
International Journal of Computer Applications (0975 – 8887) 

Volume 23– No.4, June 2011 

44 

Takagi-Sugeno Fuzzy Observer Design for Induction 

Motors with Immeasurable Decision Variables: State 

Estimation and Sensor Fault Detection 

M. Allouche, 
M. Chaabane, 

M. Souissi 
Unit of Industrial Processes 

Control, UCPI, National 
Engineering School of Sfax, 

ENIS, Department of 
Electrical Engineering, BP 
1173, 3038 Sfax Tunisia  

 

D. Mehdi 
Laboratory of Automatic 

Informatics Industrial, L.A.I.I, 
Superior School of Engineers 

of Poitiers, 40 Avenue du 
Recteur Pineau, 86022 

Poitiers, France 

 
 

F. Tadeo 
Dpt. Systems Engineering, 
Universidad de Valladolid, 
47011 Valladolid, Spain. 

 
 

ABSTRACT 

This paper deals with the problem of sensor fault detection of 

induction motors described by some linear models blended 

together through non linear membership functions that involve 

unmeasurable decision variables. The intermittent 

disconnections of the sensors produce severe transient errors in 

the estimator used in the control loop, worsening the 

performance of the induction motor. Then, a Takagi-Sugeno 

(TS) observer is proposed, in descriptor form, to simultaneously 

estimate the states and achieve the detection and isolation of 

incipient sensors faults. For this, a TS model is first derived to 

represent precisely the induction motor in the fixed stator d-q 

reference frame. Secondly, a descriptor TS observer is 

synthesized, in which the sensor faults are considered as an 

auxiliary variable state. Some simulation results illustrate the 

effectiveness of the proposed approach 
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1. INTRODUCTION 

Three-phase induction motors are very frequent in industrial 

processes. This is mainly due to their low cost, reasonable size, 

ruggedness and low maintenance requirements.  Usually, these 

motors are equipped with sensors for current and rotor speed 

that work under many stresses from different origins (thermal, 

electric, mechanical and environment), which seriously affect 

the lifespan of the sensors, creating sensor faults. These sensors 

are normally optical encoders and Hall-effect current sensors: 

they occasionally fail, and their resulting accidental downtime 

can be very expensive, due to the reduction of the production 

quality. Moreover, they create serious safety hazards for the 

operators. Hence, the detection and isolation of sensor faults 

becomes a necessary task, since control systems rely on the 

information provided by the signals generated by these sensors. 

Right now, sensor faults are treated in practice by using filters in 

the control system, but this solution does not completely 

eliminate the faults and often implies the degradation of 

controller performance. Thus, considerable research is being 

devoted to providing techniques for sensor fault detection and 

diagnosis [1, 2, 3, 4, 5]. Among these techniques, the methods 

based on the analysis of stator currents and vibration signals are 

the best-known, as they are based on simple measurements and 

are highly reliable [2]. However, these diagnostic techniques are 

specific for fixed frequency PWM drives, whereas using a 

variable-frequency PWM drive, as it is frequent in practice, 

would make the accurate detection of spectral components from 

faults very difficult. 

Recently, substantial research efforts have been devoted to 

methods based on artificial intelligence techniques, such as 

neural networks and fuzzy logic, to deal with the problems of 

diagnosis and fault tolerant control applied to induction motors 

[6, 7, 8, 9, 10, 11, 12]. Much research on this issue is carried out 

using Takagi-Sugeno (TS) models [6, 7]. This TS fuzzy 

approach has been extensively used to model nonlinear systems 

and has been successfully applied to practical problems [20]. 

The basic idea for the approach is to decompose the model of a 

nonlinear system into a set of linear subsystems with associated 

nonlinear weighting functions.  

In this context, and using the TS approach, the methodologies 

presented in [6, 7] to deal with the problem of fault diagnostics 

consider that the weighting functions depend on measurable 

decision variables.  Indeed, based on the bilinear matrix 

modeling and using the Takagi-Sugeno (TS) approach, Bennett 

et al. proposed a Generalized Observer Scheme in [6] to detect 

and isolate sensor faults, which was successfully applied to an 

induction motor traction system. The basic idea was to use a 

bank of TS observers to generate residuals for each monitored 

system output signal. However, these observers provide large 

error estimation when a sensor disconnection takes place and, as 

a result, it becomes hard to detect and locate the faults perfectly. 

For this reason, it is relevant to consider the case where the 

unmeasurable variables defined by the rotor flux are used as 

premise variables, so the observer will not be sensitive to the 

intermittent disconnections that affect the sensors. 

