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ABSTRACT 

In this paper, a backstepping controller of Induction Motor (IM) 

is proposed using the fifth order model in fixed two frame 

reference axis with rotor flux and stator currents as state 

variables.  The approach of backstepping requires, generally, 

that the nonlinear system is in strict feed-back loop. To 

implement this strategy over the IM, some transformations on 

the model (α, β) of the machine have been carried out without 

recourse to the oriented flux hypothesis which allows a 

triangular state representation. The overall system stability is 

proved by Lyapunov theory.  Indeed the controller relationship 

depends on the unmeasured states of the IM, and a nonlinear 

observer to high gain is used in order to reconstruct the motor 

speed, the rotor flux and the load torque. Simulation results are 

provided to illustrate the effectiveness of the proposed approach 

and the robustness to uncertainties, such as rotor resistance 

variations.   

General Terms 

Backstepping controller design based high gain observer, 

Stability using Lyapunov theory, robustness of the backstepping 

controller to uncertainties in IM.  
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1. INTRODUCTION 
In recent years, Backstepping approach became one of the most 

popular design methods for large scale nonlinear systems. The 

idea of backstepping design is to select recursively some 

appropriate functions of state variables as pseudo-control inputs 

for lower dimension subsystems of the overall system. Each 

backstepping stage results in a new pseudo-control design, 

expressed in terms of the pseudo- control designs from 

preceding design stages. When the procedure terminates, a 

feedback design for the true control input is the result which 

achieves the original design objective by virtue of  final 

Lyapunov function, which is formed by summing up the 

Lyapunov functions associated with each individual design stage 

[1]. This control scheme can successfully guarantee the global 

asymptotic stability [2].  

Applied to the control of IM, the strategy of backstepping can be 

used in two different ways. The first method utilizes the entire 

IM model without any simplifying assumption, which leads to a 

tedious analysis to construct a regression matrix [3]. These 

problems are taken care of by the introduction of the neuronal 

networks techniques to design the fictitious controller [4-5]. The 

second method works in combination with field oriented control 

FOC. Many versions of backstepping control have been 

developed. In [6-7-8], the PI controllers used in conventional 

FOC for speed and current regulation are replaced by 

backstepping controllers. In [9-10-11], the authors have 

extended the method to the adaptive neuronal network control 

systems in order to compensate the parameters variations and 

reject the external load torque disturbance.  

One may note that the FOC methods represent a type of partial 

feedback linearization control technique in which the zero 

dynamic stability cannot be proved. As a result, it is not 

guaranteed that the system model is robust to parameters 

variation [4]. 

The interest of the backstepping controller, which is adopted in 

this paper, can be summarized in the fact that we have carried 

out some transformations on the model (α, β) of the machine 

allowing the state representation for a strict feed-back form. 

Based on the algorithm presented in [12], which requires that the 

nonlinear system must be in a triangular form, a novel approach 

of backstepping design is presented to control the speed and the 

rotor flux.  

This paper is organized as follows: The detailed induction motor 

is presented in section 2. The nonlinear Backstepping control is 

summarized in section 3. In section 4, a high gain observer is 

given in order to estimate the unmeasured states. The simulation 

results, for performances evaluation, are illustrated and 

discussed in section 5. 

2.    INDUCTION MOTOR MODEL  

The fifth order IM model, in two fixed axis reference frame with 

rotor fluxes and stator currents as state variables [14], is given 

as: 
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where   ,    ,    
T T T

s s s r r r s s si i i u u u                    are, 

respectively,  the stator current, the rotor fluxes and the stator 

voltages;   and 
l

T  respectively denote the motor speed and 

the load torque; 2 2

1
( ) p

r

f I n J
T

    , 
2I  is the 2 2  matrix 

identity and 
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;

 

pn  is the number of pole pairs; J  

is the motor moment of inertia. The parameters
r

T ,  , K  and 

 are defined as: 
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,
s r

L L  are per-phase stator and rotor inductances. M  is the 

mutual inductance.
 

,
s r

R R  are stator and rotor resistances.  

