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ABSTRACT 

Parsing with finite automata networks implies, in one way, the 

conversion of a regular expression into a minimal deterministic 
finite automaton, while parsing with neural networks involves 

parsing of a natural language sentence. In „Parsing with finite 

automata networks‟ finite automata are frequently combined 

using a set of rules for various operations like union, 

concatenation, and kleene closure; while in „Parsing with neural 
networks‟ an incremental tree is usually obtained, by using a set 

of rules for connecting a possible parse tree to the previously 

obtained incremental tree. Apparently, all the above rules that 

are being applied in parsing whether with finite automata 

networks or with neural networks belong to some graph 
transformation rules. These rules depict a new concerned area of 

grammars known as graph grammar, that is, a grammar that 

operates on graphs. This research paper presents a twofold 

investigation on the use of graph grammar as it explores an 

attempt to use both aspects of graph grammars (to generate a 
valid language and to parse a language for its validity) for 

parsing with (i) neural networks and (ii) finite automata 

networks.  

General Terms  

Neural networks, Finite automata networks, Backtracking, 

Incremental Parsing. 

Keywords 

Parsing, Graph grammar, Regular expression, Natural language 

processing. 

1. INTRODUCTION & BACKGROUND 

TOPICS 
Practically, all the approaches for parsing with natural languages  

use some type of neural network architecture and some typical 

statistical function towards getting a parse decision. However, 

the so obtained parse decision might be incorrect because of the 

unbounded and ambiguous nature of natural language grammars. 
So, keeping in view that no natural language parser is 100% 

correct (with respect to parse decisions), an attempt was made 

by Bhargava and Purohit [5] to reduce the parsing time, by 

parsing a natural language sentence without the use of any 

statistical function as an application of parsing with neural 
networks.  

Regular expressions and finite automata are two dissimilar 

representations for regular languages: Regular expressions (a 

finite or infinite set of strings of alphabet characters), on one 

hand, generate regular languages  while, on the other hand, finite 

automata (graphs) accept regular languages. Apparently, regular 

expressions and all variants of finite automata (NFA with or 

without -transitions, or DFA) are equivalent because all of 

them represent the same language, that is, a regular language. 
Thereby, all of them are convertible into each other (see, e.g. 

[28]). It is a well-established fact that each regular expression 

can be transformed into a nondeterministic finite automaton 

(NFA) with or without ε-transitions (see, e.g. [51], [57], and 

[59]). In addition, there also exist algorithmic approaches to 
convert a regular expression into DFA by use of intermediate 

NFAs (see, e.g. [11] and [28]). In the recent past, efforts have 

been made towards conversion of a finite set of strings into a 

minimal, deterministic, acyclic finite-state automaton (see, e.g. 

[9] and [15]). Unfortunately, all these attempts either convert a 
finite set of strings into a DFA or they convert a regular 

expression into a minimal DFA using the following chain of 

conversion: regular expression  NFA with -transitions  

NFA without -transitions  DFA  minimal DFA. Hence, it 
has been found that there is no standard method available to 

convert a regular expression into a minimal DFA directly, that 

is, without the use of any intermediate NFA. To overcome this 

problem, an attempt was also made by Bhargava and Purohit [4] 

to convert a regular expression into a minimal DFA directly 
without the use of any intermediate NFA as an application of 

parsing with finite automata networks.  

Graph grammars play an extensive and vital role in the above 

parsing algorithms (see, e.g. [4] and [5]). In the present research 

paper we investigate the wide-ranging role of graph grammars in 
parsing with neural and finite automata networks. In order to 

make a fair introduction to this theme, we describe in brief some 

technical processes and other related topics. 

1.1 Finite Automata Network 
An automata network is a collection of automata connected 

together according to a directed graph ([42]). The vertices of this 

directed graph are considered as automata and the edges indicate 

the existence of communication links. This graph has no parallel 
edges. Each automaton can change its state at discrete time steps 

as a local transition function of the states and a global input, and 

synchronous action of the local state transition defines a global 

transition on the entire network. 