Thus, this paper studies the TS fault estimation of induction 

motor sensors with unmeasurable decision variables. The sensor 

faults considered in this work are disconnections: these are large 

faults, but may only exist for very short durations. To develop 

the technique, we first provide a representation of the dynamic 
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behavior of induction motors by the nonlinear interpolation of a 

set of linear sub-models, thus providing a TS model. The second 

step is to develop a TS observer, to simultaneously estimate the 

system states   and the fault signal by using the known input u(t) 

and the measurement output y(t). The proposed methodology is 

applicable in similar engineering problems, as long as a good 

(nonlinear) model of the system is available. Compared with 

other fuzzy design methodologies, the TS fuzzy approach is 

directly based on pre-existing physical models, and using the 

LMI tools it's possible to verify the global stability of the fuzzy 

observer, even in the presence of sensor faults, so it is appealing 

for industrial application. Moreover and compared with other 

nonlinear techniques of diagnostic based on the use of a banc of 

observers, the designed descriptor observer is simple to be 

implemented. 

2. PRELIMINARIES  

2.1 Physical model of induction motor 

Under the assumptions of linearity of the magnetic circuit, the 

dynamic model of the induction motor in the fixed stator d-q 

reference frame can be described as follows (see, for example, 

[18,22]): 
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In which 
m

 is the rotor speed, ( , )
rd rq

 are the rotor fluxes, 

( , )
sd sq

i i  are the stator currents and  ( , )
sd sq

u u  are the stator 

voltages. The load torque 
r

C  is an exogenous disturbance. The 

motor parameters are: The moment of inertia J, the rotor and 

stator resistances ),(
rs

RR , the inductances ),(
rs

LL , the 

mutual inductance M, the friction coefficient f  and the number 

of poles pairs pn . 

2.2 Feedback control of the induction motor  

A methodology for state feedback control is now presented 

witch uses the descriptor observer describes in section 3 to deal 

with the state estimation of the control system. In the induction 

motor, the outputs to be controlled are the motor speed m  and 

the square of the magnitude of the total rotor flux 2 2( )rd rq . 

The input-output linearizing feedback control law proposed in 

this paragraph requires the design of fuzzy observer, to provide 

a precise estimation of the inaccessible state defined by the rotor 

flux. Therefore, let    
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                                                         (2)                                                     

The motor model given by (1) can be converted into a 

linearizable feedback form via state-transformation (for details 

see [17]). The linearized dynamic model of the IM can be 

written as follows: 
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where ( )x is the decoupling matrix defined as 
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The quantities to be controlled are differentiated with respect to 

time until the input control signals sdu and squ  appear and the 

derivatives of the state variables are eliminated. The terms 
2

1fL h and 2

2fL h  are the second Lie derivatives of h(x) along a 

vector field ( ( ))f x t , which are given by the following 

expressions: 
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using the following control law:
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where 
T

a bv v v is the new input vector. 

To ensure perfect tracking of the rotor speed m and the square 

of the rotor flux norm
2

2 2( )r rd rq , av and bv  are 

chosen as follows: 

1 2( ) ( )a a m m a m m mref ref ref
v k k    , 

2 2 22 2

1 2b b r r b r r rref ref ref
v k k    , 

where 1 2( , )a ak k and 1 2( , )b bk k are constant parameters 

3. TAKAGI-SUGENO MODELS OF 

INDUCTION MOTORS 

It is now shown that Takagi-Sugeno (TS) models make it 

possible to represent the behavior of the induction by the 

interpolation of a set of linear submodels [13, 14]. Each sub-

model contributes to the global behavior of the nonlinear system 

through a weighting function ( ( ))
i

h z t . These Takagi–Sugeno 

models are frequently used as an exact representation of 

nonlinear systems that allow the nonlinear behaviour of a system 

to be adequately reproduced using fuzzy combinations of local 

models. In fact in [21] it was shown how this type of models can 

be used to accurately represent a large class of nonlinear models 

(in a determined compact region). We must point out that in [6] 

a TS model of an induction motor was also derived, by using 

bilinear matrix modeling. In this work, an exact TS 

representation of the induction motor is obtained by 

transformation using the nonlinear sector approach.  

