values of the soil moisture. 

It is obvious that the co-efficients of the proposed model are 

functions of system parameters such as frequency or 

wavelength, look angle, polarization and surface parameters 

like complex dielectric constant, vegetation or crop cover 

(NDVI), surface roughness, local surface slope. As these 

parameters are different for different sites, the co- efficients of 

the model  need to be computed every time for different sets 

of data. In order to overcome this problem, ANN architecture 

has been designed which can accurately predict the co-

efficients of the model for a set of input data. ANN is a 

powerful tool which can be very effectively applied to the 

problem in which the input-output relationship is not 

explicitly established. It is a model free estimator as it does 

not rely on an assumed form of the underlying data [13]. This 

tool is being used in several problems of soil moisture 

retrieval [14]-[15]. But for the first time in this paper ANN is 

used to predict the co-efficients of the model. This paper is 

organized as follows; in section 2 basic mathematical theory 

related to the computation of volumetric soil moisture content 

is briefed. Proposed empirical model is explained in section 3. 

Design of ANN architecture is explained in section 4 and the 

relevant analysis is carried out in section 5. 

 

2.MATHEMATICAL RELATIONSHIP 
Exhaustive research in the area of behavior of microwave 

signals upon impingent on earth surface has proved that, the 

emitted microwave energy is proportional to the product of 

surface emissivity and surface temperature which is 

commonly referred to as the microwave brightness 

temperature (Tb). For typical soil moisture applications using 

longer microwave wavelengths at low altitude, temperature 

contributions from the atmosphere and the sky can be 

neglected. Thus, the brightness temperature of an emitter of 

microwave radiation is related to the physical temperature of 

the source through the emissivity such that: 

 

Tb = (1-R) ( Tsfc) = (e) ( Tsfc)               (1) 

 
Where, R is the smooth surface reflectivity, Tsfc is the 

thermometric temperature of the soil surface and e = (1-R) is 

the emissivity which depends on the dielectric constant of the 

medium being measured [16]. Although the emissivity and Tb 

are linearly related, water has a non linear dependence on 

reflectivity. This is because of  the non linear relationship of 

reflection co-efficient of the water  with the dielectric constant 

of water. The reflectivity is described by the Fresnel‟s 

equation which defines the behavior of electromagnetic waves 

at a smooth dielectric boundary. For horizontally polarized 

waves (H) at non- nadir incidence (α), the Fresnel‟s reflection 

co-efficient is given by 

 

 

 
Where € is the complex dielectric constant of the emitter. 

Since the angle of incidence is equal to the angle of reflection 

for a smooth surface, the apparent temperature, the sky 
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temperature and the atmosphere temperature are function of α 

only. Through the inversion of the Fresnel‟s equation, an 

estimate of the effective dielectric constant of the emitting 

layer is obtained as: 
                                                                                      

 

     
Several models have been developed using the above concept. 

The model developed by Topp, Davis, Annan is the most 

widely used model. 

Percentage soil moisture, (%SM) according to Topp, Davis, 

Annan model is  

 

 

 
 Further another model for the ERDC data has been proposed 

in [17] which is also a third order polynomial in relative 

dielectric permittivity Percentage soil moisture (%SM) 

according to ERDC model is  
 

 

 
 A careful study of these models reveal that the Topp, Davis 

and Annan model is more suitable for computing the 

volumetric moisture values in soil from dielectric permittivity 

measurements at a frequency above 100 MHz and this model 

is frequency dependent. However, the ERDC model is 

suitable for computing the soil moisture values at low 

frequencies and within a normal range of soil moisture. 

However the authors of these models have not suggested any 

corrections for incorporating the effects of vegetation and 

surface roughness on the computed values of soil moisture. It 

has been widely accepted that, these effects are very 

predominant and it is vital to incorporate these effects in to the 

model in order to obtain the realistic values of soil moisture. 

In this paper the soil moisture values are computed using 

Topp, Davis and Annan model and the ERDC model for the 

two sets of data collected from the field covered with 

vegetation and for uneven (roughness) surface regions.  These 

values are compared with the measured values of soil 

moisture (gravimetric method) and found that the errors in 

both these models are in the ranges of about 50 to75%  

 

3. PROPOSED MODEL 
The main objective of the proposed model is to appropriately 

incorporate the effects of surface roughness and vegetation 

cover of a particular region of study in to the existing models. 

In order to accomplish this, field data (uncorrected 

emissivities, roughness factors, NDVI at 6.6GHz and 18 GHz 

frequencies) are obtained for a particular region along with the 

measured values of soil moisture. The emissivity data are 

appropriately corrected using the correction factors proposed 

in the literature to account for the effects of vegetation and 

surface roughness.  