A finite automata network is a type of “automata networks” 
which consists of finite automaton as vertices (nodes). A finite 

automaton is a mathematical model of a system, with discrete 

inputs and outputs. The system can be in any one of a finite 

number of internal configurations or states. The state of the 

system summarizes the information concerning past inputs that 
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is needed to determine the behavior of the system on subsequent 

inputs. Thereby, a finite automaton is a model of behavior 

composed of a finite number of states, transitions between those 
states, and actions. A state stores information about the past, that 

is, it reflects the input changes from the start of system to the 

present moment. A transition indicates a state change and is  

described by a condition that would need to be fulfilled to 

enable the transition. An action is a description of an activity 
that is to be performed at a given moment.  

1.2 Neural Network 
A neural network is a system of programs and data structures 
that approximates the operation of the human brain. A neural 

network usually involves a large number of processors operating 

in parallel,  each with its own small sphere of knowledge and 

access to data in its local memory. Typically, a neural network is 

initially “trained” or fed large amounts of data and rules about 
data relationships. A program can then tell the network how to 

behave in response to an external stimulus or can initiate activity 

on its own (within the limits of its access to the external world). 

Thereby, a neural network is a massively parallel distributed 

processor made up of simple processing units which has a 
natural propensity for storing experiential knowledge and 

making it available for use. A neural network resembles the 

brain in two respects, that is, first by “acquiring knowledge from 

its environment through a learning process”, and then “storing 

the acquired knowledge by using interneuron connection 
strengths, known as synaptic weights”. Hence, a neural network 

is a type of artificial intelligence that attempts to imitate, in a 

way, how a human brain works. Instead of using a digital model 

in which all computations manipulate “zeros and ones”, a neural 

network works by creating connections between processing 
elements, the computer equivalent of neurons. 

Therefore, a neural network is made of individual units termed 

neurons ([48]). Each neuron has a weight associated with each 

input. A function of the weights and inputs (typically, a 

squashing function applied to the sum of the weight-input 
products) is then generated as an output. These individual units 

are connected together as shown in Figure 1, with an input layer, 

an output layer and usually one or more hidden layers. 

 

 

   

 

 

 

Typically, the input layer consists of one unit per attribute and 
the output layer of one unit per class. The number of units and 

topology within the hidden layer is obtained by the respective 

grammar. Through algorithms such as backpropagation, the 

weights of the neural net can be adjusted so as to produce an 

output on the appropriate unit when a particular pattern at the 
input is observed. The backpropagation algorithm works by 

running the training instance through the neural network, and 

calculating the difference between the desired and actual 

outputs. These differences are then backpropagated from the 

output layer to the hidden and input layers in the form of 

modifications to the weights of each of the component neurons. 
This modification is done in a manner proportional to the 

contribution to the difference in output, so that the weights most 

responsible for the difference are modified the most. 

Feedforward neural networks cannot take labeled trees as input 

because they neither can deal with structured objects that have 
variable size nor they can embed relations among atomic 

constituents. In principle, recurrent neural networks might be 

employed by converting the tree into a sequence (see, e.g. [25] 

and [33]). 

1.2.1 Recurrent Neural Network 
A recurrent neural network (RNN) is a modification to 

feedforward neural network architecture to allow temporal 

classification, as shown in Figure 2. In this case a “context” 

layer is added to the structure which retains information between 

observations. At each time-step, new inputs are fed into the 
RNN. The previous contents of the hidden layer are passed into 

the context layer. These then feed back into the hidden layer in 

the next time-step. So, during parsing, RNN is the best suitable 

architecture to store the intermediate incremental trees  

information for getting the final parse tree for a sentence.  

 

 

 

 

 

 
 

1.3 Parsing 
According to Aho et al. [2], parsing is the process of 

determining whether a string of tokens can be generated by a 

grammar. To analyze a sentence or a language statement, 

parsing breaks down words into functional units that can be 
converted into machine language. Parsing involves  grouping the 

tokens of the source program into grammatical phrases that are 

used by the compiler to synthesize output. The grammatical 

phrases of the source program are represented by parse tree. A 

parse tree is a tree that represents the syntactic structure of a 
string according to some formal grammar. In a parse tree the 

interior nodes are labeled by nonterminals of the grammar while 

the leaf nodes are labeled by terminals of the grammar. Parse 

trees may be generated for sentences in natural languages as 

well as during processing of computer languages such as 
programming languages. A parser, capable of constructing parse 

tree, is a program, usually part of a compiler that receives input 

in the form of sequential source program instructions, interactive 

online commands, markup tags, or some other defined interface  

and breaks them up into parts that can then be managed by other 
programming. A parser may also check that all necessary input 

has been provided. 

