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ABSTRACT 
Based on bioinformatics algorithm, there are a wide range of 

implementations. With the urge for program speed, many 

applications take the heuristic approach to compensate running 

time. One of the most critical shortcomings of this technique is the 
loss of optimality, i.e. the desired results may not always be found. 

To overcome this problem, many different hardware architectures 

have been experimented for bioinformatics algorithm such as cell 

broadband engine, cluster and compute unified device architecture 

where, the main technique for obtaining high performance is to 
parallelize the task to be run simultaneously by multiple vector 

execution units with single instruction multiple data and by 

multiple processors with multiple instruction multiple data. In this 

paper we  presents a survey of data intensive bioinformatics  
applications on  variety of parallel Architecture that are available  

for accelerating the processing of large biological data set . 
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1. INTRODUCTION 
 Bioinformatics [1] is considering as a branch that use computers 
to store and perform analysis on molecular data. With this digital 

format data, bioinformatics applications are able to solve the 

various existing problems of molecular biology [2] such as 

structures prediction [3], and simulation of macromolecules [4]. In 

the starting of the 21st century, researchers focus on entire species 
genomes sequencing [5] and also storing them in database that 

helps to know evolutionary changes in a species [6].  

A very close examination of genome helps to know how it varies 

with time [7]. The most well-known and common applications of 

bioinformatics are sequence analysis [8] and phylogentic analysis 
[9]. In sequence analysis, nucleotide sequences of various species 

are put in databases for easy retrieval and comparison. The well-

famous Human Genome Project [10] is a well known example of 

sequence analysis. Using large amount of high performance 

computers [11] and various techniques of collecting sequences, the 
whole human genome was sequenced and stored within a 

structured database [12]. 

 

Nucleotide or protein sequences used for bioinformatics may be 

collected in different ways. One technique is to go through a whole  

 

genome and search individual sequences to record and store it. 

Another method is to simply collect large amounts of fragments 

and perform comparisons on them, and then determining whole 

sequences by overlapping the unused fragments. The latter method 
discussed is known as shotgun sequencing [13], and is presently 

the most popular method because of its speed and the ease of use. 

By comparison of known sequences of a genome to specific 

changes, much information can be obtained about undesirable 

changes and diseases such as cancers. With the whole sequencing 
of the human genome, bioinformatics has played very important 

role in the research of cancers.  

The collected information regarding genomes may be used for a 

different number of other applications, such as determining 
changes in populations and biomes. There are also  many other 

applications of bioinformatics, including predicting entire protein 

strands, learning how genes express themselves in various species, 

and building complex models of entire cells. Fundamentally, 

bioinformatics applications face the following two major 
challenges [14] 

 Managing and processing exponentially growing data   volumes  

 Significantly reducing data analysis cycles so that researchers 

can make timely decisions   
    The breakthrough technologies needed to address many of the 

critical problems in bioinformatics will come from collaborative 

efforts involving several disciplines, including computer science, 

engineering, and mathematics, and the domain of the problem to be 

solved. Some of the advances in data structures and hardware help 
to solve the problems faced by bioinformatics applications [14] 

are: 

 Advances in high-performance computing platforms to provide 

high computational capability and uniform high-speed memory 
access to multi-terabyte data structures 

 Specialized hybrid interconnect architectures to process and 

filter multi-gigabyte data streams coming from high-speed 

networks and scientific instruments and simulations, Many 

bioinformatics  applications are data-path-oriented, making little 
use of branch prediction and speculation hardware in the CPU. 

These applications are well suited to streaming data access and 

cannot effectively use the sophisticated on-chip cache hierarchy. 

Their ability to process large data sets is hampered by orders-of-

magnitude mismatches between disk, memory, and CPU 
bandwidths. 

Emerging technologies can improve data-intensive algorithms 

performance, at reasonable cost in development time, by an order 

of magnitude over the state of the art processors. Coprocessors 

such as graphics processor units and field-programmable gate 
arrays can significantly speed up some application classes in which 
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data-path-oriented computing is dominant. Additionally, these 

coprocessors interact with application controlled on-chip memory 

rather than a traditional cache.  

2. PARALLEL IMPLEMENTATION OF SEQUENCE 

ALIGNMENT ALGORITHM ON CLUSTER  
         
Smith waterman algorithm [16] is used as a first step in sequence 

matching. The algorithm is used for local alignment between two 

sequences. The algorithm uses dynamic programming techniques  

to perform the alignment task. For matching two sequence of size 

n, the algorithm takes O(n2). For large value of n, the time 
becomes significant and thus the need arises for faster 

implementation. [17] implements smith waterman algorithm on 

clusters and the results of implementation are shown in table 1.. 