 

3.1 Correction for the vegetation effect 
Jackson and Schmugge [18] have proposed an accurate model 

which accounts for vegetation effect on soil moisture based on 

the relationship between optical depth and the vegetation 

water content (VWC). For each vegetation type, a vegetation 

parameter was assigned based on published data. Vegetation 

water content was determined using NDVI values calculated 

using Land sat Thematic Mapper (LTM) images of the region. 
The following expressions are used to calculate the correction 

factor for the effects of vegetation: 

 

 

 

 

 

 
 

Optical depth   

  
Where S is an empirically derived value for the 

slope of the regression line between VWC and J is 

Transmissivity of the observing layer  

 

        
 

Where  = incidence angle (in this study it is 49.9 degrees) 

Now the corrected emissivity  

 

      e    

Where R = uncorrected reflectivity which is obtained from the 

uncorrected emissivity (which is a data). These corrected 

emissivities are used to develop the proposed model.   

 

3.2 Corrections for the effect of roughness 
Since the observed microwave emission depends on 

the amount of scattering that takes place at the soil surface, 

necessary correction is required for rough surfaces. 

Choudhary et.al. [19] have proposed a simple model for 

correcting the effects of surface roughness, in which the 

smooth surface reflectivity is given by:  

 

 

 

Where Rr is the rough surface reflectivity at look 

angle α and h is given by: 

 

                                            (12) 

 

Where   σ2   is the variance of the height distribution 

of the surface and λ is the observed wave length. 

These corrected reflectivities are used to obtain the 

emissivities and in turn they are used in the proposed model. 

 

3.3 Stepwise Procedure 
 
STEP:1 Collection of field data (Frequency, 

Emmisivity,Roughness Factor,NDVI,soil moisture) 

STEP: 2  for a given NDVI the corrected values of 

emistivities (using equation (10)) are computed. 

STEP: 3  the necessary correction to the emissivities 

computed above for different roughness (using equations (11) 

are obtained. 

STEP: 4  the corrected reflectivities using corrected 

emistivities as obtained in step 3 are computed. 

STEP: 5  Complex Dielectric constant „€‟using equation- 2.3 

are calculated. 

STEP: 6  Least square fit method is used to obtain the 

suitable order polynomial of € (In this case it is 3rd order 

polynomial). This process is continued till the model gives the 
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soil-moisture value as close as possible to the measured value 

(with an acceptable least error). 

The data collected from the field for seven different 

NDVIs, (0to 0.6) Three roughness factors (smooth, h=o, 

medium, h=0.2 and rough, h=0.4) and for two different 

frequencies (6.6MHz, 18GHz) are used in this study. 

The resulting model is given by: 

% Volumetric moisture,  

(%SM)

       

 

 

 

3.4 Validation of the model 
A case study is conducted using four sets of  the collected data 

at different frequencies  to assertion the effect of  

incorporation of Vegetation cover and surface roughness 

effects on the soil moisture values. The results are illustrated 

in Three different sets of graphs.(Fig.4-6 for Topp, Davis and 

Annan Model, Fig.7-9 for ERDC Model  and Fig. 1-3 for the 

proposed Model) It is evident from the graphs that both Topp, 

Davis and Annan model and ERDC Model yields a very high 

values of error for the selected data as no corrections are 

incorporated in these models for vegetation & roughness 

effects. How ever the results of the proposed model yield very 

less error. The simulations are carried out using MATLAB 

simulation tool. 

Data 1 for smooth surface with frequency of 6.6 GHz    

Data 2 for rough surface with frequency of 6.6 GHz 

Data 3 for smooth surface with frequency of 10.8 GHz 

Data 4 for rough surface with frequency of 10.8 GHz 

 

 
           Figure 1  Proposed Model  for NDVI= 0 

 

 
         Figure 2 Proposed Model for NDVI=0.3 

 

 
Figure 3 Proposed Model for NDVI= 0.6 

 

 

 
 

                Figure 4 Graph of Annan model for NDVI = 0 

 

 

 
 
 Figure 5  Graph of Annan model for NDVI = 0.3 
 

 

 
 

               Figure 6 Graph of Annan model for NDVI = 0.6 

 

 

 
 

 

 

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
Smooth and Rough surfaces with NDVI = 0 for 6.6 and 10.8 Ghz

Soil moisture

E
rro

r

data1

data2

data3

data4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Smooth and Rough surfaces with NDVI = 0.3 for 6.6 and 10.8 Ghz

