
International Journal of Computer Applications (0975 – 8887) 

Volume 23– No.2, June 2011  

29 

Advanced Program Complexity Metrics and 
Measurement  

Abdul Jabbar. P 
Full Time Ph.D., Research Scholar 
School of Computer Science and 

Engineering  

Bharathiar University, Coimbatore 

 

 

 

S.Sarala  
Asst. Professor 

School of Computer Science and 
Engineering  

Bharathiar University, Coimbatore 

 

 

ABSTRACT 

The complexity metrics has an important role in assessing the 

quality of source code. Obtainable complexity metrics is failed 

to accumulate precise system failure information. In this work 

proposes adequate complexity metrics for structural measure 

which collect the exact system information that cause the system 
failure in source code. Then, by censure McCabe’s cyclomatic 

number and the framework of adequate metrics that can be 

extensively observe the structural complexity of the various 

statements in the code. The proposed metrics verifies the 

accuracy of the source code evaluation, gains the proportion of 
software complexity metric by the experimental approach 

whereas, software complexity measurement is consistent with 

the actual result.  

General Terms  

Complexity measurement  

Keywords 

Advanced Complexity Measurement, Decision Statement 

Weight, Total Information (Ti), McCabe Cyclomatic number.  

1. INTRODUCTION 
Software engineering is a standard approach to develop reliable 

software based problem solving tasks. The accuracy and 

consistency of the up-and-coming computer based on internal 

and external systems attribute. The working software might be 

unsuccessful due to complexity in the system and the related 
components [10].  

System reliability engineering is act as an important role to 

identify system failure prediction in various levels of 

development process which includes hardware reliability and 

software reliability. Hardware defects are repeatable and 
predictable because hardware failure caused by a physical 

problem in a machine, structure, system, especially one that 

prevents it from functioning correctly. The software failure 

frequently caused by the faults, complexity and method in the 

solution are implemented. To be exact, software failures happen 
due to the human design error, infrequently predicting at run 

time because requirements of software can be dissimilar in 

different versions [5]. Software complexity metrics are used as  

input in software reliability measures. In order to measure 

software reliability several techniques have been proposed. 
Nearly all techniques consider failure data to measure software 

development and operational environment in a system. The 

authors have explained the various software reliability models 

and its features in [2], [3], [4], [5], [7], [8] and [11]. The 

challenges are remain exist with these measures; hence software 

reliability engineering is in use an active subject for 

Stakeholders to develop consistent software. Software 
complexity is the intricacy of system components in the problem 

solving task. Over the years, a collection of software complexity 

metrics are proposed and it using input information for many 

code refactoring tools [6].  In this work express the various 

complexities involved in a system development process. Further 
describes and verifies the deficiency of existing control flow 

complexity metrics to measure the complexity of the source 

code. The proposed metrics are considered the source code 

behavior and predict the complexity in a module. From the 

experimental result, the existing metrics are analyzed and 
compared. The results are proved with a better prediction.  

2. SOFTWARE COMPLEXITY METRICS 
Software complexity metrics can be defined as failure caused by 
abnormalities in the code. Software complexity measurement 

tends to have estimates the lines of code in the problem solving 

task, when code length highly interrelates with structural 

complexity of the system [12]. The scientific and engineering 

literatures propose a number of complexity metrics. The 
predictive capability of metrics is imperative and employ in 

software testing and its application [14]. The complexity metrics 

are essential for the computational measurement subsequently 

the reliability model has been determined [16].  

2.1 Classification of Complexity Metrics 
Complexity affects the productivity and quality of a project, so it 

is an active component among the researchers. The author [6] 

described a large number of complexities that affects software 
project in the various levels of development processes. However 

complexity measurements concentrate only less number of 

complexity measurements such as cyclomatic complexity and 

essential complexity. And extend 50 variants of structural 

complexity for programming which may found to be relevant for 
software applications. The scientific and engineering literature 

described important of various complexities. Even though, 

varieties of scientific complexity are not yet used in software 

reliability engineering. In table 1 shows the various complexities  

affect on software projects. Each of the complexities affects 
project outcomes, software sizing, project scheduling, cost 

estimation and quality assurance in many aspects. 