The parallelization is based on pipeline model, that is, as a basic 

unit, each row of the score matrix is computed sequentially by a 
processor, which block itself till the required elements in the row 

above are computed. 

       This algorithm shows the improvement upto 10.30 times for a 

sequence size of 5000 characters and number of processor is 32. 

Smith waterman algorithm was also implemented on cell 
broadband engine [18]. Their parallel algorithm employs a static 

load balancing strategy, which means that the work load is known 

at the start and distributed equally across processes and processors. 

The algorithm starts by reading the input dataset. The power 

processing unit then pre-processes the set of input sequences such 
that all the synergistic processing elements will have their 

respective sequence parts in their local memory. They obtained a 

speedup of upto 6.5 times for sequence length of 2048 characters. 

Multiple sequence alignment algorithms [21] are used for 

sequencing matching of multiple sequences at a time. For n  
sequence, n*(n-1)/2 pair-wise alignment must be calculated and 

this is computationally intensive task as n could be large as well as  

the size of input sequences can also be significant. Once the 

distance matrix is calculated, it is used in the next phase of the 

algorithm to produce a phylogenetic or guide tree that determines  
the order of alignments in the final phase of the algorithms. After 

experimenting with a number of schemes, the authors found that 

broadcasting all the n sequences to each processor was a better 

strategy. Each of the P processors performs exactly n*(n-1)/2P 

alignments. They got maximum speed up from this strategy despite 
its heavy communication cost. The cluster implementation showed 

a speedup of 5.81 times for n=500 sequences and length of each 

sequence = 200 characters in each sequence. The result of 

implementation on cluster is shown in “Fig. 1”.  

  Parallel multiple sequence alignment was also done on the 
cell broadband engine [15]. The algorithm focused on running 

parallel portion of code on the synergistic processing units, with 

the rest of the code executing on the power processing units. While 

pair-align itself is made up of 4 different functions, forward pass 

which computes the maximum score and the location of the cell 
inside the matrix cell for two sequences, is the most time-

consuming step of pair-align. The cell broadband engine 

implementation showed a speedup of 46.37x times for n= 8 pair of 

sequences and length of each sequence = 2048 characters long 

which is shown in “Fig. 2”. 

                  

 

 

 

Table 1 Parallel implementation of sequence alignment 

algorithms on clusters. 

           
Sequence 

length 
Sequential 
Algorithm 

Parallel Algorithm, np Processor 

np=1 np=2 np=4 np=8 np=1

6 

np=32 

500 
 

0.24 0.3 0.2 0.1 0.1 0.5 1.3 

1000 1.7 2.7 1.5 0.9 0.6 1.1 1.5 

1500 5.9 8.8 4.8 2.9 1.8 1.7 2.1 

2000 13.9 20.3 10 6.3 3.7 3.2 3.4 

2500 26.2 39.5 21 11.6 6.9 5.1 4.5 

3000 45.5 67.2 35.4 19.5 11.4 8.1 6.5 

3500 71.6 106 55 30.1 17 11 8.9 

4000 107.2 158 82 44.2 25 16 12 

4500 152 225 118 62.4 34 21 15 

5000 208 310 158 86.4 46 28 20 

  
Fig .1  Running times and speedups for parallel implementation of 

ClustalW. 

 

Fig 2. Performance of sequence search algorithms on Cell 
[This Figure taken from 

http://farrar.michael.googlepages.com/CellTimeBL50.GIF/CellTimeB

L50- full;init:GIF ] 
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3.  PARALLEL IMPLEMENTATION OF SEQUENCE 

ALIGNMENT ALGORITHM ON CELL 

In [12] author implements the global alignment and spliced 
alignment on cell broadband engine. The implementation was 

performed on IBM Cell SDK 3.0, and executed on the Sony 

Playstation 3 (PS3) to get the performance results. In this  
implementation author use the PS3 running Linux that use only six 

SPUs instead of total eight SPUs that are actually available on the 
cell broadband engine. The implementation results of PS3 and cell 

simulator was also given to analyze the speedups and scaling for 

eight SPUs. The implementation on cell broadband engine was 

compiled with optimization level −O3. The system-sim simulator 

tool spu-timing was very helpful to perform static analysis of the 
implementation of algorithm and it also help in optimizing the 

code for further improvement in its execution time. The 

performance of implementation was analyzed by varying number 

of SPUs.  