1.4 Graph Grammars 
A grammar is a set of rules which can  

o generate a construct from a list of terminals; 

Fig 1: A typical feedforward neural network. 
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o recognize that a construct obeys the grammar rules. 

In natural languages, a construct is a sentence and the terminals 

are words. The grammar can specify such notions as subject-
verb agreement, the declaration of nouns and the conjugation of 

verbs and the syntactic structure of sentences. In computational 

linguistics, our area of interest is to find a natural language 

grammar so that machine could recognize and interpret the 

sentences. In natural language parsing, sentences are treated as  
trees (graphs) and the parsing algorithm tries to obtain 

incremental trees (graphs) using a set of graph grammar rules. 

At each step of parsing, graph grammar maintains the legally 

correct connection between two trees to get an enhanced one. 

Thereby, all the connection process (of two trees) takes place 
under the supervision of graph grammar rules defined for this 

purpose. 

According to McCreary [44] and Rozenberg [50], a graph 

grammar is a grammar that operates on a graph. In a graph 

grammar, graphs are generated from some initial graph by 
replacing a sub graph of the host graph by another graph, and 

embedding the inserted graph into the host graph. Thereby, a 

graph grammar is a canonical generalization of a context free 

string grammar. Its core is a finite set of productions of the form 

(A, R, C), where A is the label of the replaced vertex, R is the 
graph from the right hand side, and the connection relation C 

specifies the embedding of the right hand side R into the local 

environment of the replaced vertex. Graph grammars were 

invented, in early seventies, in order to generalize (Chomsky) 

string grammars. Graph grammars were originated from 
Chomsky grammars by substituting the replacement of strings 

with the replacement of graphs. The main idea was that of 

extending concatenation of strings to a “gluing” of graphs. The 

action of gluing two graphs is a construction, in the category of 

graphs and graph morphisms, called pushout. A graph, defined 
as an algebraic structure, is a 6-tuple (V, E, s, t, lV, lE), where 

 V and E are two finite sets,  

 V  E = ,  

 s, t : E  V are two mappings indicating the source and the 
target of an edge,  

 lV: V  V, and lE: E  E are two mappings from V and E 

in two finite sets of labels. 

Given two graphs G = (V, E, s, t, lV, lE) and G’ = (V’, E’, s’, t’, 

lV’, lE’), a graph morphism  from G to G’ is a pair ( 1, 2), 1: 

V  V’, 2: E  E’ such that  satisfies the following two 

conditions: (i) labels are preserved i.e. lV(vi) = lV’( 1(vi)), and 

(ii) incidence is preserved i.e. 1(s(e i)) = s’( 2(e i)). 

It is obvious that there is a morphism from a graph H to a graph 

G if G contains H. For the graphs G and G’, as shown in Figure 

3, there is a graph morphism from G to G’ as G’ contains G; 

while for the next pair of graphs G and G’, as shown in Figure 4, 

there is no graph morphism because neither of the graphs 
contains the other.   

 

 

  

 

 

 

 

 

 

 

 

 

1.5 Incremental Parsing 
Incremental processing of natural language is based on the 

intuitive fact that natural languages are processed from left to 

right, and most of the times are processed incrementally  (see, 

e.g. [21] and [38]). The incrementality hypothesis implies that 
the semantic interpretation of some initial part of the sentence, 

to be parsed, is available as the initial scan of the input material 

proceeding from left to right. The next step towards incremental 

parsing is to further add a semantic interpretation into initial 

semantic interpretation with the aim of getting a better semantic 
interpretation for a larger part of input sentence. And this 

process continues till we get an interpretation for the whole 

sentence.  