2.2 Issue of Complexity Metrics  
On hand software metrics moderately reflect the physical 

attributes such as lines of code, input, output data and various 

controls in the source code. Although many complexities affect 



International Journal of Computer Applications (0975 – 8887) 

Volume 23– No.2, June 2011  

30 

project sizing and outcome in considerable, no metrics defined 

to identify exact code complexity. Therefore well defined 

complexity metrics to describe, analyze and forecast the error 

prone is most essential.  

Table 1. Various complexity affect software project 

Complexity affect 
sizing software 

Complexity 

affect project 
outcomes  

Other important 
complexity 

Cyclomatic Algorithmic Computational 

Essential Entropic Diagnostic 

Problem 
complexity 

Mnemonic Fan 

Function point Organizational Flow 

Data Process Graph 

Halstead Semantic Information 

 Logical Perceptional 

  Combinatorial 

  Syntactic 

  Topological  

 

2.3 Complexity Measures 
Complexity measure estimates durability of system components 

and its exchanges. The table 1 explains various complexities  

which categorized sizing software project and project outcome. 

The code refactoring tool use cyclomatic complexity and 
essential complexity as input information [6].  

The authors [7], [13] have referred the program co mplexity 

which is measured using McCabe’s cyclomatic number. The 

author [9] proposed cyclomatic complexity, program flow based 

on a graph G in graph theoretical concept, which counts the 
number of linearly independent paths through the code. The 

cyclomatic complexity is, 

2v G e n
   

     (1) 

 

Consider the flow graph from figure 1  e=6     n=6    v (G) =2 

The author [7] indicates McCabe’s cyclomatic complexity 

mathematical simplification, if d is the number of decision nodes  
in G then cyclomatic complexity is 

1v G d        (2) 
 
Consider flow graph from figure 1   d=1, that is   v(G) = 2 

2.4 Limitation of Cyclomatic Number 
Cyclomatic complexity easily predicts and maintains large 

program or large number of decisions. Hence the various 

software tools consider the cyclomatic number to measure the 

source code. Simplify the cyclomatic number and the measure 

would be more than one of the total decisions in the code. In 
consequence it represents a partial observation of complexity  of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. Flow graph and source code of the Fibonacci 

sequence for the values <50(ELOC: - Effective line of code) 

source code, however cyclomatic number is imperfect to 

measure the program complexity [7]. 

 In (1) cyclomatic number does not take into account in the order 
of the nested loop statements. Moreover it seems same 

complexity of loop statement and selection statement. For 

instance, the cyclomatic number is “2” of selection statement 

and loop statement in figure 2. Data processing is an important 

system activity but cyclomatic complexity excludes input and 
output data. Although cyclomatic number ignores line of code, 

but structural complexity measure shows a high correlation with 

the number of lines of code [12]. Accordingly McCabe’s 

cyclomatic number is insufficient to measure overall complexity 

of a program. 

 

 

          

 

 

          

 

            

 

Figure 2. Graph of selction and loop statement Flow graph 

 

ELOC 1   { int lo=1, int hi=1; 

ELOC 2      System.out.printline(lo); 

ELOC 3      while(hi<50)  {  

ELOC 4      System.out.printline(hi); 

ELOC 5     hi=hi+lo; 

ELOC 6    lo=hi-lo  }}  

        Source Code 

 

 

 

 

 

 

                   Flow Graph  

1 

7 

    2 

3     4 

5 

6 

If-then-else 

While-Loop 

For-Loop 



International Journal of Computer Applications (0975 – 8887) 

Volume 23– No.2, June 2011  

31 

 

 

 

 

 

 

Total Information TI 

 

 

 

 

 

Decision statement 

weight DSW 

The challenges on software complexity metrics remain lack of a 

complete model of program complexity. Complexity affects 

project sizing and outcomes however no metrics are successful 
to identify the complexity of source code. Existing metrics like 

McCabe’s cyclomatic number is deficient to measure the 

parameters and actual outcomes over the implementation of the 

modules. In this research proposed an APCM metrics which is  

extensively considers the deficiency of existing measures. 