Soil moisture

E
rro

r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.005

0.01

0.015

0.02

0.025
Smooth and Rough surfaces with NDVI =0.6 for 6.6 and 10.8 Ghz

Soil moisture

E
rro

r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

For Smooth and rough surfaces with NDVI = 0.3 for 6.6 and 10.8Ghz

Soil moisture

E
rr

or

data1

data2

data3

data4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Smooth and rough surfaces with NDVI = 0.6 for 6.6 and 10.8 Ghz

Soil moisture

E
rr

or

data1

data2

data3

data4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Smooth and rough surfaces with NDVI =0 fr 6.6 and 10.8 Ghz

Soil moisture

E
rr

or

data1

data2

data3

data4



International Journal of Computer Applications (0975 – 8887) 

Volume 23– No.2, June 2011 

41 

 
   Figure 7 Graph of ERDC model for NDVI = 0 

 

 
    Figure 8 Graph of ERDC model for NDVI = 0.3 

 
Figure 9 Graph of ERDC model for NDVI = 0.6 

 
Following important observations are made from 

the results of this study. 

1. The error in the computed values of soil moisture in 

previous models (TOPP, Davis and Annan model and the 

ERDC model) increases steeply for soil moisture values 

more than 40% however in the proposed model the 

increase in the error is considerably less.  

2. Previous models yield an error of 10% & 15% for rough 

surface at NDVI = 0.6(fig 6 and 9) however it is worth 

noting that the proposed model yields an error of 7.5% 

for the same case which is considerably less. (fig 3).  

3. The proposed model is found to be more accurate for 

6.6GHz than 18GHz. 

 

4   ANN ARCHITECTURE 
  Artificial Neural Networks are composed of simple 

elements operating in parallel. These elements are inspired by 

the functioning of biological nervous system. The key element 

of ANN paradigm is the novel structure of the interconnected 

processing elements that are analogous to neurons and are tied 

together with weighted connections that are analogous to 

synapses. The ANN is made to perform a particular function 

by adjusting the weights of the connections between them. 

This process is known as training [20]. ANNs are used for 

diverse tasks including pattern recognition, function 

approximation, estimation, classification and prediction, 

hence emerging in the present technological scenario as a 

powerful computational tool as well as an integral part of the 

advances made in the field of artificial intelligence [21]. The 

learning of an ANN is a process by which the free parameters 

of a neural network are adapted through a process of 

simulations by the environment in which the network is 

embedded. There are many different mechanisms of learning, 

roughly classified into two groups as supervised and 

unsupervised learning. Many efficient algorithms have been 

designed and tested upon a wide variety of problems 

successfully. Significant efforts have been put in by the 

researchers in the point for the processing of remotely sensed 

data [22]. There are many algorithms which are used in 

developing and training the neural network. The back 

propagation algorithm is used in this paper to capture the non-

linear relationship between the input parameters and the 

respective model co-efficients. 

 

4.1 Design of ANN architecture: 
Selection of appropriate input-output variables is an important 

task in development of ANN architecture. Following input 

parameters are identified as key parameters in this study. 
 

 

 

 

 

 

 

 

 

 
For these input parameters an appropriate model co-efficients 

are computed using proposed  method explained in section 3. 

Accordingly there are five output parameters for each set of 

inputs they are 

 

a) Coefficient of €³ 

b) Coefficient of €² 

c) Coefficient of € 

d) Constant. 

e) Soil moisture 

 
Using the data collected from the field, 10 sets of input-output 

parameters are computed which is illustrated in table 1. Out of 

10 sets 6 sets (which are highlighted in the table) are used as 

the training sets and architecture is designed. Based on trial 

and error simulations the ANN architecture as shown in table 

2 is obtained. The ANN took 41 seconds of CPU time for 

training and an error goal of 1e-5 was achieved in 818 epochs. 

The convergence characteristics of ANN is shown in fig 13 
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Table 1 Input Output Set 

 

ANN inputs ANN outputs 

SN Freq 

GHz 

Emissivity NDVI h Look 

Angle 

(α) 

Soil type Coeff of 

€³ 

Coeff  

of €² 

Coeff 

 of € 

Const Soil 

Moist

. 

