
International Journal of Computer Applications (0975 – 8887)

Volume 23– No.3, June 2011

15

Comparative Analysis of Software Performance Prediction

Approaches in Context of Component-based System

Adil Ali Abdelaziz
Faculty of Computer Science

& Information Systems,
Universiti Teknologi Malaysia,

Department of Software
Engineering

 Skudai, Johor 81310 UTM,

Malaysia

Wan M.N. Wan Kadir
 Faculty of Computer Science

& Information Systems,
Universiti Teknologi Malaysia,

Department of Software
Engineering

 Skudai, Johor 81310 UTM,

Malaysia

Addin Osman
Faculty of Computer Science

and information system,
Najran University, Saudi

Arabia

ABSTRACT
In recent years, there has been increasing interest on using

Component-Base System (CBS) to develop Applications. These

parts are glued together to compose an application. Since the

approach supports reusability, these parts might be reused into

countless systems. CBS provides efficiency, reliability and
reduces the need for maintenance. However, performance is a

major problem with this kind of applications. It believed that,

the failure of performance means a financial loss, increased

expenses of hardware, higher cost of software development, and

harder than that, the loss of relationships with consumers.
However, one important solution for that is the avoidance of late

performance evaluation. A prediction approach supported with a

reasoning framework is a best solution to overcome the problem.

In this paper, we investigate and identify problems on software

performance prediction in context of CBS. Then we present the
result of a comparative evaluation based on selected criteria for

three approaches to software performance evaluation namely

measurement approach, model-based approach, and mixed

approach. The result from the comparative shows that mixed

approach is the best method to be used as means to develop the
proposed framework. The proposed framework is aiming at

enabling developers to efficiently predict and evaluate software

performance during development lifecycle. The details of the

comparative study are presented as well as the outline of our

proposed framework.

General Terms

Software performance prediction

Keywords

Component-based system, quantitative approach, Performance,

Prediction

1. INTRODUCTION
Component-Based System (CBS) is an approach to build

applications from deployed software parts or components.

Developing software applications using CBS has many
advantages such as; the efficiency, reliability, maintainability.

Additionally, Component-based System Development (CBSD)

enables software architect to reason on the composed structure.

This is not only essential for the functional properties but also

for none functional properties. Performance is an important
none-functional property that must be considered when building

such applications. Indeed, software performance is a significant

factor for software quality. It is responsible to determine the

system’s effectiveness and the productivity of its users.
Performance is referring to how extend the system or component

has satisfied the predefined requirements on restrictions of

specific factors such as accuracy, memory usage given [1].

However, performance is a major problem with CBS

applications. The failure of performance means a financial loss,
increased expenses of hardware, higher cost of software

development, and harder than that, the loss of relationships with

consumers. However, best solution for that is the avoidance of

late performance evaluation. The German police has developed

a system called "Impol-Neu" [2], which was published in mass
media, provides an obvious and practical witness that proves the

significance of performance evaluation before deployment. The

performance of this system was evaluated lately after

development. So, the resulted performance did not satisfied

performance requirements. For that reason, they failed to
implement the system in spring 2001 as it planned; instead the

system was implemented in 18th August 2003. Consequently,

performance is a key success factor in software production.

Ideally, to develop performance predictable software with
minimal performance problem, performance should be

addressed early at development stage. Whenever, performance

issues are addressed at implementation or integration time,

correction of problems will impact the cost, schedule, and

quality of the software [3]. Recently, many researchers have
proposed approaches describing how architecture and design’s

flaws could be discovered and treated. Although of their efforts,

none of these methods practically become wide spread in

software industry. Besides, existing performance models do not

support CBS engineering, instead they mostly offered efficient
solvers [4]. Consequently, an automated and systematic

framework is needed to provide efficient methodology for

performance prediction approach. The main target of our

ongoing research is to develop a reasoning framework that

facilitates the performance prediction. Hence, a prediction
approach represents the cornerstone of the proposed framework.