3. ADVANCED COMPLEXITY 

MEASUREMENT 
Complexity affects a system project sizing, project outcome and 

quality assurance. The abnormality in a code cause complexity 

and is determined that evaluate the control flow and data flow of 

a source code. The various flows and data in the code affect the 
project performance. In [9] McCabe used flow graph theory to 

count the sub flows from the code which is inadequate to 

measure the various levels of the complete system. Hence a new 

metrics has proposed.  In this metrics proportionality define the 

interrelation of total information and control flows in a source 
code [15].   

The correlation between control flow and data flow defined in 

the context of proportionality theory [15].   In the first phase, all 

control flow statement is selected, typically with the help of 

code reflecting of program sub flow. These controls then 
calculate the decision statement weight. The second phase 

consists of selecting the total information from the code using 

fan-in fan-out technique [1].  Using these attributes APCM is 

formulated. Figure 3 shows the APCM measurement strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3. APCM Estimation method 

Total information in a source code Ti, Decision Statements 

weight in the code DSW and Advanced Program Complexity 

Measurement (APCM) is, 

TiDSWAPCM /     (3) 

In order to measure the source code DSW is increase APCM 

increase proportionally. Let DSW and APCM, APCM is 
(directly) proportional to DSW (APCM and DSW vary directly, 

or x and y are in direct variation) if there is a non-zero constant 

Ti such that DSW=APCM*Ti [15]. 

 Total information raise in the source code APCM is decrease.  

APCM and Ti are inversely proportional or reciprocal 
proportion if one of the metrics is directly proportional with the 

reciprocal of the other, or equivalently if their product is a 

constant. APCM is inversely proportional to the variable Ti if 

there exists a non-zero constant DSW such that Ti=DSW/APCM 

[15]. 

Where Ti is the total information handled by the module which 

include Number of input data parameter (id), Number of input 

control parameters (ic), Number of output data parameters (od), 

Number of output control parameter (oc), global variable used as  

data (gd), number of global variable used as control (gc), 
number of modules called (fi, fan-in), number of number of 

modules calling by this module (fo, fan-out). In [1] proposed the 

fan-in and fan-out measurement for a module. The total 

information Ti in a source code is, 

fofigcgdocodicidTi    (4) 

 

Number of decisions in the code d, and count of decision 

control variable of each decision di is D. Decision Statements 

Weight in the code is,  

 

Dn)*..(dn+  D2)*(d2+ D1)*(d1DSW        (5) 

 

 

Number of decisions in the code d can be measure using the 

McCabe cyclomatic number v (G). In (2) explained cyclomatic 

complexity is one more number of decisions in the code.  

 

1 - v(G)=d                                 (6) 

 

Assume the selection statement or loop statement in a module is  

zero (d=0) then DSW, ((d1*D) + (d2*D) +... (Dn*D) = 1. 

 

3.1 DSW calculation in various controls  
Source code includes various control statements to perform the 

task. DSW calculation measures the weight of the each control. 

The control flow predicts from the various controls analysis in 

the source code. In this case, DSW is calculated up on the 

conditional statement defined to the objective flow in the code. 

The key point of DSW how to measure the sub flows and 

recognizes the code structure. According to this all sub flow can 

be differentiate based on its features. The DSW calculation 

shows the controls that are essentially in the source code which 

follows as, 

 

Source code Estimation 

Information Control Statement 

Input Data 

Input Controls 

Output Data 

Output Controls 

Fan-in & Fan-out 

Switch-Case 

If-then-else 

For Loop 

While Loop 

APCM=DSW/Ti 



International Journal of Computer Applications (0975 – 8887) 

Volume 23– No.2, June 2011  

32 

 

TABLE 2Comparison of Complexity Metrics 

 

NO ELOC d DSW Ti V(G)=d+1 APCM 

1 6 1 7 10 2 0.7 

2 37 5 15 16 6 0.9375 

3 30 11 25 17 12 1.4705 

4 18 2 10 5 3 2 

5 21 1 5 10 2 .05 

 

ELOC effective lines of code, d= Decision statements in the 

code, DSW Decision statement weight, Ti= Total information in 

the code, v(G)=d+1= Cyclomatic number,  APCM= Advanced 

program complexity measurement. 

