
International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

21

A Survey of Bioinformatics Applications on
Parallel Architectures

Binay Kumar Pandey

Information Technology Deptt

Govind Ballabh Pant University
of Agriculture and Technology
Pantnagar, Pantnagar, India

Sanjay Kumar Pandey
E.M.E Deptt,

Indian Army

 Digvijay Pandey
Electronics Engineering Deptt

Institute of Engineering and
Rural Technology,
Allahabad, India

ABSTRACT
Based on bioinformatics algorithm, there are a wide range of

implementations. With the urge for program speed, many

applications take the heuristic approach to compensate running

time. One of the most critical shortcomings of this technique is the
loss of optimality, i.e. the desired results may not always be found.

To overcome this problem, many different hardware architectures

have been experimented for bioinformatics algorithm such as cell

broadband engine, cluster and compute unified device architecture

where, the main technique for obtaining high performance is to
parallelize the task to be run simultaneously by multiple vector

execution units with single instruction multiple data and by

multiple processors with multiple instruction multiple data. In this

paper we presents a survey of data intensive bioinformatics
applications on variety of parallel Architecture that are available

for accelerating the processing of large biological data set .

General Terms
Bioinformatics, Algorithms

Keywords
 Cell broadband engine; Clusters; CUDA Suffix tree, Weighted

suffix tree (key words)

1. INTRODUCTION
 Bioinformatics [1] is considering as a branch that use computers
to store and perform analysis on molecular data. With this digital

format data, bioinformatics applications are able to solve the

various existing problems of molecular biology [2] such as

structures prediction [3], and simulation of macromolecules [4]. In

the starting of the 21st century, researchers focus on entire species
genomes sequencing [5] and also storing them in database that

helps to know evolutionary changes in a species [6].

A very close examination of genome helps to know how it varies

with time [7]. The most well-known and common applications of

bioinformatics are sequence analysis [8] and phylogentic analysis
[9]. In sequence analysis, nucleotide sequences of various species

are put in databases for easy retrieval and comparison. The well-

famous Human Genome Project [10] is a well known example of

sequence analysis. Using large amount of high performance

computers [11] and various techniques of collecting sequences, the
whole human genome was sequenced and stored within a

structured database [12].

Nucleotide or protein sequences used for bioinformatics may be

collected in different ways. One technique is to go through a whole

genome and search individual sequences to record and store it.

Another method is to simply collect large amounts of fragments

and perform comparisons on them, and then determining whole

sequences by overlapping the unused fragments. The latter method
discussed is known as shotgun sequencing [13], and is presently

the most popular method because of its speed and the ease of use.

By comparison of known sequences of a genome to specific

changes, much information can be obtained about undesirable

changes and diseases such as cancers. With the whole sequencing
of the human genome, bioinformatics has played very important

role in the research of cancers.

The collected information regarding genomes may be used for a

different number of other applications, such as determining
changes in populations and biomes. There are also many other

applications of bioinformatics, including predicting entire protein

strands, learning how genes express themselves in various species,

and building complex models of entire cells. Fundamentally,

bioinformatics applications face the following two major
challenges [14]

 Managing and processing exponentially growing data volumes

 Significantly reducing data analysis cycles so that researchers

can make timely decisions
 The breakthrough technologies needed to address many of the

critical problems in bioinformatics will come from collaborative

efforts involving several disciplines, including computer science,

engineering, and mathematics, and the domain of the problem to be

solved. Some of the advances in data structures and hardware help
to solve the problems faced by bioinformatics applications [14]

are:

 Advances in high-performance computing platforms to provide

high computational capability and uniform high-speed memory
access to multi-terabyte data structures

 Specialized hybrid interconnect architectures to process and

filter multi-gigabyte data streams coming from high-speed

networks and scientific instruments and simulations, Many

bioinformatics applications are data-path-oriented, making little
use of branch prediction and speculation hardware in the CPU.