2. BACKSTEPPING CONTROL  
The control objective consists in regulating the square of the 

fluxes vector norm at a desired constant value and forced the 

speed to follow a reference profile. Let us denote by 
1

11

2 2 21

2 r rr

z
z

z   

     
                 

the vector variable to be 

controlled and let 
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  
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be the corresponding desired 

trajectory. With these notations, the control input should be 

defined to achieve asymptotically the following equation: 

         1 1 1 1

1 1 2 2lim lim 0d dz t z t z t z t
t t
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2.1  Preliminary stage 
The backstepping approach provides a recursive method 

for stabilizing the origin of a system in strict-feedback form. In 

order to implement this strategy over the IM, we must go 

through a preliminary step in which we will make some 

transformations that bring the model of the IM in strict feedback 

form [13].  

The new introduced coordinates are expressed by: 
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(2) 

In a condensed form, system (1) can be written as: 
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where: 
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 be the trajectory of z

 
corresponding to the reference trajectory 1

1( )dz t

 

and let 
du

 
be 

the associated input i.e. the input which brings ( )z t

  

to the 

desired trajectory ( )
d

z t . According to system (3), 2

d
z  and 

d
u

 
can be computed as: 
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We define the following variables of errors: 
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Based on (3), we can easily determine the errors dynamic: 

http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Lyapunov_stability
http://en.wikipedia.org/wiki/Origin_(mathematics)
http://en.wikipedia.org/wiki/Strict-feedback_form
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After some mathematical operations, the IM model in errors 

space can be simplified as: 
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with 
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0 0

2
0

r

A
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2.2 Control design 
 Consider the following third order strict-feedback system. 

0 1

1 2 1

1 2

2 2

( , ) ( )
s d

e e

e A e A e

e b z u g z z



 

  











 

 

 

(8) 

The controller design procedure for induction motor can be 

given as follows. 

Step1: Start with the first equation of (9), we define a new 

coordinate 0

0
 y e and derive its dynamic: 

1

0
 y e  (9) 

We view
 

1

e as a control variable and define a virtual control law 

for equation (9), denote
0

 , and let 
1

y  be an error variable 

representing the difference between the actual and virtual 

controls:  

1

1 0
 y e       (10) 

Our objective, in this step, is to design the stabilizing function 

0
 which makes

0
0 y  . The first Lyapunov candidate function  

0
V  is chosen as:  

0 0 0

1

2

T
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Its time derivative is given by: 

0 0 0 0 0 0 1

T T T

V y y y y y        (12) 

To make the first order system stabilizable, it is necessary that 

the Lyapunov function derivative 
0

V  is negative, which will 

allow the following choice. 

0 0 0
c y       (13) 

Then the time derivative of 
0

V  becomes: 

0 0 0 0 0 1

T T

V c y y y y       (14) 

where 
0

c is a positive constant.  
 

In order to obtain 
0

0V  and guaranteed that 
0

 y
 
converge to 

zero asymptotically, the residual term  
0 1

T

y y  will be 

compensated in the second step. 

Step2: We derive the error dynamics for 
1
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Define a second virtual control law 
1


  

and let 
2

y
 
be an error 

variable representing the difference between the actual and 

virtual controls. 
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2 1
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Then the error equation (15) can be expressed as: 
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the new state variable  
1

y
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
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some terms related to 
0

y
 
and

 
1

e : 

  1 1

1 1 1 1 0 2 0 2
A c y y A c I e



         (20) 

where 
1

c  is a positive constant. So the time derivative of 
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both 
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and 
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y  are guaranteed to converge to zero 

asymptotically.  
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Step3: We proceed in the same way with the last equation in (8) 

and we start by computing the error dynamics for 
2

2 1y e    
 

proposed in step2: 
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We note the appearance of the real control
s

u . In this step, our 

objective is to design the actual control input such that
2

 y
 

converge to zero. So, we need so to select a new Lyapunov 

function to design the final control. 