1 6.6 0.86 0 0 49.9 Loam 0.00020 0.059 3.802 1

3.01 

0.059 

2 6.6 0.873 0.1 0.2 49.9 Clay 0.00021 0.061 3.709 1

2.92 

0.021

2 

3 6.6 0.885 0.2 0.4 49.9 Sandy 

clay 

0.00019 0.056 3.812 1

3.32 

0.031

2 

4 10.8 0.943 0.4 0 49.9 Sandy 

loam 

0.00022 0.061 3.912 1

3.42 

0.425 

5 10.8 0.933 0.3 0.2 49.9 Loam 0.00030 0.060 3.898 1

3.92 

0.159 

6 0 0.939 0.5 0.4 49.9 Clay 0.00022 0.063 3.912 1

2.99 

0.388 

7 \

18 

0.994 0.6 0 49.9 Sandy 

loam 

0.00018 0.058

2 

3.789 1

3.42 

0.256 

8 \

18 

0.84 0 0.2 49.9 Sandy 

clay 

0.00028 0.061 3.702 1

2.98 

0.121 

9 \

18 

0.869 0.2 0.2 49.9 Clay 0.00018 0.053 3.567 1

2.32 

0.189 

10 \

18 

0.881 0.3 0.4 49.9 Sandy 

loam  

0.00023 0.056 3.643 1

3.45 

0.352 

 
Table  2 ANN Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Results: 
The performance of the designed ANN architecture in 

predicting the model coefficients was tested using the 

remaining input output data sets (not highlighted in table 

2).The graph showing the difference between the computed 

and predicted values of the model coefficients is depicted in 

the Figure 14a -14d It is evident from the graph that the ANN 

has accurately predicted the model coefficients for an unseen 

input pattern. Further these coefficients are used to compute 

the soil moisture and this is compared with the soil moisture 

obtained from the field measurement (in-situ   measurement). 

The results are shown in table 3 and also depicted in the 

graphs 15 
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Figure 13 Convergence characteristics of ANN 
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Table 3  Computed and predicted values of co efficient 

 

S

No. 

Compute

d value 

of Coeff 

of €³ 

Predi

cted 

value 

of 

Coeff 

of €³ 

Comput

ed value 

of Coeff 

of €² 

Predicte

d value 

of Coeff 

of €² 

Compu

ted 

value 

of 

Coeff 

of € 

Predi

cted 

Value 

of 

Coeff 

of € 

Comp

uted 

Value 

of 

Const

. 

Pred. 

Value 

of 

Const

. 

Comp. 

Value 

of Soil 

Moist. 

Pred. 

Value 

of Soil 

Moist. 

Measu

red 

value 

of Soil 

Moist. 

1 0.000198 0.000

20 

0.0593 0.059 3.821 3.802 1

3.051 

1

3.01 

0.061 0.059 0.06 

2 0.000201 0.000

21 

0.0619 0.061 3.712 3.709 1

2.891 

1

2.923 

0.229 0.0212 0.23 

3 0.000191 0.000

19 

0.0565 0.056 3.855 3

.842 

1

3.351 

1

3.32 

0.032 0.0312 0.03 

4 0.000212 0.000

22 

0.0613 0.061 3.916 3

.912 

1

3.39 

1

3.421 

0.425 0.425 0.42 

5 0.000305 0.000

30 

0.0611 0.061 3.899 3

.898 

1

3.89 

1

3.92 

0.155 0.159 0.16 

6 0.00023 0.000

22 

0.0625 0.063 3.905 3

.912 

1

2.99 

1

2.99 

0.394 0.388 0.39 

7 0.000185 0.000

18 

0.0572 0.0582 3.768 3

.789 

1

3.405 

1

3.42 

0.258 0.256 0.26 

8 0.000286 0.000

28 

0.0615 0.061 3.752 3

.742 

1

2.975 

1

2.982 

0.105 0.121 0.1 

9 0.000191 0.000

18 

0.0521 0.053 3.598 3

.587 

1

2.316 

1

2.321 

0.189 0.189 0.19 

10 0.000235 0.000

23 

0.0562 0.056 3.712 3

.723 

1

3.35 

1

3.452 

0.362 0.352 0.36 

 
It is evident from the results that the proposed model for the computation of soil moisture and the designed ANN architecture have 

yielded very accurate results for the different sets of field data obtained at different frequencies.  

 

 

 
Graph 14a 

Data 1 Computed Value of €³ 

Data 2 Predicted value of €³ 

 

 
               Graph 14b  

Data 1 : Computed value of €²  

Data 2 : Predicted value of €² 
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Graph 14c 

Data 1 : Computed value of € 

Data 2 : Predicted value of € 

 

Graph 14d 

 

 

 
 

 
                                                           Graph -15 

 Data 1 : Computed value of soil moisture 

Data 2 : Predicted value of soil moisture 

                Data 3 :IN – Situ measured value of soil moisture. 
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5. CONCLUSION 
A novel empirical model of third order polynomial has been 

developed using the remotely sensed data for computing the 

soil moisture incorporating the effects of vegetation and 

roughness. Further ANN architecture has been designed to 

predict the model parameters (model coefficients). Proposed 

empirical model and designed ANN architecture have been 

tested with the real time data and the results are found to be 

very accurate and hence can be used for accurate prediction of 

soil moisture. 
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