These applications are well suited to streaming data access and

cannot effectively use the sophisticated on-chip cache hierarchy.

Their ability to process large data sets is hampered by orders-of-

magnitude mismatches between disk, memory, and CPU
bandwidths.

Emerging technologies can improve data-intensive algorithms

performance, at reasonable cost in development time, by an order

of magnitude over the state of the art processors. Coprocessors

such as graphics processor units and field-programmable gate
arrays can significantly speed up some application classes in which

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

22

data-path-oriented computing is dominant. Additionally, these

coprocessors interact with application controlled on-chip memory

rather than a traditional cache.

2. PARALLEL IMPLEMENTATION OF SEQUENCE

ALIGNMENT ALGORITHM ON CLUSTER

Smith waterman algorithm [16] is used as a first step in sequence

matching. The algorithm is used for local alignment between two

sequences. The algorithm uses dynamic programming techniques

to perform the alignment task. For matching two sequence of size

n, the algorithm takes O(n2). For large value of n, the time
becomes significant and thus the need arises for faster

implementation. [17] implements smith waterman algorithm on

clusters and the results of implementation are shown in table 1..

The parallelization is based on pipeline model, that is, as a basic

unit, each row of the score matrix is computed sequentially by a
processor, which block itself till the required elements in the row

above are computed.

 This algorithm shows the improvement upto 10.30 times for a

sequence size of 5000 characters and number of processor is 32.

Smith waterman algorithm was also implemented on cell
broadband engine [18]. Their parallel algorithm employs a static

load balancing strategy, which means that the work load is known

at the start and distributed equally across processes and processors.

The algorithm starts by reading the input dataset. The power

processing unit then pre-processes the set of input sequences such
that all the synergistic processing elements will have their

respective sequence parts in their local memory. They obtained a

speedup of upto 6.5 times for sequence length of 2048 characters.

Multiple sequence alignment algorithms [21] are used for

sequencing matching of multiple sequences at a time. For n
sequence, n*(n-1)/2 pair-wise alignment must be calculated and

this is computationally intensive task as n could be large as well as

the size of input sequences can also be significant. Once the

distance matrix is calculated, it is used in the next phase of the

algorithm to produce a phylogenetic or guide tree that determines
the order of alignments in the final phase of the algorithms. After

experimenting with a number of schemes, the authors found that

broadcasting all the n sequences to each processor was a better

strategy. Each of the P processors performs exactly n*(n-1)/2P

alignments. They got maximum speed up from this strategy despite
its heavy communication cost. The cluster implementation showed

a speedup of 5.81 times for n=500 sequences and length of each

sequence = 200 characters in each sequence. The result of

implementation on cluster is shown in “Fig. 1”.

 Parallel multiple sequence alignment was also done on the
cell broadband engine [15]. The algorithm focused on running

parallel portion of code on the synergistic processing units, with

the rest of the code executing on the power processing units. While

pair-align itself is made up of 4 different functions, forward pass

which computes the maximum score and the location of the cell
inside the matrix cell for two sequences, is the most time-

consuming step of pair-align. The cell broadband engine

implementation showed a speedup of 46.37x times for n= 8 pair of

sequences and length of each sequence = 2048 characters long

which is shown in “Fig. 2”.

Table 1 Parallel implementation of sequence alignment

algorithms on clusters.

Sequence

length
Sequential
Algorithm

Parallel Algorithm, np Processor

np=1 np=2 np=4 np=8 np=1

6

np=32

500

0.24 0.3 0.2 0.1 0.1 0.5 1.3

1000 1.7 2.7 1.5 0.9 0.6 1.1 1.5

1500 5.9 8.8 4.8 2.9 1.8 1.7 2.1

2000 13.9 20.3 10 6.3 3.7 3.2 3.4

2500 26.2 39.5 21 11.6 6.9 5.1 4.5

3000 45.5 67.2 35.4 19.5 11.4 8.1 6.5

3500 71.6 106 55 30.1 17 11 8.9

4000 107.2 158 82 44.2 25 16 12

4500 152 225 118 62.4 34 21 15

5000 208 310 158 86.4 46 28 20

Fig .1 Running times and speedups for parallel implementation of

ClustalW.