 

3.1.1 If then Else 
The decision handles two statements, the weight of the code 

D=2.  

3.1.2 Nested If 
The nested if statement contains number of decisions d1, d2...dn, 

hence the number of decisions are counted.   

DSW= d1+d2+....dn, where each d=1, D=1 in all case 

3.1.3 For Loop 
Loop execute according to predefined criterion, so D=n, 

DSW=d1*1+d2*n.  

3.1.4 Nested For Loop 
In the case of nested loops, let di, di+1,  di+2,…  di+n are the loops 

and count of decision control variable of di is  Di and di+1 is   

Di+1= Di+1*D((i+1)-1), Di+2= Di+2* D((i+2)-1) and  Di+n= Di+n* D((i+n)-

1). 

3.1.5 While Loop 
DSW estimation in the case of Do-Loop while and Do-Loop 

until are two various aspects such as top - test loop and bottom 
test loop. In top- test loop d=1 and D=n in all case of Do-Loop 

while and Do-Loop until apart from some exceptional coding,  in 

this case DSW = d*n. 

The bottom-test Do Loop shows different in DSW estimation. 

Do-Loop while and Do-Loop until shows d=1 and D=n+1 
because the bottom-test Do Loop is execute at least once without 

checking condition. Suppose n= 0, then D=1 in bottom-test Do 

Loop. 

In figure 4, according to the various parameters of DSW and Ti 

the complexity was varied. The reduced amount of decision 
statement weight in complexity1 then the program complexity is 

less. And complexity3 shows decision statement weight is high 

consequently it proves high complexity. When compare 

complexity3 and complexity4, the complexity3 dealt with more 

data than complexity4, thus the complexity4 proves high 
complexity. Figure4 represents APCM value near zero which is 

less complexity and away from one indicates rising error prone 

or complexity in the source code. 

The source code contains considerable decision statements and it 

manipulates less amount of data cause high complexity.   
Explicitly APCM explore structural measures of software 

complexity such as control flow and data flow. The measure 

indicates tangible program complexity measure from the 

empirical research done in various program modules in table 2. 

The APCM value in the sample code evaluation of figure.1 
shows in row 1 of table.2 which is indicates low complexity, 

because the code shows high data control over less decision that 

can be noticed the correlation between control flow and 

dataflow. The comparative analysis in table 2 displays the 

APCM most consistent over McCabe’s cyclomatic number and 
other complexity metrics to measure complexity of source code. 

 

Figure 4 APCM measurement variations in different Ti, DSW parameters 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 23– No.2, June 2011  

33 

The accuracy of the APCM metrics is calculated on the basis of 

the number of properties satisfy the code instances and attributes 

which were predicted acceptably. The author’s work [17] has 
been described to estimate the accuracy, six- properties 

validation was applied. 

4. CONCLUSION  
To measure the source code, existing complexity metrics are 

performed with the evaluation of failure rate and failure density 

in spite of its deficiency is censured. In this work APCM is 

proposed to evaluate source code. APCM evaluate all 

parameters in any software module and to find exact complexity 
in it. The complexity interrelates with the structure and the 

various methods implemented in the source code. The boundless 

possibility is attempted with the code. Further the complexity 

metrics are analyzed with instant skill. By this approach, a 

constant measuring process is discovered and examined with 
sample of source code. As the nonlinearity of existing metric 

attests in the evaluation, the outcomes  of the proposed metrics 

are very efficient also improving the measurement process. 