For incremental parsing, parse trees need to be connected 

incrementally. The interaction rules during connection between 
parse trees are described in various studies (see, e.g. [40], [46], 

[54], [55], and [56]). The interaction between the parse trees 

occurs at the word level and forces the syntactic analyzer to 

keep an entirely connected structure at all times. Parsing 

proceeds from left to right through a series of incremental trees, 
each spanning one additional word to the right. Let us have a 

sentence s = w1w2w3...w s and a parse tree T for it. All the 

pendant vertices of T are labeled by words and the remaining 

vertices (of degree 2 or more) are labeled by nonterminal 

symbols. The recursive definition of T i (for i  {1, 2, ..., s }) 

spanning w1w2...wi is as follows: 

 T1 consists of the chain of vertices and edges from w1 to its 

maximal projection.  

 T i+1 consists of all the vertices and edges in T i and the chain 
of vertices and edges from wi+1 to L, where L is either a 

vertex of T i or the lowest vertex of T dominating both the 

root of T i and wi+1. 

Moreover, we also have the following definitions towards 

finding the incremental trees for s: 
 The connection path for wi+1 is the difference between T i+1 

and T i. In other words the connection path for w i+1 is the 

parse tree that has to be attached to T i to get T i+1. 

 A vertex that is both in T i+1 and T i is called the host. 

 The vertex labeled by the POS tag of wi+1 is called a foot. 

To accommodate the next input word wi+1 to the incremental 

tree T i, a connection path is computed. There can be more than 

one such connection path. A selection procedure selects the best 

connection path to obtain the next incremental tree T i+1. The 

better is the selection procedure, the less time it will take to 
compute T i+1. A selection procedure chooses the best connection 

path and host to generate the next incremental tree T i+1. Once we 

obtain T i+1, we look ahead to get T i+2, based on T i+1 and next 

word wi+2, in exactly the same way as we obtained T i+1 and this 

process continues till either we get T for s or we fail to get it. Fig 3: G’ contains G, showing that there is a 

morphism from G to G’.  
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showing that there is no morphism. 
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Figure 5 shows the sequence of incremental trees for a sentence 

of the corpus. 

 

 

 

 

 

 

 

 

 

 

 

 

1.6 Backtracking 
With respect to the concept of trees, backtracking picks the first 
path and tries to go into its depth, searching for the solution; if it 

fails, then it steps backwards and picks the next path (another 

alternative), and so on. As a result, we can conclude that in the 

end the outcome is a resulting vector that contains the solutions. 

Backtracking solves problems that can be narrowed down to 
finding some sort of Descartes multiplication of N elements in 

series, which can be combined to satisfy some strict inner 

constraints between each other. It's our job to analyze how we 

can "re-phrase" the problem to some sort of series. It means that 

we must "code" the solution into a vector. It is also our job to 
identify the source elements of series from which we're going to 

build the possible paths of that so-called tree, or just a simple 

vector where we are moving forward trying to combine the 

elements from the source array, and on each failure taking one 

step backwards and trying the next alternative. We do this until a 
valid solution is found or we fail to get it. 

According to Kruse [34], backtracking attempts to complete a 

search for a solution to a problem by constructing partial 

solutions and always ensures that the partial solutions remain 

consistent with the requirements of the problem. Backtracking 
then attempts to extend a partial solution towards completion but 

when an inconsistency with the requirements of the problem 

occurs the actual backtracking starts by removing the most 

recently constructed part of the solution and tries another 

possibility. Figure 6 shows the process of backtracking by a 
depth-first search where there is just one root node.  

 

 

  

 
 

 

 

 

The contents of this paper are arranged as follows. 

Section 2 deals with review of literature on related work and its 

current status. Next section 3 first details the significance of 
graph grammars in parsing with neural networks followed by a 

description on the role of graph grammars in parsing with finite 

automata networks. Last Section 4 deals with the conclusions of 

the present research paper. 

2. RELATED WORK 
Related work done in various areas by learned scholars is  

divided into five sections: graph grammars and its applications; 

conversion of regular expression into finite automata; parsing 
with neural networks and natural language processing; 

incremental parsing; and neural networks and recurrent neural 

networks. 

2.1 Graph Grammars and its Applications 
As far as we know, very few algorithms exist for the inference 

of graph grammars and its applications in parsing. Johnson et al.  

[30] described a variant of the subset construction that required 

the unique determination of the states in which a semantic action 
was required. The use of graph grammars for syntactic pattern 

recognition by providing an enumerative method for inferring a 

limited class of context-sensitive graph grammars was described 

by Bartsch-Spörl [3].  