The objectives of this paper are to investigate, to compare, and

then to select appropriate approach for the framework. To

achieve this, we conducted a comparative evaluation based on
selected criteria for three approaches to software performance

evaluation namely measurement approach, model-based

http://www.fsksm.utm.my/
http://www.fsksm.utm.my/
http://www.utm.my/
http://se.fsksm.utm.my/
http://se.fsksm.utm.my/
http://www.fsksm.utm.my/
http://www.fsksm.utm.my/
http://www.utm.my/
http://se.fsksm.utm.my/
http://se.fsksm.utm.my/

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.3, June 2011

16

approach, and mixed approach. The paper has been divided into

five parts. The second part introduces the problems of software

prediction in context of component-base system, and then main
groups of the approaches to predict software performance have

been discussed within the third part. In the fourth part we

conduct a comparative study between the main groups of the

approaches. Finally, we discuss the results and present outlines

of our framework as well.

2. SOFTWARE PERFORMANCE

PREDICTION FOR CBS

2.1 Component-Based System
From CBS point of view, application systems are accumulation

of software deployed parts. These parts are known as
components and can be used and reused to develop uncounted

number of applications. Therefore, the development job could be

divided into tasks between developers. CBS is aiming at

building application from deployed components; in turn, these

components can be used and reused. Hence, the approach
support reusability, countless number of applications could be

built from components. In addition to that, others features such

as principle of hiding information and separation of concerns are

supported. Therefore, the development job could be divided into

tasks between developers. Consequently, the approach helps
organizations to simplify the development of large and

complicated systems, lower development cost, and produce

shorter time to market product [5].

2.2 Software Component
Becker [6] defines software component as “a unit of
composition with contractually specified interfaces and explicit

context dependencies only. A software component can be

deployed independently and is subject to composition by third

parties”.

Another definition is presented by Kung-Kiu [7] as “A

software element (modular unit) satisfying the following

conditions: it can be used by other software elements, its

“clients.”, it possesses an official usage description, which is

sufficient for a client author to use it, and it is not tied to any
fixed set of clients ”. However, component-based approach

focuses more on “development of runtime component models

which are targeted at the actual construction and deployment of

systems” [8]. Therefore, CBS consists of a number of attached

components, which called composite components, glued
together into larger units.

A general scene of a software component is that it is a software

piece consist of; a name, an interface, and code. Figure 1 (a)

illustrates the component parts.

Figure 1: A Software Component (Lau and Wang 2005)

The component delivered as a black box, which means the code

implements the services provided by component and are

inaccessible by outsiders. The interaction with component is
achieved through the component interface. The interface of

component provided by all information that enables the use the

component. For instance, interface must state the services

required by the components. The required services are important

to component to get ready to use (Figure 1 (b)). The required
services are typically input values for parameters of the provided

services. The interface of a component responsible of

identifying the dependencies between its provided and required

services. From object oriented programming point of view,

components represented as objects, whereas the methods of
these objects are required services, and the methods they call in

other objects are their required services. An environment such as

container, are used usually to embrace the objects. The role of

this environment is to manage the access and interactions

between components [9].

2.3 Factors Impact in Performance

Prediction
The main objective of software performance prediction is to
improve the performance of software product. Overall response-

time of the application is an important performance factor in

evaluating the performance of software product and accordingly

impact the quality. Indeed each component has performance

specifications. Consequently, many approaches assume that,
performance of the system can be compositionally obtained

based on its components. Unfortunately, these components

might be designed to be performed in specific settings such as a

case where components imposed to wait for receiving data or

passing data before it could be invoked [10, 11]. This scenario
should be considered, otherwise, the resulted response-time of

the whole application will be inaccurate. In another scenario,

the execution time for individual component calculated to be

suitable for specific execution platform. Then again, new effort

should be done to calculate the relevant settings of a platform
and its usage profile when different platform planned to reuse

the same component.

Steffen and Ralf [12] have stated five factors that are effects the

performance of software component, these factors are
component implementation, resource contention, usage profile,

deployment platform, and required services, see Figure 2. Next

sub sections describe these factors in detail [12].

Figure 2: Factors Impact Performance (Steffen and Ralf
2006)

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.3, June 2011

17

Component implementation is one of the factors impact

predictions of software performance for CBS. Component

developers can perform the functionality clarified by an
interface in several ways, since; different components might

provide the same functionality under similar constraint but with

different execution time. Another factor is called required

services. Let us assume that we have two services A and B.

