
International Journal of Computer Applications (0975 – 8887)

Volume 23– No.2, June 2011

20

A Storage Algorithm for Grid Systems

S. Subha
SITE

VIT, Vellore, India

ABSTRACT

This paper proposes some methods to allocate file systems to

requesting clients in a grid system. The clients can be processes,

jobs, tasks, or users. A global book keeping algorithm is
suggested to keep track of the available and used space in a grid.

Sharing of file system at file level is suggested. Remote file

mounts, duplicate mount points for files are suggested

improvements to the existing systems which improve the

transparency of the file systems to the clients.

General Terms

Grid computing, Storage Allocation

Keywords

Allocation policy, Grid Systems

1. INTRODUCTION
Grid systems are used in many areas. The resources in grid

environment are shared among the hosts in the grid
environment. Resource sharing is a widely studied topic in this

aspect. One of the common applications of using grid systems is

to have disk space for clients to proceed with their

computations. A client could be a task, process, job, and user.
Any of them need temp space to proceed with their

computations. Some of them need to access some parts of the

files available on the grid to complete their execution. The

problem is how to allocate the space to these clients so as to
enable them to have access to the files that they are in need of

and achieve good performance. Some of the clients need to

access files in the local host while others may need to access

files in remote hosts. This can be achieved usually by fetching a
local copy of the file and mounting on the current host. Care

should be taken for data consistency between the remote and

local copy.

This paper proposes some techniques to allocate storage to
clients in grid environment. Methods and OS support required to

allocate space on a local host to clients are proposed. Method to

request a remote host to mount a file system to its local mount
point and have remote client access to that file system with

required permissions is suggested in this paper. An improvement

to the storage allocation that minimizes fragmentation to the
method suggested in [3] is proposed in this paper. OS support to

have multiple mount points and data consistency for the same

file is proposed in this paper. The proposed methods were

simulated on Linux system.

The rest of the paper is organized as follows. Section 2

elucidates allocation policies and compares it with other

proposed techniques, Section 3 proposes the mounting of remote
file systems for local access with multiple mount points for the

same file, Section 4 concludes and Section 5 lists the references.

2. ALLOCATION POLICIES
This section lists some allocation policies. It describes the
process of allocation and contrasts it with the policy proposed in

[3]. The authors in [1] discuss the concept of storage resource

managers that complement the grid functions of computation

where tasks are distributed in a network using management of

network sharing using bandwidth reservation techniques. The
authors in [2] propose the benefit of sharing jobs among

independent sites of grid along with parallel multi-site job

execution. The grid as indirect NFS is described in [4]. An

overview of research and development challenges for managing

data in Grid environments is provided in [5]. This paper relates
issues in data management at various levels of abstraction, from

resources storing data sets, to metadata required to manage

access to such data sets. A common set of services is defined by

the authors as a possible way to manage the diverse set of data

resources that could be part of a grid environment. The authors
in [6] describe the design and implementation of a fast and

configurable remote data access system called eavivdata. The

proposed system supports configurable remote operations. The

authors in [7] present extensible and open grid architecture to

address the problem of flexible, secure and coordinated resource
sharing. The authors in [8] describe a grid-enabled

implementation of the Message Passing Interface (MPI) that

allows a user to run MPI programs across multiple computers at

different sites using the same commands that would be used on a

parallel computer. The authors in [9] propose a flexible
software-only storage appliance designed to meet the storage

needs of the grid. The proposed model is described next. Clients

request free space during their life time in the grid environment.

For the local files that need to be accessed during the process’s

execution, a temporary file system on top of the file system
supported by the OS can be constructed. This is analogous to the

file system proposed in [3]. However, each node in the file

system has only one attribute that indicates the amount of space

the node and its descendants occupy. This is indicated by the

used field. At the root level there is an additional field called
size which indicates the total available space for the file system.

During the construction of the file system, initially the size is set

to the disk’s size and used is set to the size occupied by the root

of the file system. When requests come the following actions are

taken based on the type of the request.

1. Request for allocation arrives. The size field is

checked if it can accommodate the request. The

system makes a call to mallocate(path, req size). The
mallocate is a function that has to be supported by the

OS. The system allots req_size bytes to the path

created. The path is created by the mkdir(path)
command. The size attribute is decremented by

req_size bytes. All the above actions take place only if

the user/client has permissions to execute the system

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.2, June 2011

21

commands involved.