Briscoe et al. [8] described a substantial grammar to produce a 
general purpose morphological and syntactic analyzer for 

English language. Details of graph grammars and its various 

applications were enumerated by Ehrig [18] and Rozenberg 

[50]. Furthermore, McCreary [44] stated that the objects created 

through productions of a graph grammar were graphs rather than 
strings, showing that the theory of graph grammars is a 

generalization of formal languages and the theory of string 

grammars. All the above references were helpful for 

understanding the graph grammar concepts in the present study. 

Abney [1] first defined stochastic attribute-value grammars and 
then gave an algorithm for computing the maximum-likelihood 

estimate of their parameters. Palm [47] described the role of 

graphs in natural language parsing. Later, Cook and Holder [14] 

presented a scheme for discovering frequent substructures in 

graphs. Schmid [52] gave a model on parsing using graph 
grammars, which was a generative probability model for 

unification-based grammars in which rule probabilities  

depended on the feature structure of the expanded constituent. 

Finally, Kukluk et al. [35] observed that graph grammars  

combine relational aspects of graphs with the iterative and 
recursive aspects of regular expressions. 

2.2 Conversion of Regular Expression into 

Finite Automata 
There are very few methods available for conversion of a regular 

expression into a minimal DFA without use of any NFA (see, 

e.g. [4]). After scanning the available related literature, all the 
reviewed methods fall into one of the following three categories.  

(i) Conversion of a regular expression into an NFA (with or 

without -transitions). 

(ii)  Conversion of a regular expression into a DFA by using 
intermediate NFA. 

(iii)  Conversion of a set of strings (finite or infinite) into a 

finite automaton (NFA or DFA). 

Fig 5: The incremental trees of the sentence “He has no 
stock”. Vertices are labeled with the incremental tree that 

includes them for the first time. 
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Fig 6: Backtracking: Depth-first search for a solution. 
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Besides the above three categories, Bhargava and Purohit [4] 

gave a method to convert a regular expression into a minimal 

DFA without the use of any  NFA. This method was an ideal 
example of parsing with finite automata networks using graph 

grammars.  

2.3 Parsing with Neural Networks and 

Natural Language Processing 
Tomita [58], Chapman [12], and Aho et al. [2] enumerated 

various parsing techniques, starting from the very fundamental 
topics of parsing up to its applications. A context-free parsing 

algorithm that can parse sentences with unknown parts of 

unknown length was designed by Lang [37]. Lavie [39] 

described a method on developing an integrated heurist ic 

scheme for selecting the parse that was deemed "best" from such 
a collection. Later, another method to find the most probable 

parse tree from a valid set of such trees was formulated by Bod 

[6]. Charniak [13] and Manning and Schutze [43], on syntactic 
parsing, enumerated statistical language processing techniques  

such as word tagging, parsing with probabilistic context free 

grammars, grammar induction, and syntactic disambiguation. A  
neural network based statistical parser which was trained and 

tested on the Penn Treebank was presented by Henderson [26]. 

In this parsing scheme, the neural network was used to estimate 

the parameters of a generative model of left-corner parsing, and 

these parameters were used to search for the most probable 
parse. 

Bhargava and Purohit [5] presented a distinctive approach of 

parsing with neural network. In their approach, the use of 

statistical function was minimized and hence the parsing time 

was considerably reduced.  

2.4 Incremental Parsing 
Ghezzi and Mandrioli [21] and Larchevêque [38] enumerated 

the concept of incremental parsing which was followed and is 
modified in the present study. Regarding incremental parsing 

concept, Frazier [20], Yamashita [61], and Kamide and Mitchell 

[31] suggested that the human parser assembles substructures 

eagerly before reaching the structure head. Steedman [55], 

Stabler [54], Milward [46], Sturt and Crocker [56], and 
Lombardo et al. [40] had discussed the interaction rules during 

incremental connection between parse trees.  