When a component service A invoked, B is needed to be
invoked also, therefore, the execution time of B adds up to the

execution time of A. Consequently, the overall execution time of

a component service depends on the execution time of required

services. That means nested components or nested services

should be considered to get an accurate prediction for the whole
system’s execution time. Also, the deployment platform is

essential issue to be considered. Because, there are various

software component delivered to various platforms. A

deployment platform may include several software layers (e.g.,

component container, virtual machine, operating system, etc.)
and hardware (e.g., processor, storage device, network, etc.). In

addition to these factors, usage profile describes systems in an

abstract manner using parameters in order to enable the sizing or

scaling the system. Clients can access component services with

different input parameters. The execution time of a service can
vary depending on the values of the input parameters.

Additionally, components may also receive parameters in

consequence of calls to requested services. The values of these

parameters can also impact the execution time of a service.

Furthermore, components can have an internal state from
initialization or former executions, which changes execution

times. Finally, Steffen [12] also has explained the impact of

resource contention on the prediction of performance. A

software component is usually not invoked as a single process

separated from a given platform. The waiting times resulted
from accessing limited resources and the execution time of a

software component are added together.

3. MAIN APPROACHES TO

PERFORMANCE PREDICTION
As mentioned before, the main objective of software

performance prediction is to improve the performance of

software product. We are interested to address quantitative

approach in this paper as it is an essential element for our
proposed framework. The reason behind the selection is that

quantitative approach employs numerical indices related to

performance rather than symbols and words. The indices could

be used to predict performance during development phases,

therefore, provides an efficient way to produce a system with
high performance. Besides, some sort of qualitative evaluation

could be performed to recognize patterns and settings around

variables, which in turn support decision making. Three types of

approaches are resulted from the additional study on the relevant

publications namely measurement approach, model-based
approach, and mixed approach. The next sub-section explains

some details about these approaches, and then their comparative

evaluation is presented.

3.1 Measurement Approach
Measurement approach refers to a software performance

engineering process aims to evaluate software application

focusing on the performance quality features such as response

time and throughput. These features are analyzed using special

analysis tools which enable the monitoring of execution. Hence,

the analysis tools provide feedback about the weaknesses

conditions and areas that need to be optimized [13]. The
approach could be efficiently used for implemented application

or application with known features. The approach uses existing

systems or prototypes to measure performance properties and

calibrate performance models with the results. Performance

analysts may then use the models to analyze the results of
changed workloads or the use of faster hardware with low effort

such as in [10] which uses test-cases to calibrate measurement

from reused components.

In measurement approach, performance evaluation methods and

techniques are highly dependent on the features of the software
system to be evaluated. Most measurement approaches such as

[13] and [14] rely on middleware and specific platform. They

support use of J2EE application with EJB. There are two

different type of metrics can be considered; application specific

performance metrics and system specific metrics. Application-
specific performance metrics which refers to performance

measures are taken for various functionalities in the system.

Test-cases are used in [14] to identify the application-specific

behavioral properties. While, System specific performance

metrics are low-level measures of the system resources which
are focus on the utilization measurement. Exclusively tools of

performance platform being used, such as OTC Performance

Monitoring tool which is offered as branch of the Windows

operating system, are employed to measure these metrics as

illustrated in [13]. The approach is low cost-effective because it
has been applied only for already implemented systems.

Recently Jiang [15] has proposed measurement approaches

based on testing validation to ensure quality of system that

composed from black-box components. The approach uses the

previous testing information of reused component to assist in
reducing the effort of testing.

The main challenges which are facing the application of this

approach to CBS are; the approach commonly related to a single

setting and far from generalization and there is need for

implanted application to enable the analysis of the effects of
changed workloads.