First, a TS model of the induction motor is obtained, based on 

the measurable variables (currents and rotor speed). Later on, an 

alternative TS model is derived using the unmeasurable states as 

decision variables, as this makes possible to derive a more 

compact representation of the induction motor, as well as it has 

the advantage to be less sensitive to sensor faults (as 

measurements are not directly used as premise variables) 

3.1 TS model with measurable decision 

variables      

To express the model of the induction motor as a TS model with 

the measurable parameters (currents and rotor speed) as decision 

variables, we rewrite the equations (1) in the following 

equivalent state space form: 
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Considering the sector of nonlinearities of the terms 

min max
[ , ]

j j j j
z x z z  of the matrix ( ( ))A x t  with 1, 2, 3j  

and the decision variables to be the measurable states:  

1

2

3

( ) ( )

( ) ( )

( ) ( )

sd

sq

m

z t i t

z t i t

z t t

                                                                 (7)        

A convex polytypic transformation for these premise variables 

can be performed. For this, let us define: 
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That fulfil the property 1
j ,min j j ,max j

F ( z ). F ( z ) .Then, the jth 

premise variable can be expressed as follows:                                               

j j ,min j j max j ,max j j min
z ( t ) F ( z )z F ( z )z                             (9)                                                                                                                                                                                                                                                        

Using this transformation, r = 23 submodels are generated. The 

TS model is then described by a set of eight fuzzy If-Then rules, 

where the ith rule is defined as follows: 
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with  , , min, maxk l f  and i=1, 2,…, 8.                                            

The global TS model with sensors faults ( )
s

f t  is then inferred 

as follows: 
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where  
2
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and sD  is a matrix with appropriate dimensions 

3.2 TS model with unmeasurable decision 

variables    

The fuzzy TS model of the induction motors developed in the 

previous section is no longer valid for observer design when 

there are faults in the sensors. Thus, we now derive a new TS 

model for induction motors that uses only unmeasurable 

decision variables, so they are less affected by faults. Moreover, 

as only two variables are used, this makes possible to reduce the 

number of rules in the TS description of the system, which 

makes possible to obtain a more compact representation of the 

system.  

Thus, selecting as premise variables of the TS model the two d-

axis and q-axis fluxes (i.e., ( )rd t  and ( )rq t ), the induction 

motor can also be represented as the following TS model: 
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Considering the sector of nonlinearities of the terms 

min max
[ , ]

j j j j
z x z z  of the matrix ˆ( ( ))A x t  with 

1, 2j and the premise variables the two unmeasurable states:  
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makes possible to perform a convex polytypic transformation for 

the 2p  premise variables. For this, we again define 
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Thus, the jth unmeasurable premise variable can be expressed as 

follows:                                                          

j j ,min j j max j ,max j j min
z ( t ) F ( z )z F ( z )z                              (17) 

Using this transformation, only r = 22 submodels characterized 

by p=2 premise variables are generated. The TS model is then 

described by four fuzzy If-Then rules, where the ith rule is of the 

following form: 

Rule Ri 

If  (
1
( )z t is 

1,k
F )  and  (
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2,l
F ) Then  
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With , min, maxk l   and 1 2 3 4i , , , .                                            

In the presence of sensor faults ( )
s

f t , the global fuzzy model 

can be transformed into the following state-space representation.  
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Now, the idea is to express the TS models using weighting 

functions that depend on those estimates [15]. Thus, the TS 

model with measurable decision variables (10) is replaced with 

the following TS model, which involves only decision variables 

that are inaccessible for measurements:    
4

1

.
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where ( ) ( )
s s s

x t D f t  corresponds to the effect of the faults on 

the outputs and 

8 4

1 1

ˆ( ) ( ( )) ( ) ( ( )) ( )
d i i i i

i i

x t h x t A x t h x t A x t  

represents the effect of the faults on the states.   

In the following, this model is used to derive a descriptor 

observer that simultaneously estimates the state variables of the 

motor and the sensor faults.                                                                                                                                                    

4. DESCRIPTOR OBSERVER DESIGN   

In this section, we propose a TS observer to simultaneously 

estimate the inaccessible states of rotor flux and the sensor 

faults. For this, an augmented system is constructed using the 

descriptor technique. Then the TS model (22) with 

unmeasurable decision variable and sensor faults can be written 
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as the following TS system in descriptor form [16]:  
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Thus, the sensors faults ( ) ( )
s s s

x t D f t  are considered as an 

auxiliary state of the augmented system (23). A descriptor 

observer is considered to estimate both the state variables of the 

motor and the sensor faults. For this, the following observer is 

proposed: 

1
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Where
2n pz  is the state of the observer and 

2ˆ n px   is 

the state estimation vector of the augmented system (23). In 

order to establish the conditions for the asymptotic convergence 

of the observer (24), we define the state estimation errors: 

ˆ( ) ( ) ( )e t x t x t                                                          (25)                                                                                                                                                    

The dynamics of the state estimation error can be evaluated by 

combining the equations (22) and (23) as follows: 
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If the observer matrices are selected as follows: 
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i w
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Then, the error dynamic (26) can be written as follows: 
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In order to satisfy the constraints (27), the observer parameters 

Ni , L and E can be selected as follows [11]: 
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p pQ   is a full rank matrix that guarantees the non 

singularity of the matrix E, then the error dynamics (28) can be 

rewritten as follows: 

1
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i nA I
A , 0dC C  

The convergence condition of the state estimation error can be 

formulated by the following theorem. 