     

 
Fig 3. Global Alignment – This graph shows the runtimes and speedup 
of global alignment implementation for an input size of 2048×2048.  

 

Fig 4. Global Alignment – This graph shows the runtimes and speed up 
of global alignment implementation 

 
The results of the implementations are shown in “Fig 4” for up -to 
six SPUs on the PS3. The performance improvement are obtained 

by performing comparisons between a sequential implementation 

on a desktop with a 3.2 Ghz Pentium 4 processor, a sequential 

implementation of the space-saving global alignment for a single 

SPU on the PS3, parallel cell implementation and parallel 

implementation running on a single SPU on the PS3. The parallel 

implementation run on one SPU is performs worse when, as it 

includes the additional work that is decomposition phase which 
divide the whole problem as the sub-problem to solve. This is used 

to perform analysis on the scaling of the existing algorithm, and as  

analysis done on results of implementation. It is found that a 

speedup of about 6.5x was obtained on six SPUs and when a 

comparisons was done with best sequential algorithm, a speedup of 
4.5x over a single SPU was obtained, and a speedup of more than 

3.5x over a Pentium 4 processor was obtained. In “Fig 5”, the 

results obtained using the cell simulator for up -to eight SPUs are 

given. The speedups are computed by comparing parallel 

implementation with the sequential implementation of global 
alignment that run on a single SPU. A speedup of about 6X was 

obtain for up-to eight SPUs. 

4. MULTIPLE  SEQUENCE ALIGNMENT  USING  

FASTA  TOOL ON CELL BROADBAND ENGINE  

A graph is below comparing the total search times of 11 queries, 

against the swiss-prot 45 databases, 59,631,787 residues in 
163,235 sequences.  The programs were tested on three computers.  

The first was a Dell blade with two 1.6 GHz Xeon 5130 processors 

(8 cores total) with 4 Gbytes of RAM.  The next computer was an 

IBM QS20 blade with two 3.2 GHz Cell B.E. processors and 1 

Gbytes of RAM.  The last computer was Sony's PlayStation 3 with 
a single 3.2 GHz cell broadband engine processor and 256 Mbytes 

of RAM. The tests were run with the scoring matrices BLOSUM50 

with gap penalties. When porting the striped smith waterman 

algorithm to the cell broadband engine the following architectural 

features of the synergistic processing unit were taken into account: 
 

 Limited size of the LS  

 

 No support for saturated math  
. 

 No support for byte arithmetic 

 

     The synergistic processing unit has 256K of memory in the LS.  
This is used to hold both the program and its data.  Many times 

smith waterman implementations build a position specific scoring 

matrix based on scoring matrix. The query sequence with the 

position specific scoring matrix would require 50 bytes for each 

residue of the query sequence.  To reduce the amount of memory 
needed per query residue, the position specific scoring matrix is  

replaced with the query sequence and the shuffle instruction to 

dynamically generate the scoring vector.  The memory requirement 

per query residue is now reduced to six bytes, allowing a query 

sequence of length 32Kbytes to fit in the local storage. The 
synergistic processing unit architecture does support saturated 

math.  Saturated math is used in the smith waterman calculations to 

keep the scores from falling below zero and from rolling over 

when the maximum of the single instruction multiple data type is 

reached.  Saturated math could be implemented with three 
instructions, but this could easily dominate the calculation time in 

the inner loop. 

           FASTA is a multiple sequence alignment algorithms used to 

align multiple sequences and thereafter compute pair of match and 

mismatch between the sequences. On the basis of this computation, 
it computes a score matrix to determine the similarity between the 

sequences. Eric Lindahl included an efficient implementation of an 
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AltiVec-enabled smith waterman is already in the FASTA 

package. For making the FASTA package to be executed in the 

cell broadband engine, the AltiVec application-programming 

interfaces are converted to the synergistic processing unit 

application programming interfaces. Many of the synergistic 
processing unit application programming interfaces obtained from 

AltiVec application programming interfaces with little effort 

(replacing the Vec of AltiVec to SPU for the SPU). However, Two 

of AltiVec application programming interfaces used in FASTA 

which are not presented on the synergistic processing unit, so it is 
necessary us to implement these application programmin g 

interfaces with multiple instructions. 

 
 Vec max: Vec max application programming interfaces  

determines the element-wise maximum of two vectors and stores 

the result in the output vector. We implemented vec max for the 

synergistic processing element by using synergistic processing unit 
cmpgt to create a mask from the comparison of the two input 

vectors, and synergistic processing unit use this mask to extract the 

greater of the two vectors. 