Fig 2. Performance of sequence search algorithms on Cell
[This Figure taken from

http://farrar.michael.googlepages.com/CellTimeBL50.GIF/CellTimeB

L50- full;init:GIF]

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

23

3. PARALLEL IMPLEMENTATION OF SEQUENCE

ALIGNMENT ALGORITHM ON CELL

In [12] author implements the global alignment and spliced
alignment on cell broadband engine. The implementation was

performed on IBM Cell SDK 3.0, and executed on the Sony

Playstation 3 (PS3) to get the performance results. In this
implementation author use the PS3 running Linux that use only six

SPUs instead of total eight SPUs that are actually available on the
cell broadband engine. The implementation results of PS3 and cell

simulator was also given to analyze the speedups and scaling for

eight SPUs. The implementation on cell broadband engine was

compiled with optimization level −O3. The system-sim simulator

tool spu-timing was very helpful to perform static analysis of the
implementation of algorithm and it also help in optimizing the

code for further improvement in its execution time. The

performance of implementation was analyzed by varying number

of SPUs.

Fig 3. Global Alignment – This graph shows the runtimes and speedup
of global alignment implementation for an input size of 2048×2048.

Fig 4. Global Alignment – This graph shows the runtimes and speed up
of global alignment implementation

The results of the implementations are shown in “Fig 4” for up -to
six SPUs on the PS3. The performance improvement are obtained

by performing comparisons between a sequential implementation

on a desktop with a 3.2 Ghz Pentium 4 processor, a sequential

implementation of the space-saving global alignment for a single

SPU on the PS3, parallel cell implementation and parallel

implementation running on a single SPU on the PS3. The parallel

implementation run on one SPU is performs worse when, as it

includes the additional work that is decomposition phase which
divide the whole problem as the sub-problem to solve. This is used

to perform analysis on the scaling of the existing algorithm, and as

analysis done on results of implementation. It is found that a

speedup of about 6.5x was obtained on six SPUs and when a

comparisons was done with best sequential algorithm, a speedup of
4.5x over a single SPU was obtained, and a speedup of more than

3.5x over a Pentium 4 processor was obtained. In “Fig 5”, the

results obtained using the cell simulator for up -to eight SPUs are

given. The speedups are computed by comparing parallel

implementation with the sequential implementation of global
alignment that run on a single SPU. A speedup of about 6X was

obtain for up-to eight SPUs.

4. MULTIPLE SEQUENCE ALIGNMENT USING

FASTA TOOL ON CELL BROADBAND ENGINE

A graph is below comparing the total search times of 11 queries,

against the swiss-prot 45 databases, 59,631,787 residues in
163,235 sequences. The programs were tested on three computers.

The first was a Dell blade with two 1.6 GHz Xeon 5130 processors

(8 cores total) with 4 Gbytes of RAM. The next computer was an

IBM QS20 blade with two 3.2 GHz Cell B.E. processors and 1

Gbytes of RAM. The last computer was Sony's PlayStation 3 with
a single 3.2 GHz cell broadband engine processor and 256 Mbytes

of RAM. The tests were run with the scoring matrices BLOSUM50

with gap penalties. When porting the striped smith waterman

algorithm to the cell broadband engine the following architectural

features of the synergistic processing unit were taken into account:

 Limited size of the LS

 No support for saturated math
.