2. A file/directory gets deleted. The request is invoked
with deallocate(path). The used field is reclaimed for

the specified sub file system to the size attribute. The
path is deleted using rmdir(path) or rm filename.

3. Inquire if a path exists. This is achieved by executing
inquire(path) primitive. The path is checked in the file

system and a boolean answer is returned based on its
existence.

Figure 1 gives the allocation scheme. The root node has

24GB of space available. The nodes of the tree have used

amount of space. Each node of the tree has a field called
used that gives the total space occupied by the node. If a

new node arrives, it requests the root for the space and gets

allocated if the space is available. The used field of root
node and the new node are adjusted accordingly. If a node

is deleted, the used space of the deleted node is reclaimed

by the root. The commands listed above can be used to
allocate and reclaim the space from interior and leaf nodes

of the tree.

Figure1 Allocation Scheme

All the above commands can be executed atomically and are

idempotent in nature. The suggested method of having one

global size field minimizes the fragmentation which occurs in

[3] with the presence of size and used fields at each node level.
For any allocation, a request is made to the root level to allocate

space from the size available. On every deletion, the used field is

reclaimed at the global size field. Consider this system in

contrast with one proposed in [3]. Here each node has size and

used fields. The (size-used) space is lying vacant at any point of
time. This fragmentation is avoided in the proposed model.

3. PARTITIONS IN A SYSTEM

This section proposes some changes to the mount system and

partitioning of the data so as to have better performance.

 In order to have more number of file systems accessible to the

client, have a partitioning system which names each partition as

say /dev/<integer>. Have extensible devices i.e. the system can
support any number of devices by suitable hardware

manipulations. For example, the system can have a scheme

wherein it supports ten devices. The tenth device can be
connected to another I/O subsystem which supports say twenty

devices. This is analogous to indirection in the case of i-nodes.

Mount the files to the mount points and make them transparent

to the client. The physical limitation is the bound for the number

of partitions.

In order to make the files accessible, have a scheme which

allows a client to request a remote client to mount a file system

in its local host. Let mountremote(path) be the command to
support this. Here path gives the path to be mounted. This file

system is accessible to the remote client. For book keeping

purposes, have a central database which lists the mounted files
on various hosts and the access rights to them. Each mount point

is listed as <host #><mountpoint> and has <file system name>

associated with it. The <host#><mountpoint> uniquely

identifies a mount point. This arrangement will also enable
request for allocation from remote disks. This is because the

centralized pool contains the space in all the disks. The

following system commands are to be used to make use of this

feature.

1. conn = connect(mount point)

This command will establish a connection to the remote mount

point via conn. The connection is one of the ways to transfer

data from local to remote host.

2. read(conn, filename, buf1)

This command will read into buf1 from the filename in conn

mount point.

 3. write(conn, filename, buf1)

This command will write from buf1 to filename on conn.

4. open(conn, filename)

This command will open filename in conn mountpoint.

5. close(conn, filename)

This command will close filename in conn mount point. Other
commands like mv, cp, are also supported to move or copy the

file from conn mount point to any other mount point or same
mount point. The mv(pt1, filename_source, pt2,

filename_destination) moves filename_source from point pt1 to
filename_destination in point pt2. This command should be

used sparingly. The move operation involves transfer of the file
contents from pt1 to pt2. This involves creation of the i-node

for the file in the pt2 and removal of the i-node in point pt1.
This command can be used only if one user is accessing the

file. The cp command copies the file from pt1 to pt2. Its syntax
is cp(pt1, filename, pt2). Both the copies can work

independently afterwards. Concurrency can be achieved by
making use of suitable semaphores and other operations

between the two files as on a needed basis. One possible
semaphore usage is to have all the clients have read

permissions. In order to write, the client locks the file to write
and releases the lock after writing. Counting semaphores can be

used to have count of the number of requests.

root
Size: 24GB

Used: 8.5GB

 a
Used:

0.5GB
 b

Used: 2GB

 c d e f g

Used: 1GB Used:

0.3GB

Used:

0.7GB

Used: 1GB
Used: 3GB

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.2, June 2011

22

6. unmount(mount point).

This command unmounts the file system on the mount point.
Any future access to the file system is an error.