 

 Vec subs: Saturated subtraction is to be performs by this 
application programming interfaces, meaning that if any element 

of the result vector is  negative, that element is set to zero. It is one 

of the useful application programming interfaces for the smith-

waterman execution, since it needs a positive value at every matrix 
cell for local alignment. We implemented vec subs on the 

synergistic processing unit by performing a signed subtraction 

using synergistic processing unit sub and then finding the 

maximum of the signed result and a constant vector of all zeros, 

using our implementation of vec max described above.  
            To execute the smith waterman kernel on the synergistic 

processing unit, the alignment scores are pre-computed on the 

power-processing unit, and are DMAed to the synergistic 

processing unit along with the query and the library sequence. 

Other parameters such as the alignment matrix and the gap 
penalties are also included in the context for every synergistic 

processing unit. Despite the absence of instructions described 

above the cell processor, still outperforms in comparison to every 

superscalar processor currently in the market. This superior result 

is mainly due to the presence of eight synergistic processing unit 
cores and the vector execution on the synergistic processing units. 

Since the power-processing unit also supports Alti-vec 

instructions, it is also possible to use the power-processing unit as 

a processing element, thus enabling nine cores on the cell 

processor, with even better performance results. Further profiling 
of our implementation indicates that the computation dominates 

the total runtime (up to 99.9% considering a bandwidth of 18 

Gbytes/s for the synergistic processing units), and hence multi-

buffering is not needed for this class of computation.     

           The cell implementation discussed above is not fully 
functional as of now the current implementation requires both 

sequences to fit entirely in the synergistic processing unit local 

store of 256 Kbytes, which limits the sequence size to at most 2048 

characters. To do genome-wide or long sequence comparisons, a 

pipelined approach similar to among the synergistic processing 
units could be implemented.  

           Each synergistic processing unit performs the smith- 

waterman alignment for a block, notifies the next synergistic 

processing unit through a mailbox message, which then uses the 

boundary results of the previous synergistic processing unit for its 
own block computation. Support of bigger sequences on the cell is  

a key goal of future research. Once a fully functional smith-

waterman implementation exists on the cell, we can employ this 

kernel in the FASTA package. The FASTA package compares 

each sequence in a query sequence file with every sequence in a 

Library sequence file, and hence multiple issues for load balancing 
could be evaluated. For now, we have a simple round-robin 

strategy, in which the sequences in the query library are allocated 

to the synergistic processing units based on the sequence numbers 

and the synergistic processing unit number.  

5.  PARALLEL IMPLEMENTATION OF 

PROTEIN  STRUCTURE PREDICTION 

ALGORITHMS     

 Protein structure prediction is the method of prediction of the 

three dimensional structure (that is, the prediction of tertiary 
structure) of a protein from its given amino acid sequences. Protein 

structure prediction plays important role in the field of medicine 

for example, in drug design. A large quantity of protein sequence 

data is produced by a large-scale DNA sequencing project such as 

the Human Genome Project. There are so many factors that make 
protein structure prediction a very difficult task. Out of which, two 

main problem are that the number of possible protein structures is 

so large, and protein’s structure stability is not fully understood 

based on its physical property. Thus, any protein structure 

prediction method requires  a way to explore efficiently the space 
of possible structures of protein. 

          Protein structure prediction on computational grid was  

described in [19]. They employ genetic algorithm. Applying, the 

genetic operator results in modification of the population’s 

structure so as to intensify exploration inside a delimited segment 
or for diversification purposes. Protein structure prediction was 

also attempted on cell broadband engine [20]. They mapped the 

different stages  of the BLASTP algorithm onto the Cell broadband 

engine. The two important contributions in the paper are (a) 

overcoming challenges due to limited local storage of the 
synergistic processing element data transfer (b) coordination 

between power processing element and synergistic processing 

elements. An efficient and flexible mechanism to transfer 

sequences from the database to the synergistic processing elements 

is implemented. A speedup of 3.2x to 3.6x times was achieved by 
this implementation. 

            

6.  CONCLUSIONS 

In conclusion, we would like to say that the execution time of data 

intensive bioinformatics applications can be significantly improve 

by parallelization of highly time consuming portion of whole 
applications and data structure used in bioinformatics application. 

In future we take weighted suffix tree as data structure and we 

parallelize the weighted suffix tree construction on all possible 

parallel architecture Architecture .  
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