3.2 Model-based Approach
Generally, model-based approaches rely on the Model Driven
Development (MDD) technique which enables developer to

efficiently evaluate and assess the system requirements and

execution by using a set of models. The orthogonal models

supported by the approach enables the consideration of complex

portions such as performance analysis. CBS in context of
software engineering has been introduced clearly for the first

time by Greg et al [16]. The paper has identified and delineated

relevant concepts to the CBS such as usage profile, performance

specification, and compositionality. Some approaches integrates

component into analysis models, so the prediction and
evaluation could be done before the composition phase.

Additionally, the interacting with an external component is

allowed. [17, 18] proposed an approach following automatic

framework. In this approach, feedback returned to the

developers after the validation of the analyses results. The
proposed approach can be implemented for J2EE applications

and EJB. Since this approach based on specific platform, there

will be a limitation on adaptability, analyzability, and

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.3, June 2011

18

scalability. The previous approaches are quantitative

approaches.

Grassi [19] proposed a method that considered a qualitative
approach. The author has presented a technique for the

evaluation and analysis of extra-functional properties of CBS.

Following a sequence of enhancement phases from Model-

Driven Architecture (MDA) point of view, models are created to

enable performance analysis. Whereas, the stochastic model for
compositional performance evaluation built as well as outlines

of relationship with different enhancements.

One of the main challenges is the heterogeneous design level

notations for CBSs, and the diversity of extra-functional

properties. Intermediate model known as Core Scenario Model
(CSM) derived from an annotated design model. Further, variant

information from design phase as well as variant kinds of

performance models requires a unified interface. A tools called

PUMA is proposed in [20] for this purpose. The

implementation of the transformation rules and algorithm
performed with a lower-level XML trees manipulations

techniques, such as XML al-gebra. The analysis model used is

the Layered Queuing Network (LQN).

Automation and usage profile are important factors that increase

the success of the approach. Most of the proposed approaches
have a lack of automation. Such approaches are considered as

reasoning tools rather than applicable approaches in the practical

field. Additionally, ignorance of employing usage profile and

resource contention lowers the accuracy of predictions due to an

inaccurate calculation of response time. This problem is the
weak point in a number of approaches such as the approach

proposed in [17, 18].

Model-based approaches, such as the PCM [6, 21-23] are

supporting creation of performance models from scratch. Some

of these approaches target the performance specification of
reusable components like the PCM, but often neglected the

single influencing factors (such as external service calls, usage

profile, and specific of the execution environment.

3.3 Mixed Approach
Mixed approaches are based on the combination of the

approaches of measurement and model-based. The mixed

approach supposed to benefit from the strengths and avoids the

weaknesses of the two approaches. These approaches are
ranging from approaches focusing on component specification

[24] to approaches consisting of module that support runtime

performance information on software components and

application execution environment. The parameterization in [25]

based on performance profile of container, where, container is
“a specialized collection class that allows you to track your

components, and manages the interaction of your components

with other components and the external application

environment”. In such cases components are hosted

by containers. Therefore the approach enables the produce of
cost-effective applications. On other side, [26] shows good

result of accuracy and adaptability. Since, the approach performs

instrumentation for software components by using proxy layer,

then carrying out the performance analysis is allowed, which in

turn enables developing cost-effectiveness applications. The
proxy layer used to derive key component structural information

to allow managing of data at component level and the

corresponding abstractions used during the building of the

application as well.

Mixing of measure-based and model-based approach is

motivated by combining capabilities of two approaches,

specially accuracy and scalability. However a feeble site is that a
low level of adaptability and scalability may result because of

using specifics platform. That means the drawbacks of the each

approaches may hinder to obtain ideal combination.

This section provides some discussions and critiques on the
current approach to developing software performance

prediction. The following section will further discuss the

strength and weaknesses of the main approaches based on a

defined evaluation criteria.

4. COMPARATIVE AND EVALUATION

4.1 Evaluation Criteria
These evaluation criteria were inspired and formulated based on
the literature review and survey papers [3, 27, 28]. Indicators

used for the capability level is Low, Medium and High. A brief

explanation of each criterion can be found in the following sub-

sections as they are used within the context of this paper. The

rubric for these evaluation criteria can be found in Appendix A.
The litter “Q” found in some field indicates that the result

mentioned is questioning or uncertain to be applied in the

reality.