A client can request for some space. This will be given from one

of the mount points where the client has access rights. This way

the available free space is increased if the mounted file system
has space. To decrease the communication costs, provision to

mount same file in multiple p laces is given. Semaphores are

used to maintain concurrency of data among the mount points
that mount the same file. The following gives the trace of

mounting, unmounting file systems in a grid environment with

the above specifications and model. Assume there are four hosts
participating in a grid. Let file system A, B, C, D be on hosts 1,

2, 3, and 4 respectively. Suppose a client on host 1 wants file

system A. He requests for the space to allocate it to him and
mounts it. Suppose he wants file system D. He communicates

with host number 4 and requests him to mount it. The mounted

system will have mount point id as <4, /dev/tty00> say for
example. The individual files are accessed by executing the

following commands.

 f1=connect(“4,/dev/tty00”)

Read(f1, file1, buf1)

Suppose that the file has to be copied in the local place then the

following command is used.

cp(4,/dev/tt00, file1, 1, /dev/tty01)

which copies file1 from D to A.Here the copy command is

modified to have the syntax cp(source host, mount

point,destination host, mount point)

In case the file accessed is an interior node, the path of the file is

given . For unmounting, the file system the following is used.

close(f1, file1)

unmount(f1)

Figure 2 Schematic Representation of copy and move

between mount points

Figure 2 gives a schematic representation of copy and move
commands. The files are copied or moved on the communication

channel from one host to another as on a needed basis. The

commands involve changing the file directory entries. The

communication channel in this case is assumed to be present.

The performance improvement based on this method to the one

that transfers the subtask to the remote host to be executed can

be calculated as follows. Suppose a file F of size s bytes is to be

used by the client. If F is remotely located the subtask is sent to

the remote host and commands are executed on it. Suppose it

takes t1 t2 t3 units of time to do this subtask where t1 is the time

to transmit the request of the subtask, t2 is the time of

computation, t3 is the time to receive the result. Suppose there is

n number of such subtasks with varying time requirements.

Consider copying the file to local host. It takes t4 units to

transfer the file F from remote host to local host. Performance

improvement is achieved if the time of computations locally
along with the copy time is less than executing the subtasks

remotely. Similarly, if move were to be used, an analogous

argument follows.

4. CONCLUSION

Some methods to allocate space in grid environment have been

proposed in this paper. Methods to allocate space on local host
in contrast with one proposed in [3] has been proposed. The

proposed model avoids fragmentation problem. Methods to

enhance mounting of file systems among various hosts have
been proposed. This ensures transparency among the

processes/clients executing tasks. The proposed model has been

simulated on LINUX environment and is verified to be feasible.

5. REFERENCES

[1] A. Shoshani, A.Sim, J.Gu, Storage resource

managers:Middleware components for grid storage, 19th

IEEE Symposium on Mass Storage Systems, 2002

[2] Carsten Ernemann, Volker Hamscher, Uwe Schwiegelshohn,
Ramin Yahyapour, Achim Streit, On Advantagesof Grid

Computingfor ParallelJob Scheduling, Proceedings of the

2nd IEEE International Symposium on Cluster Computing

and the Grid, 2002

[3] Douglas Thain, Operating System Support for Space
Allocation in Grid Storage Systems, Proceedings of 7th

IEEE/ACM International Conference on Grid Computing,

2006

[4] DouglasThain, Jim Basney,Se-Chang Son,and Miron Livny,

The Kangaro Approach to Data Movement on the Grid ,
Proceedings of the Tenth IEEE Symposium on High

Performance Distributed Computing, 2001

[5] Heinz Stockinger, Omer F. Rana, Reagan Moore, Andre

Merzky Data Management for Grid Environments,

Proceedings of Nineth International Conference on High-
Performance Computing and Networking, 2001

[6] Hutanu, A.; Allen, G.; Kosar, T.; High-performance

remote data access for remote visualization, Proceedings of

GRID, 2010

[7] Ian Foster, Carl Kesselman, Steven Tuecke, The Anatomy of
the Grid: Enabling Scalable Virtual Organization, The

International Journal of High Performance Computing

Applications, 15(3), (2001) 200-222.

[8] Ian Foster, Nicholas T. Karonis, A Grid-Enabled MPI:

Message Passing in Heterogeneous Distributed Computing
Systems, Proceedings of SC'98

[9] J.Bent , V.Venkataramani, N.LeRoy, A.Roy, J.Stanley,

A.Arpaci Dusseau M.Livny, Flexibility, Manageability, and

performance in a grid storage appliance, 11th IEEE

Symposium on High Performance Distributed Computing,
2002

Host A Host B Flash

Memory

cp, mv

Disks

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4100428
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4100428
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4100428