Theorem 1 

The state estimation error between the TS model (23) and its 

descriptor observer (24) converges asymptotically towards zero, 

if there exists a matrix 0TP P  and a non singular 

matrix Q that verify the following condition: 

0T

i i
S P PS         for  1,2,3,4i                              (32)                                                                                                 

As a result, sensor fault estimations can be obtained using the 

TS descriptor observer (20), from: 

 
1

ˆ ( ) ( )
s

T T

s s s s
f t D D D x t                                                       (33)                                                                                                                                              

with Ds the matrix that gives the effect of the faults on the 

outputs, as defined in (10) and 0( ) ( ) ( )sx t y t C x t . 

5. SIMULATION RESULTS 

In this section, the efficiency of the proposed TS observer will 

now be demonstrated by using a simulation of a standard 

induction motor. This makes repeatable comparisons possible. 
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The characteristics of the induction motor parameters 

correspond to an induction motor placed at the UCPI laboratory 

in Sfax, Tunisia [22]: Mutual inductance 447.5M mH , 

Moment of inertia
20.0293 .J Kg m , Stator resistance 

10.5
s

R , Rotor resistance 4.3047
r

R , Stator 

inductance 471.8
s

L mH ,Rotor inductance 471.8
r

L mH , 

and number of Pole Pairs 2
p

n . 

In all the results presented below, we have simulated a constant 

speed reference 100 /
m

rd s and a load torque of 

5
r

C Nm , applied at time t=1.5 sec. The full rank matrix Q is 

chosen as 0.001 0.001 0.001Q diag . The premise 

variables are bounded as follows: 

min
200 ( / )m rd s

  ; max
200( / )m rd s

. 

min
6sdi A ;   

max
6sdi A ; 

min
6sqi A ; 

max
6sqi A  

min
1.2rd Wb

; max
1.2rd Wb

; min
1.2rq Wb

; max
1.2rq Wb

. 

To test the proposed approach, a sequence of disconnections 

which affect the sensors current and the optical encoders is 

tested. More precisely, intermittent faults are injected 

successively into each of the three phases, (denoted by A, B, C) 

and in the rotor speed. The fault sequence diagram on each 

sensor is shown in Figure1.  

 

 

 

 

 

 

 

 

The proposed observer is able to simultaneously estimate the 

system states ( )x t , including the inaccessible variable rotor flux, 

and detect and isolate the sensor faults (See Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the stator currents errors and the corresponding 

rotor speed errors estimated by the TS observer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The sensor fault sequence diagram 
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Figure 2. Rotor speed and rotor flux norm 
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Once the magnitudes of the faults are estimated, using (33), a 

simple logic decision makes it possible to isolate the fault, as 

presented in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

Finally, and in order to show the influence of  the measurable 

decision variables on the estimation quality of the fuzzy 

observer, a comparative study between the two structures of 

descriptor observer for the rotor speed response is presented. We 

consider always the case where the sensor is subjected to 

intermittent disconnections. Indeed, the use of a TS observer, 

based on the measurable decision variables in the control 

scheme, show that the rotor speed differs from the reference 

signal and may cause instability of the machine; whereas the 

chose of observer with unmeasurable decision variables gives 

only a small fluctuation on the rotor speed response when the 

faults appear, always remaining close to its reference value.  

It should be noted that: 

 For the descriptor observer design with measurable 

decision variables, the procedure for  determine the 

observer parameters is similar to the one given by 

(27),  just we consider ( ) 0dx t  and take the same 

value of Q  .  

 The two frameworks of TS descriptor observers are 

affected by the same sequence of sensor 

disconnections and they are also submitted to the same 

input-output linearizing feedback control law. 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSION 

In this study, an integral fuzzy control scheme for an induction 

motor via TS fuzzy model approach has been proposed. Based 

on the T–S fuzzy approach, a fuzzy ob-server-based tracking 

controller is designed to reduce the tracking error and to 

guaranty the disturbance rejection. The rotor flux is unavailable 

for measurement and it is estimated by a fuzzy observer. To 

solve the tracking control problem, an easy and systematic 

algorithm based on LMI optimization techniques is presented. 

The efficiency of the proposed controller is demonstrated 

through numerical simulations. 
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