2 1 2 2

1

2

T

V V y y      (23) 

Its derivative is given by: 

 

2 1 2 2

0 0 0 1 1 1

2

2 1 1 1
( , ) ( )

T

T T

T

s d

V V y y

c y y c y y

y b z u A y g z z 

 

  

    

  



    (24) 

To stabilize the global system (9), the real control input is 

selected to remove the residual term and make
2

0V  . 
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 y  is guaranteed. Since
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From the above we can obtain the control law as: 
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Now, it suffices to replace, in the final control law , input z  and 

e  by their respective expressions in the original coordinates, 

namely (2) and (5).  

3. HIGH GAIN OBSERVER  
The control law depends on unmeasured states; a nonlinear 

observer shall be synthesized in order to achieve the estimation 

objective. In fact the proposed observer [14] consists of two 

cascade observers. The first observer provides the estimation of 

rotor fluxes using measurement of stators currents and motor 

speed. The second cascade observer provides the estimation of 

the load torque and its derivative.  

The measured output vector is 
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. A high gain observer 

can be synthesized in order to provide the estimation of 
r

 , and 

its equations are: 
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 where ˆ
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r

  are the respective estimates of 
s

i , 
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  , and 
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
 

is the parameter design. 

The flux estimates are then used together with the motor speed 

measurements in order to estimate the load torque 
L

T  and its 

time derivative 
Lp

T  using the following nonlinear observer: 
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where ˆ
L

T  and ˆ
Lp

T  are the respective estimates of
L

T , 
Lp

T , and 

2
  

 
is the parameter design.   

Notice that the estimation error converges exponentially to zero 

for observer (30). The main characteristic of observer (31) lies 

in the fact that when the time derivative of the load torque is 

constant, the estimation error converges to zero exponentially. 

When this time derivative is not constant but remains bounded 

by a constant, the estimation error can be made as small as 

desired by choosing 
2

  high enough [13]. 

4. SIMULATION RESULTS 
The proposed control algorithm has been simulated for a 1kW  
induction motor in order to prove the rightness and effectiveness 

of the designed controller.  

The gains  
1 2 0 1 2
    c c c 

 
are chosen as follows: 

 2500  500  5000  500  5000 to satisfy convergence conditions. 

The simulation parameters of IM are givens as: 
2

2 ;  0.015 ;  0.29  

10.6  ;  2.88  ;  0.3

p

s s s r

n J Kgm M H

R R L L H
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Simulation results, with nominal value of rotor resistance,  are 

reported in figure 1 to 3. The obtained result shows that the 

tracking performance of speed and flux are very satisfactory for 

various forms of reference speed (low speed, high-speed and 
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reverse speed). Notice that the tracking error related to the motor 

speed tends rapidly to zero after each sudden change of load 

torque. The performances of the observer are illustrated in figure 

2 and 3 where the estimation error of 
2

r
  and the load torque 

are given. 
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Fig1: Time evolution of the rotor speed, the fluxes norm and 

their tracking error 
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Fig2: Time evolution of the load torque and the voltage input 
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Fig3: Estimation error of 
2

r
  

To test the effect of rotor resistance on the controller, its 

variation (figure 6-a) is injected into the model of IM while its 

nominal value is retained in the expression of the controller and 

the observer. The obtained results (figures 4, 5, 6-b) are quite 

similar to those obtained in the first case. This proves the 

robustness and effectiveness of the proposed control law.  
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Fig4:  Time evolution of the rotor speed, the fluxes norm and 

their tracking error with rotor resistance variation. 
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Fig5: Time evolution of the load torque and the voltage input 

with rotor resistance variation. 
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Fig6: Variation of rotor resistance (a), Estimation error of 
2

r
 with rotor resistance variation (b) 

5. CONCLUSION 
In this paper, a backstepping controller has been proposed for 

IM rotor flux and speed tracking control. The nonlinear 

controller is designed based on the fifth order IM model in two 

fixed axis reference frame. The validity of this design is 

demonstrated through computer simulations. The obtained 

results confirm also the robustness of the proposed control law 

against the variation of rotor resistance. 
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6. APPENDIX 

The expression of the final control input: 
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