 No support for byte arithmetic

 The synergistic processing unit has 256K of memory in the LS.
This is used to hold both the program and its data. Many times

smith waterman implementations build a position specific scoring

matrix based on scoring matrix. The query sequence with the

position specific scoring matrix would require 50 bytes for each

residue of the query sequence. To reduce the amount of memory
needed per query residue, the position specific scoring matrix is

replaced with the query sequence and the shuffle instruction to

dynamically generate the scoring vector. The memory requirement

per query residue is now reduced to six bytes, allowing a query

sequence of length 32Kbytes to fit in the local storage. The
synergistic processing unit architecture does support saturated

math. Saturated math is used in the smith waterman calculations to

keep the scores from falling below zero and from rolling over

when the maximum of the single instruction multiple data type is

reached. Saturated math could be implemented with three
instructions, but this could easily dominate the calculation time in

the inner loop.

 FASTA is a multiple sequence alignment algorithms used to

align multiple sequences and thereafter compute pair of match and

mismatch between the sequences. On the basis of this computation,
it computes a score matrix to determine the similarity between the

sequences. Eric Lindahl included an efficient implementation of an

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

24

AltiVec-enabled smith waterman is already in the FASTA

package. For making the FASTA package to be executed in the

cell broadband engine, the AltiVec application-programming

interfaces are converted to the synergistic processing unit

application programming interfaces. Many of the synergistic
processing unit application programming interfaces obtained from

AltiVec application programming interfaces with little effort

(replacing the Vec of AltiVec to SPU for the SPU). However, Two

of AltiVec application programming interfaces used in FASTA

which are not presented on the synergistic processing unit, so it is
necessary us to implement these application programmin g

interfaces with multiple instructions.

 Vec max: Vec max application programming interfaces

determines the element-wise maximum of two vectors and stores

the result in the output vector. We implemented vec max for the

synergistic processing element by using synergistic processing unit
cmpgt to create a mask from the comparison of the two input

vectors, and synergistic processing unit use this mask to extract the

greater of the two vectors.

 Vec subs: Saturated subtraction is to be performs by this
application programming interfaces, meaning that if any element

of the result vector is negative, that element is set to zero. It is one

of the useful application programming interfaces for the smith-

waterman execution, since it needs a positive value at every matrix
cell for local alignment. We implemented vec subs on the

synergistic processing unit by performing a signed subtraction

using synergistic processing unit sub and then finding the

maximum of the signed result and a constant vector of all zeros,

using our implementation of vec max described above.
 To execute the smith waterman kernel on the synergistic

processing unit, the alignment scores are pre-computed on the

power-processing unit, and are DMAed to the synergistic

processing unit along with the query and the library sequence.

Other parameters such as the alignment matrix and the gap
penalties are also included in the context for every synergistic

processing unit. Despite the absence of instructions described

above the cell processor, still outperforms in comparison to every

superscalar processor currently in the market. This superior result

is mainly due to the presence of eight synergistic processing unit
cores and the vector execution on the synergistic processing units.

Since the power-processing unit also supports Alti-vec

instructions, it is also possible to use the power-processing unit as

a processing element, thus enabling nine cores on the cell

processor, with even better performance results. Further profiling
of our implementation indicates that the computation dominates

the total runtime (up to 99.9% considering a bandwidth of 18

Gbytes/s for the synergistic processing units), and hence multi-

buffering is not needed for this class of computation.

 The cell implementation discussed above is not fully
functional as of now the current implementation requires both

sequences to fit entirely in the synergistic processing unit local

store of 256 Kbytes, which limits the sequence size to at most 2048

characters. To do genome-wide or long sequence comparisons, a

pipelined approach similar to among the synergistic processing
units could be implemented.

 Each synergistic processing unit performs the smith-

waterman alignment for a block, notifies the next synergistic

processing unit through a mailbox message, which then uses the

boundary results of the previous synergistic processing unit for its
own block computation. Support of bigger sequences on the cell is

a key goal of future research. Once a fully functional smith-

waterman implementation exists on the cell, we can employ this

kernel in the FASTA package. The FASTA package compares

each sequence in a query sequence file with every sequence in a

Library sequence file, and hence multiple issues for load balancing
could be evaluated. For now, we have a simple round-robin

strategy, in which the sequences in the query library are allocated

to the synergistic processing units based on the sequence numbers

and the synergistic processing unit number.