4.1.1 Scalability
Scalability is the capability of a system, network, or process, to

carry out rising amounts of work load [29]. Scalability refers to

the “capacity of software to handle increasing loads or demand
by users” [30]. The system is said not scale if the design fails

once the quality becomes greater than before. In order to predict

performance for CBSs, scalability is important to deal with the

two options of system construction style too many number of
uncomplicated system components or less but complicated

large-grains components. It’s better to define scalability features

as early as possible in the software life-cycle.

4.1.2 Accuracy
To provide useful results, the prediction must be accurate.

Beside, the analysis effort must be compared to accuracy of

prediction in order to gain efficient evaluation of complicated

application. Accuracy described by high if the

4.1.3 Adaptability
Adaptability in general as defined by Gronau [31] as “the ability

to change something or oneself to fit occurring changes”.

Application component are exposed to be added or changed or

modified or even replaced by another type of component. So,

prediction techniques should be adaptable, so it can support

efficient performance prediction under architecture changes.

4.1.4 Analyzability
Prediction techniques should not only reveal performance

bottlenecks, but also give insights into possible flaws in

architecture designs that are causing problems.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.3, June 2011

19

4.1.5 Cost-effectiveness
Cost effectiveness denotes to making best outcomes inside the

boarder of allocated amount of money. The approach expected
to provide good results in less effort than Fix-it-later as well as

prototyping approach.

4.1.6 Universality
The approach should be applicable to different component

technologies with minimal modification. This enables the

performance prediction of an integrated system with multiple

component technologies involved.

4.1.7 Framework
Framework refers to a channel used by non-expert through
which many complex theories and tools could be used to get

trustworthy answer. In context of software performance

prediction, system’s architects play a key role in meeting quality

attributes such as performance. Since, architects are responsible

to determine whether or not the design is meet the performance
requirements, performing this mission through a framework will

be useful. Further, the approaches for prediction performance

considered as tools rather than methodologies unless they

involved in a framework. The values of this attribute are fully

automated which means the framework support automation, or

partially automated, or no automation [4].

Major headings are to be column centered in a bold font without
underline. They need be numbered. "2. Headings and Footnotes"

at the top of this paragraph is a major heading.

4.2 Results and Analysis
This subsection describes the result of the comparison analysis

on the three approaches to developing high performance system.

4.2.1 Scalability
Since most approaches are platform-specific, scalability is range
from low to mid. For measurement approach the scalability is

low. It is difficult to ensure the scalability unless the approaches

applied inside another platform. For component-based and

mixed approach, adopting component of an application in order

to enhance quality, may not lead to design fail where the
development is based on model-driven technique. So model

based approach range from “low to mid” as well as mixed

approach. To design scalable approach, the design must not

negatively impacted when the quality becomes higher than

before, the measurement based approach is not appropriate due
to the lack of flexibility in the design and the use of specific

platform. Model-based approach and mixed approach have the

same impact.

4.2.2 Accuracy
Measurement-based approach shows high level of accuracy

because the approach required already implemented system.

Developers can collect accurate results of performance
measurement. The measurement resulted for robust test cases. In

spite, accuracy as general considered not so high for model-

based approach. Practically, many approaches of model-based

group scored high degree of accuracy but their results need to be

validated in practically. So, they followed by letter “Q” in the
comparative table to explain that the result is under questioning.

The mixed approach that supported by parameterization with

container concepts allows definition of performance profile for

container, and the platforms obtained through benchmarking. In

such cases, the approach scores high degree of accuracy so the
table shows “High” accuracy for mixed approach. However, the

accuracy of mixed approach is theoretically acceptable because

it is validated on real setting. Mixed approach shows best result

for accuracy attribute. So, in order to develop an approach that

satisfy high accuracy rate, mixed approach that support use of

container concepts should be considered.

4.2.3 Adaptability
Due to the nature of CBS, applications component might be

altered, appended, adopted or even replaced with new

component. Measurement approach is taking middleware into

account. Most approaches are developed under J2EE with EJB.