In spite of the heartening result current study, that identified lack 

of distinct metrics quality analyzing technology. The results of 
this work should therefore be inferred only as findings, which 

need to be simulated and confirmed. In addition, because of the 

nature of the evaluation tasks, in which metrics made a number 

of predefined changes to the parameters, this work was limited 

to control flow and dataflow of source code. The metrics  
authenticity evaluation by properties gives indication to the 

promising direction of future work. Evaluation strategy selection 

could be advance in to measurement and experiments to enhance 

the validation of the result to the scope that the terminations at 

present availability can be generalized.  

5. REFERENCES 
 

[1] S. Sarala, P. Abdul Jabbar, 2010. Information flow metrics 

and complexity measurement, 3rd IEEE International 

Conference on Computer Science and Information  

Technology, vol. 2 pp. 575-578.  

[2] Wu-caihua, Zhu-xiaodong and Liu-juntao, 2008. The 
SRGM Framework of Integrated Fault Detection Process 

and Correction Process, International Conference on 

Computer Science and Software Engineering, IEEE 

Computer Society,  pp. 679-682.  

[3] Chin-Yu Huang, Sy-Yen Kuo, and Michael R. Lyu., 2007. 

An Assessment of Testing-Effort Dependent Software 

Reliability Growth Models, IEEE Transactions on 

Reliability, Vol. 56, No. 2, pp. 198-211.  

[4] Chin-Yu Huang, Michael R. Lyu, 2005.Optimal Release 

Time for Software Systems Considering Cost, Testing-

Effort, and Test Efficiency, IEEE Transaction on 

Reliability, vol. 54, NO. 4, pp. 583-591.  

[5] Michael R. Lyu, 2007. Software Reliability Engineering: A 
Roadmap, Future of software Engineering (Fose’07), IEEE 

Computer Society WashingtonDC.USA, pp.153-170.  

[6] T. Capper Jones, 2005. Estimating software cost, Tata 

McGraw Hill Edition. 

[7] Norman E. Fenton and S. L Pfleeger, 2004. Software Metrics, 

Second Edition, Third Reprint, Thomson publication Singapore.  

[8] Sy-Yen Kuo, Chin-Yu Huang, and Michael R. Lyu, 2001. 

Framework for Modeling Software Reliability, Using 

Various Testing-Efforts and Fault-Detection Rates, IEEE 

Transaction on Reliability, Vol. 50, No. 3, pp. 310- 320.  

[9] McCabe, 1976. A Complexity Measure, IEEE Transaction 

on software Engineering, vol SE2 . No.4, pp 308-320.  

[10] S.C. Chiemeke, A. O. Oladipupo, 2001. Theoretical 
Approaches in Software Complexity Metrics, African 

Journal of Science and Technology (AJST) Science and 

Engineering Series, Vol. 2, No. 2, pp. 101-107.  

[11] Srinivasan Ramani, Swapna S. Gokhale, and Kishor S. 

Trivedi, 1998. SREPT: Software Reliability Estimation and 

Prediction Tool, Springer-Verlag Berlin Heidelberg, pp. 

27-36.  

[12] Reymond PL Buse and Westley R. Weimer, 2009. 
Learning a Metric for Code Reliability, IEEE Transactions 

on Software Engineering 2010 (Accepted for publication). 

[13] Tu Honglei, Sun Wei, Ahang Yanan, The Research on Software 

Metrics and software Complexity Metrics, International Forum 

on Computer Science- Technology and Applications”, pp. 131-

136.  

[14] Ramon Sagarna, 2008. Jose A. Lozano.  Software metrics  

mining to predict the performance of estimation of 
distribution algorithms in test data generation, Springer-

Verlag Berlin Heidelberg, pp.235-254.  

[15] Weisstein, Eric W., Proportional, MathWorld A Wolfram 

Web Resource.  

[16] John C.M and Taghi M.K. 1991. The use of software 

metrics in software reliability modeling, IEEE, pp. 2-11.  

[17] N.Salman, 2006. Complexity metrics as predictors of 

maintainability and integrability of software components, 

Journal of Arts and Sciences Cankaya University, pp 39-50. 

 

 

http://mathworld.wolfram.com/