5. PARALLEL IMPLEMENTATION OF

PROTEIN STRUCTURE PREDICTION

ALGORITHMS

 Protein structure prediction is the method of prediction of the

three dimensional structure (that is, the prediction of tertiary
structure) of a protein from its given amino acid sequences. Protein

structure prediction plays important role in the field of medicine

for example, in drug design. A large quantity of protein sequence

data is produced by a large-scale DNA sequencing project such as

the Human Genome Project. There are so many factors that make
protein structure prediction a very difficult task. Out of which, two

main problem are that the number of possible protein structures is

so large, and protein’s structure stability is not fully understood

based on its physical property. Thus, any protein structure

prediction method requires a way to explore efficiently the space
of possible structures of protein.

 Protein structure prediction on computational grid was

described in [19]. They employ genetic algorithm. Applying, the

genetic operator results in modification of the population’s

structure so as to intensify exploration inside a delimited segment
or for diversification purposes. Protein structure prediction was

also attempted on cell broadband engine [20]. They mapped the

different stages of the BLASTP algorithm onto the Cell broadband

engine. The two important contributions in the paper are (a)

overcoming challenges due to limited local storage of the
synergistic processing element data transfer (b) coordination

between power processing element and synergistic processing

elements. An efficient and flexible mechanism to transfer

sequences from the database to the synergistic processing elements

is implemented. A speedup of 3.2x to 3.6x times was achieved by
this implementation.

6. CONCLUSIONS

In conclusion, we would like to say that the execution time of data

intensive bioinformatics applications can be significantly improve

by parallelization of highly time consuming portion of whole
applications and data structure used in bioinformatics application.

In future we take weighted suffix tree as data structure and we

parallelize the weighted suffix tree construction on all possible

parallel architecture Architecture .

7. REFERENCES
[1]. Y. L. Kuo, C. T. Yang, C. L. Lai and T. M. Tseng, “Construct a

Grid Computing Environment for Bioinformatics”, Proceedings

of the Seventh International Symposium on Parallel

Architectures, Algorithms and Networks, Hong Kong, 10-12

May 2004

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

25

[2] B. Turgeon, D. McCourt, J. Cowper, F. Palmer, S. McClean and

W. Dubitzky, “Can the Grid help to solve the data integration

problems in molecular biology”, Third IEEE/ACM International

Symposium in Cluster Computing and the Grid, Tokyo (Japan),

Page(s):594 – 600, 12-14 May 2003

[3] B. Wang, Y. Liu, J. Yun and S. Liu, “Application Research of

Protein Structure Prediction Based Support Vector Machine”, In

International Symposium on knowledge Acquisition and

Modelling, Wuhan (China), Page(s): 581-584, 21-22 Dec 2008

[4] S. Parthasarathy and M. Coatney, “Efficient Discovery of Common

Substructures in Macromolecules” , In Proceedings of IEEE

International Conference of Data Mining, Maebashi City (Japan),

Page(s):362-369, 9-12 Dec 2002

[5] E. R. Mardis, “Engineering in genomics: Technical improvements

in high throughput genome sequencing”, Engineering in Medicine

and Biology Magazine, vol.14 (6), Page(s):794 – 797, Nov-Dec

1995

[6] S. Zhaofeng, Q. Hongze, Z. Daming and H. Feng, “New

Evolutionary Subset: Application to Symbiotic Evolutionary

Algorithm for Job-Shop Scheduling Problem”, Fourth

International Conference Natural Computation, vol.1, Jinan
(China), Page(s):470 – 475, 18-20 Oct. 2008

[7] C. Kwangmin, A. Saple and S. Kim, “Genome Data Type: a

Vehicle to Deliver a Genome Comparison System on the Web”,

Sixth IEEE International Conference on Data Mining, Hong Kong
(China), Page(s):142 – 146, 18-22 Dec- 2006