Therefore adaptability is low because it is a platform-specific. In
spite, the both model-based approach and mixed approach are

also use the same technology as a p latform (platform-specific),

but because they use adaptation module, which employed to

select among variant functionality -equivalent component that

satisfy performance requirements. Model-based score rate from

mid to high, while mixed mode scores rate from low to mid.

4.2.4 Analyzability
Analyzability is important to provide more details about the

problem not only the bottleneck. Since measurement approaches

is based on test case. Hence no feedback about details problem

could be obtained, developers are manually investigating the

flaw and fix them. Consequently, measurement approach scores
low degree for analyzability. For model based approach the

analyzability is range from mid to high, whereas mixed

approach scores high degree of analyzability. The both

approaches benefit of employing model-driven technique which

enables developer to choose a right design decisions among
variant design alternatives. On the other hand, mixed approach

uses benchmarking to get platform which provide continuous

process to locate and apply best practices that will lead to better

performance. So, as illustrated in the table, analyzability is high

for mixed approach.

4.2.5 Cost-effectiveness
For measurement approach we need to wait until
implementation and then track the flaws. That means high cost

especially if there is needs to redesign system in order to meet

the performance requirements. Consequently, measurement

approach scores low degree which means the approach is not

good to produce cost-effective application and the amount of
estimated money mostly exceeded. Because they are using

proxy layer, both model-based and mixed approaches are

providing high degree of cost-effectiveness. That means the

approach has the ability to develop applications within the

estimated budget.

4.2.6 Universality
The universality is absent in the measurement approach due to
the lack of automation. Whilst, model-based provides degree of

universality range from low to mid. The mentioned result is

questioned because there is need for manual intervention of

experts so the outcome depends on them as well as developer’s

experiences. However, the mixed mode use benchmarking but

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.3, June 2011

20

still experts are needed. Therefore the mixed approach provides

“mid” degree of universality.

4.2.7 Framework
The measurement approach is rarely supported by framework.

However, there was a case where a reasoning framework used to
develop COTs system [14]. The weakness point of this

framework is that it is appropriate only for particular platform.

There are automated frameworks that support model-based and

mixed approach but they are partially automated. However, few

frameworks can perform complicated system successfully.

5. CONCLUSION
The paper discussed the challenges of performance prediction in

context of CBS. Three main approached to predict software

performance were investigated. These approaches are

measurement approach, model-based approach and mixed
approach. Each approach has a peculiar disadvantage. The main

disadvantage of the Measurement-based approach is the need for

an implemented system prior to perform prediction which does

not make it cost-effective in developing CBS. For the Model-

based approach, the disadvantage is its questionable accuracy
and universality. The accuracy of this method is

questionable because it has not been proven in practice and the

universality is questionable because the results of applying the

approach depend on the expertise and experience of the

development team. The Mixed approach is highly favored and is
found to be the best; hence the approach scored the best on the

most of the evaluation criteria.(See the summary of result on

Table 1)

Table 1: Summary of Result on the Comparison Analysis of

the Main Approaches to Software Performance Prediction

Approach

Criteria

Measurement
Component-

Based

Mixed

Scalability Low Low-Mid Low-Mid

Accuracy High Mid-High/Q High

Adaptability Low Partially

Mid-High

Partially

Low-Mid Analyzability Low Mid-High High

Cost-
effectiveness

Low High High

Universality No Q Low-Mid/Q Mid/Q

Framework No Partially Partially

Base on the result of the above discussion, our future work aims

to develop software performance prediction framework (see
Figure 3) for CBS using a mixed approach. Through the

framework, using the mixed approach as it’s the core element,

we believe we can provide an efficient way of performance

prediction. Our main objective for the next step is to develop a

systematic approach with a mechanism to set up a proper
relationship between architectural designs and analytic theories

where the substantial power of the theories might be employed

to support the following predicting performance before the

system is created, realize the behavior of the system after

creation, and finally assist developer to take right design
decisions while the system being developed. From literature, we

have found two different techniques to control quality aspects

[32] the first one based on embedding the quality element into

the method, and the other technique based on extracting the

method from the quality features, thus that quality attributes
could be modularized and regardless what combination of

quality attributes would be used. Rational Unified Process

(RUP) [33] is an example for the first technique and reasoning

framework is an example of the second one. We choose

reasoning framework because of its usefulness and suitability to
our study. The Framework consist of architecture descriptions

which must satisfy analytic constrains, desired performance

measures that consider the constraints of the problem,

performance attributes measures resulted from the reasoning

framework, and reasoning framework which composed of

interpretation, model representation and evaluation procedure.