Lane and Henderson [36] described the use of Simple 

Synchrony Networks (SSNs) for learning to parse English 

language sentences drawn from a corpus of naturally occurring 
text, by means of an incremental parsing. An algorithm that 

simulated the building of structure by marking, during the scan 

of the tree, the branches which would be built by a perfectly 

informed incremental parser, was designed by Lombardo and 

Sturt [41]. Several issues related to incremental (left-to-right) 
beam-search parsing of natural language using generative or 

discriminative models, either individually or in combination, 

were enumerated by Roark [49].  

2.5 Neural Networks and Recurrent Neural 

Networks 
Neural Networks: Kitano [32] and Boers & Kuiper [7] 

described their approaches of grammar-based encodings of 

neural networks. The above approaches were helpful in “joining 

of graph grammars and neural networks” and are modified in the 
present study. Later, neural network parsers were enumerated by 

Miikkulainen [45] and Lane and Henderson [36]. Hebbian 

parsers ([23]) and holistic parsers ([27]) were two classical 

examples of neural network parsers. Patterson [48] defined a 
neural network as a composition of individual units called 

neurons.  

Recurrent Neural Networks: A detailed overview on the use 

and features of various recurrent neural network architecture 

(RNN) was enumerated by Jain and Waibel [29], Elman [19], 
Sharkey [53], Wermter and Weber [60], Hammer and Tiňo [24], 

erňanský et al. [17], Grüning [22], Cartling [10], and Dobnikar 

and Šter [16]. Kolen and Kremer [33] used the concept of 

recurrent neural networks as advancement over feed forward 

neural networks. In a closely related description, Hawkins and 
Boden [25] stated that “as compared to feedforward neural 

networks recurrent neural networks generally performed better 

on sequence analysis tasks”. 

3. PARSING USING GRAPH GRAMMAR 
In Parsing with neural networks using graph grammars, 

Bhargava and Purohit [5] provides an algorithm in which a 

sentence of natural language is taken as input and the algorithm 

decides whether it is syntactically correct or not. Bhargava and 
Purohit [5] made use of recurrent neural networks and 

incremental parsing in this method. At each step of incremental 

parsing, the correct connection path linking the next word to the 

incrementally build parse tree was predicted using a recurrent 

neural network model. A set of rules for all the graph operations 
required to obtain incremental trees for this parser graph 

grammar was devised and kept together in the form of an 

algorithm. 

In Parsing with finite automata networks using graph 

grammars, Bhargava and Purohit [4] converts an input regular 
expression into a minimal deterministic finite automaton (DFA) 

without the use of any NFA by means of a parsing algorithm. A 

set of graph grammar rules, that is, the rules for union, 

concatenation, kleene closure, and minimization operations over 

DFA was designed for the above conversion and kept together in 
the form of an algorithm. During the conversion process graph 

operations took place using an appropriate graph grammar rule. 

This method exhibited an example of parsing with finite 

automata networks in a dual manner, that is,  

(i) If the input regular expression was not valid then the 
algorithm would stop without producing the output DFA. Hence 

the input regular expression was parsed for its validity, which is 

the first aspect of parsing using graph grammars. Here the graph 

grammar belongs to parser grammars because it parses the 

regular expression. 
(ii)  If the input regular expression was valid then the algorithm 

would convert it into an equivalent minimal DFA which is in 

some way the second aspect of parsing using graph grammars. 

Here the graph grammar belongs to generator grammars 

because it constructs the DFA for the language extracted from 
regular expression thereby representing the language by a new 

structure. 

The present research paper discusses in detail the implication of 

graph grammars with respect to parsing with the two networks, 

viz. neural and finite automata networks. For this we take two 
previous research works attempted by Bhargava and Purohit 

(see, e.g. [4] and [5]) and bequeath the authority of graph 

grammars during parsing.  
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3.1 Parsing with Neural Networks  
From the basic results of natural language processing, parsing of 

natural languages, graph grammars and neural network 

architectures, Bhargava and Purohit [5] have derived a simple, 

efficient and innovative method for parsing with neural 

networks using graph grammars. They have presented a novel 
methodology for parsing a natural language, based upon the 

incrementality hypothesis, a generally held assumption about 

human parser. In addition, the method ([5]) also relies upon one 

more unique hypothesis, that is, “a sentence‟s parse tree has the 

best possibility to be accepted as a connection path in future if it 
is used as a connection path for most of the times in past”.  