[8] Y. Liu, T. Yan and R. Zhang, “Protein Sequence Analysis Based on

Smooth PST”, Third International Conference on Bioinformatics

and Biomedical Engineering, Beijing (China), Page(s): 1-4, 11-13
June 2009

[9] K. H. Emden, “Molecular Phylogenetic Analysis and real Life

Data”, Computing in Science and Engineering, vol.7 (3), Page(s):

86-91, May-June 2005

[10] Y. B. Choi and I. K. Cheang, “Providing white page service to the

Human Genome Project”, In Proceedings IEEE International

Conference on Communication Systems, vol.3, Singapore,

Pages(s): 1185-1189, 14-18 Nov 1994

[11] T. Almas, Z. Tesfave and I. D. Donn, “Simulation of Electrical

Conduction in Cardiac Tissues on High Performance Computing”,

19th International Symposium on High Performance Computing

and Application, Guelph Ontario (Canda), Pages(s):244-250, 14-18
May 2005

[12] Z. Aung, W. Fu and K. L. Tan, “An efficient index-based

protein structure database searching method” International

Conference on Database System for Advance Application,

Kyoto(Japan), Page(s):311-318, 26-28 March 2003

[13] C. Wilks and S. Khuri, “A Fast Shotgun Assembly Heuristic”,

IEEE Computational Systems and Bioinformatics Conference,

Stanford (CA), Page(s):122-123, 8-11 August 2005

[14] I. Gorton, P. Greenfield, A. Szalay and R. Williams, “Data-

Intensive Computing in the 21s t Century”, In Computer Magazine

of IEEE Computer Society, vol41(4), Page(s) 30-32, April 2008

[15] V. Sachdeva, M. Kistler, E. Speight and T. H. K. Tzeng,
“Exploring the Viability of the Cell Broadband Engine for

Bioinformatics Applications”, IEEE international Parallel and

Distributed Processing Symposium, Long Beach California

(USA), Page(s):1-8, 26-30 March 2007

[16] T. F. Smith and M. S. Waterman, “Identification of Common

Molecular Subsequences”, Journal of Molecular Biology, vol.

147(1), Page(s): 195-197, 1981

[17] Y. Chen, S. Yu and M. Leng, “Parallel Sequence Alignment
Algoritms for Clustering System”, International Federation for

Information Processing (IFIP) (Boston: Springer), vol.207,

Page(s): 311-321, 2006

[18] A. Wirawan, K. C. Keong and B. Schmidt, “Parallel DNA
Sequence Alignment on the Cell Broadband Engine”, Springer-

Verlag Berlin Heidelberg, Page(s): 1249-1256, 2008

[19]. G. Minervini, G. L. Rocca, P. L. Luisi and F. Polticelli, “ High

Throughput Protein Structure Prediction in a Grid
Environment”, Journal of Bio-Algorithms and Med-System,

vol.3(5), Page(s): 39-43, 2007

[20]. H. Zhang, B. Schmidt and W. M. Witting, “ Accelerating

BLASTP on the Cell broadband Engine”, In Proceedings of the
Third International Conference on Pattern Recognition in

Bioinformatics, vol.5265, Lecture Notes in Bioinformatics,

Springer Berlin Heidelberg, Page(s) 460-470, 8 Oct 2008

[21] J. Ebedes and A. Datta, “Multiple Sequence Alignment in
Parallel on a Workstation cluster”, Oxford University Press,

vol.20 (77), Page(s):1193-1195, 2004

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8544
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8544
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8544
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(bo%20wang%3cIN%3eau)&valnm=Bo+Wang&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20yongkui%20liu%3cIN%3eau)&valnm=+Yongkui+Liu&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20jian%20yun%3cIN%3eau)&valnm=+Jian+Yun&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20shuang%20liu%3cIN%3eau)&valnm=+Shuang+Liu&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8435
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8435
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=51
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=51
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=51
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4666791
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4666791
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4063580
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4063580
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4063580