Figure 3: the Proposed Framework

6. ACKNOWLEDGMENTS
Our thanks to the Universiti Teknologi Malaysia (UTM) who

have supported this work.

7. REFERENCES
[1] IEEE, Standard Glossary of software engineering

terminology. 1991: p. p. 610.12-1990.

[2] Jakob and Tretkowski, Das polizeiliche

Informationssystem INPOL, 2002.

[3] Koziolek, H., Performance evaluation of component-based

software systems: A survey. Performance Evaluation, 2009.

67(8): p. 634-658.

[4] Kounev, S., A Model Transformation from the Palladio
Component Model to Layered Queueing Networks, in

Performance Evaluation: Metrics, Models and Benchmarks.

2008, Springer Berlin / Heidelberg. p. 58-78.

[5] Ritzsche, M.a.J.J., Putting performance engineering into

model-driven engineering: Model-driven performance

engineering. Nashville, TN, United states, Springer Verlag.,

2008.

[6] Becker, S., H. Koziolek, et al., The Palladio component
model for model-driven performance prediction. Journal of

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.3, June 2011

21

Systems and Software, 2009. 82(1): 3-22.localization in

model transformation, Sofia, Bulgaria, INSTICC Press.

[7] Kung-Kiu, L. and W. Zheng, Software Component Models.

Software Engineering, IEEE Transactions on, 2007. 33(10):

p. 709-724.

[8] Kurt, Arnor, and Condat, Modeling of component-based
adaptive distributed applications in Proceedings of the 2006

ACM symposium on Applied computing. ACM: Dijon,

France., 2006.

[9] Lau, K.-K. and Z. Wang. A taxonomy of software

component models. 2005. Porto, Portugal: Institute of

Electrical and Electronics Engineers Computer Society.

[10] Krogmann, K., M. Kuperberg, and R. Reussner, Using

genetic search for reverse engineering of parametric

behavior models for performance prediction. IEEE
Transactions on Software Engineering, 2010. 36(6): p. 865-

877.

[11] Mirandola, et al., Improved Feedback for Architectural

Performance Prediction Using Software Cartography

Visualizations, in Architectures for Adaptive Software

Systems. 2009, Springer Berlin / Heidelberg. p. 52-69.

[12] Steffen and Ralf, The impact of software component

adaptation on quality of service properties. L’objet 12 (1) .

2006: p. 105–125.

[13] Chastek, G. and S. Yacoub, Performance Analysis of
Component-Based Applications, in Software Product

Lines. 2002, Springer Berlin / Heidelberg. p. 1-5.

[14] Chen, et al., Performance prediction of COTS Component-

based Enterprise Applications., in ICSE Workshop, 5th

CBSE. 2002.

[15] Jiang, Y., et al. Extended software component model for

testing and reuse. 2010. Chengdu, China: IEEE Computer

Society.

[16] Murali, S., et al., Performance specification of software
components. SIGSOFT Softw. Eng. Notes, 2001. 26(3): p.

3-10.

[17] Hissam, S.A., Moreno, G.A., Stafford, J.A., Wallnau,

K.C.:, Packaging Predictable Assembly. In Bishop, J.M.,

ed.: Component Deployment, IFIP/ACM Working

Conference, CD 2002,Berlin, Germany, June 20-21, 2002,

Proceedings. Volume 2370 of Lecture Notes in Computer
Science., Berlin, Heidelberg, Springer (2002) 108–124,

2002.

[18] Wallnau, K.C., Technical Report CMU/SEI-2003-TR-009,

Software Engineering Institute (2003). 2003.

[19] Grassi, V., Mirandola, R.: . A Model-Driven Approach to

Predictive Non-Functional Analysis of Component-Based

Systems. in In: Proceedings of the Workshop Models for

Non-functional Aspects of Component-Based Software at

UML , 12 October 2004,. 2004.