Though in most previous attempts, a statistical function for 

obtaining a parse decision has been a necessary component; 

however, Bhargava and Purohit [5] removes the necessity of any 

such statistical function thus reducing the amount of parsing 
time. In addition, it also has been shown that the parsing time by 

the proposed parser ([5]) was shorter as compared to the parsing 

time of four most time-efficient EFD parsers hence, showing the 

supremacy of the proposed parser ([5]) over EFD parsers.  

Bhargava and Purohit [5] dealt with a combination of two 
different but related streams, that is, graph grammars and 

parsing of natural languages, even though an almost equal 

attention was paid towards both the above streams in their 

method. For this, they emphasized on the use of graph grammars  

for parsing a natural language by applying it at each stage of 
parsing. Therefore, the method ([5]) showed its supremacy over 

the previous works of similar approach by paying concentration 

on two streams, that is, graph grammars and parsing of natural 

languages, unlike the other attempts which were aimed at only 

one stream that is, parsing of natural languages.  

3.2 Parsing with Finite Automata Networks 
From the basic results of formal language parsing, graph 

grammars and automata theory , Bhargava and Purohit [4] have 
derived a simple novel method to construct a minimal 

deterministic finite automaton from a regular expression. This 

method ([4]) removes the dependency over the necessity of 

lengthy chain of conversion, that is, regular expression  NFA 

with ε-transitions  NFA without ε-transitions  DFA  

minimal DFA. Therefore the main advantages of the minimal 

DFA construction algorithm by Bhargava and Purohit [4] are its 

minimal intermediate memory requirements and hence, it‟s 

reduced time complexity. This algorithm ([4]) converts a regular 
expression of size n in to its minimal equivalent DFA in 

O(n.log2n) time. In addition to this, the time complexity is 

further shortened to O(n.logen) for n ≥ 75. 

Again, Bhargava and Purohit [4] dealt with a combination of 

two different but related streams, that is, graph grammars and 
parsing with finite automata networks, even though an almost 

equal attention was paid towards both the above streams in their 

method. For this, they emphasized on the use of graph grammars  

in the form of graph algorithms for conversion of regular 

expression into DFA. Therefore, the method ([4]) again had 
shown its supremacy over the earlier efforts of the same kind by 

paying concentration on two streams, that is, graph grammars  

and parsing of finite automata networks, unlike the other 

attempts which were aimed at only one stream that is, parsing of 

finite automata networks. 

4. CONCLUSION & FUTURE WORK 
In this study we use graph grammar learning for parsing with (i) 

finite automata networks and (ii) neural networks, hoping that 

the expressive power of graphs and the ability of graph 

grammars to generalize the string grammars will turn out to be 

an influential learning paradigm. Thereby, this twofold study 
will be able to discuss the inference of graph grammars in 

parsing with neural and finite automata networks. 

The method by Bhargava and Purohit [5] dealt with a 

combination of two different but related streams, that is, graph 

grammars and parsing of natural languages, even though an 
almost equal attention was paid towards both the above streams 

in the method. The future applications of the above parsing of 

natural language may lead to the development of an efficient 

incremental parser which is informed by the network 

architecture in taking decisions about attachment ambiguity. 
Contribution of some other knowledge sources like semantic 

knowledge-base and a set of subcategorization frames, so that 

ambiguity is reduced, will also help in developing a parser for 

natural language.  

Further, most researches attempted hitherto are based on the use 
of intermediate NFA for the conversion of regular expression 

into DFA. Further most of the researches have not focused on 

the role of graph grammar during such conversion. Bhargava 

and Purohit [4] presented the algorithm that uses intermediate 

DFA in place of NFA. The algorithm ([4]) was fully equipped 
with graph transformation rules and hence was emphasizing the 

graph grammar role in parsing with finite automata networks. 

The algorithm ([4]) had shown a time complexity which was 

shorter as compared to other available methods, thus motivating 

the use of DFA in place of NFA for similar studies. 

Finally as the present research paper depicts a speckled role of 

graph grammars in parsing with neural and finite automata 

networks, its future applications are immediate with respect to 

some other automata networks like cellular automata networks. 

In future, we are planning to investigate the role of graph 
grammars in parsing with cellular automata networks. 
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