[20] Gu, G.P.a.D.C.P., From UML to LQN by XML algebra-

based model transformations. Illes Balears, Spain,

Association for Computing Machinery., 2005.

[21] Rausch, A., et al., Palladio – Prediction of Performance

Properties, in The Common Component Modeling

Example. 2008, Springer Berlin / Heidelberg. p. 297-326.

[22] Martens, A. and H. Koziolek, Automatic, Model-Based

Software Performance Improvement for Component-based

Software Designs. Electronic Notes in Theoretical

Computer Science, 2009. 253(1): p. 77-93.

[23] Kounev, S., et al., Model-Driven Generation of

Performance Prototypes, in Performance Evaluation:

Metrics, Models and Benchmarks. 2008, Springer Berlin /

Heidelberg. p. 79-98.

[24] Daniel, A.M., R. Honglei, and G. Hassan, A framework for
QoS-aware software components. SIGSOFT Softw. Eng.

Notes, 2004. 29(1): p. 186-196.

[25] Yan, L., F. Alan, and G. Ian, Predicting the performance of

middleware-based applications at the design level.

SIGSOFT Softw. Eng. Notes, 2004. 29(1): p. 166-170.

[26] Diaconescu, A., A. Mos, and J. Murphy. Automatic

performance management in component based software

systems. in Autonomic Computing, 2004. Proceedings.

International Conference on. 2004.

[27] Balsamo, et al., Model-based performance prediction in
software development: a survey. Software Engineering,

IEEE Transactions on 2004. vol.30, no.5,: p. 295- 310.

[28] Reussner, R., et al., Performance Prediction of Component-

Based Systems – A Survey from an Engineering

Perspective, in Architecting Systems with Trustworthy

Components. 2006, Springer Berlin / Heidelberg. p. 169-

192.

[29] Bondi, A.B. Characteristics of scalability and their impact
on performance. in Proceedings of the 2nd international

workshop on Software and performance 2000. Ottawa,

Ontario, Canada , Pages195 - 203.

[30] Fayad, M.E., H.S. Hamza, and H.A. Sanchez. Towards

scalable and adaptable software architectures. in

Information Reuse and Integration, Conf, 2005. IRI -2005

IEEE International Conference on. 2005.

[31] Andresen, K., Gronau, N., An Approach to Increase
Adaptability in ERP Systems. . In: Managing Modern

Organizations with Information Technology : Proceedings

of the 2005 Information Recources Management

Association International Conference, . 2005.

[32] Etessami, K., et al., The ComFoRT Reasoning Framework,

in Computer Aided Verification. 2005, Springer Berlin /

Heidelberg. p. 164-169.

[33] Krutchen, P., The Rational Unified Process: An

Introduction. 2003, 3rd ed.Addison-Wesley: Boston.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.3, June 2011

22

Appendix A

Criteria High Medium Low N/S N/A

Scalability

Scalability is
defined starting
from analysis

Scalability is defined

starting from design

Scalability is defined

during

implementation

Not specified -

No explicit or

implicit

reference to the

criteria

Not applicable for

the approach

Accuracy

Accurate result of

performance indices

can be easy

calculated

Approximate results of

performance indices

can be calculated but

Difficult to get

result of performance

indices

As above As above

Adaptability

Able to dynamically

and statically adapt

Can statically adapt

Difficult to adapt

As above As above

Analyzability

Easy to obtain more

information given

about the flaw

causes

Difficult to obtain

more information

about the flaw cause

No information

about is flaw causes,

the flaw is only

indicated

As above

As above

Cost-effectiveness

Easy to do the job

within the planned

budget

Not easy to do the job

within the planned

budget

Difficult to do the

job within the

planned budget

As above

As above

universally

Applicable to

different

components. Not

restricted to specific

component.

Modifications are

needed before it could

be applicable to

different components

Not applicable to

different component.

As above As above

Framework

The approach

supported by

framework that fully

automated or

partially automated

The approach does not

supported by

framework and totally

or partially automated

Framework is not

mentioned

As above

As above

