
International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

13

Parsing with Neural and Finite Automata Networks: A

Graph Grammar Approach

Sanjay Bhargava
Department of Computer Science

Banasthali University
C-62, Sarojini Marg, C-Scheme, Jaipur - 302001

G. N. Purohit
Dean, AIM & ACT

Banasthali University
Banasthali, Rajasthan - 304022

ABSTRACT

Parsing with finite automata networks implies, in one way, the

conversion of a regular expression into a minimal deterministic
finite automaton, while parsing with neural networks involves

parsing of a natural language sentence. In „Parsing with finite

automata networks‟ finite automata are frequently combined

using a set of rules for various operations like union,

concatenation, and kleene closure; while in „Parsing with neural
networks‟ an incremental tree is usually obtained, by using a set

of rules for connecting a possible parse tree to the previously

obtained incremental tree. Apparently, all the above rules that

are being applied in parsing whether with finite automata

networks or with neural networks belong to some graph
transformation rules. These rules depict a new concerned area of

grammars known as graph grammar, that is, a grammar that

operates on graphs. This research paper presents a twofold

investigation on the use of graph grammar as it explores an

attempt to use both aspects of graph grammars (to generate a
valid language and to parse a language for its validity) for

parsing with (i) neural networks and (ii) finite automata

networks.

General Terms

Neural networks, Finite automata networks, Backtracking,

Incremental Parsing.

Keywords

Parsing, Graph grammar, Regular expression, Natural language

processing.

1. INTRODUCTION & BACKGROUND

TOPICS
Practically, all the approaches for parsing with natural languages

use some type of neural network architecture and some typical

statistical function towards getting a parse decision. However,

the so obtained parse decision might be incorrect because of the

unbounded and ambiguous nature of natural language grammars.
So, keeping in view that no natural language parser is 100%

correct (with respect to parse decisions), an attempt was made

by Bhargava and Purohit [5] to reduce the parsing time, by

parsing a natural language sentence without the use of any

statistical function as an application of parsing with neural
networks.

Regular expressions and finite automata are two dissimilar

representations for regular languages: Regular expressions (a

finite or infinite set of strings of alphabet characters), on one

hand, generate regular languages while, on the other hand, finite

automata (graphs) accept regular languages. Apparently, regular

expressions and all variants of finite automata (NFA with or

without -transitions, or DFA) are equivalent because all of

them represent the same language, that is, a regular language.
Thereby, all of them are convertible into each other (see, e.g.

[28]). It is a well-established fact that each regular expression

can be transformed into a nondeterministic finite automaton

(NFA) with or without ε-transitions (see, e.g. [51], [57], and

[59]). In addition, there also exist algorithmic approaches to
convert a regular expression into DFA by use of intermediate

NFAs (see, e.g. [11] and [28]). In the recent past, efforts have

been made towards conversion of a finite set of strings into a

minimal, deterministic, acyclic finite-state automaton (see, e.g.

[9] and [15]). Unfortunately, all these attempts either convert a
finite set of strings into a DFA or they convert a regular

expression into a minimal DFA using the following chain of

conversion: regular expression NFA with -transitions

NFA without -transitions DFA minimal DFA. Hence, it
has been found that there is no standard method available to

convert a regular expression into a minimal DFA directly, that

is, without the use of any intermediate NFA. To overcome this

problem, an attempt was also made by Bhargava and Purohit [4]

to convert a regular expression into a minimal DFA directly
without the use of any intermediate NFA as an application of

parsing with finite automata networks.

Graph grammars play an extensive and vital role in the above

parsing algorithms (see, e.g. [4] and [5]). In the present research

paper we investigate the wide-ranging role of graph grammars in
parsing with neural and finite automata networks. In order to

make a fair introduction to this theme, we describe in brief some

technical processes and other related topics.

1.1 Finite Automata Network
An automata network is a collection of automata connected

together according to a directed graph ([42]). The vertices of this

directed graph are considered as automata and the edges indicate

the existence of communication links. This graph has no parallel
edges. Each automaton can change its state at discrete time steps

as a local transition function of the states and a global input, and

synchronous action of the local state transition defines a global

transition on the entire network.

A finite automata network is a type of “automata networks”
which consists of finite automaton as vertices (nodes). A finite

automaton is a mathematical model of a system, with discrete

inputs and outputs. The system can be in any one of a finite

number of internal configurations or states. The state of the

system summarizes the information concerning past inputs that

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

14

is needed to determine the behavior of the system on subsequent

inputs. Thereby, a finite automaton is a model of behavior

composed of a finite number of states, transitions between those
states, and actions. A state stores information about the past, that

is, it reflects the input changes from the start of system to the

present moment. A transition indicates a state change and is

described by a condition that would need to be fulfilled to

enable the transition. An action is a description of an activity
that is to be performed at a given moment.

1.2 Neural Network
A neural network is a system of programs and data structures
that approximates the operation of the human brain. A neural

network usually involves a large number of processors operating

in parallel, each with its own small sphere of knowledge and

access to data in its local memory. Typically, a neural network is

initially “trained” or fed large amounts of data and rules about
data relationships. A program can then tell the network how to

behave in response to an external stimulus or can initiate activity

on its own (within the limits of its access to the external world).

Thereby, a neural network is a massively parallel distributed

processor made up of simple processing units which has a
natural propensity for storing experiential knowledge and

making it available for use. A neural network resembles the

brain in two respects, that is, first by “acquiring knowledge from

its environment through a learning process”, and then “storing

the acquired knowledge by using interneuron connection
strengths, known as synaptic weights”. Hence, a neural network

is a type of artificial intelligence that attempts to imitate, in a

way, how a human brain works. Instead of using a digital model

in which all computations manipulate “zeros and ones”, a neural

network works by creating connections between processing
elements, the computer equivalent of neurons.

Therefore, a neural network is made of individual units termed

neurons ([48]). Each neuron has a weight associated with each

input. A function of the weights and inputs (typically, a

squashing function applied to the sum of the weight-input
products) is then generated as an output. These individual units

are connected together as shown in Figure 1, with an input layer,

an output layer and usually one or more hidden layers.

Typically, the input layer consists of one unit per attribute and
the output layer of one unit per class. The number of units and

topology within the hidden layer is obtained by the respective

grammar. Through algorithms such as backpropagation, the

weights of the neural net can be adjusted so as to produce an

output on the appropriate unit when a particular pattern at the
input is observed. The backpropagation algorithm works by

running the training instance through the neural network, and

calculating the difference between the desired and actual

outputs. These differences are then backpropagated from the

output layer to the hidden and input layers in the form of

modifications to the weights of each of the component neurons.
This modification is done in a manner proportional to the

contribution to the difference in output, so that the weights most

responsible for the difference are modified the most.

Feedforward neural networks cannot take labeled trees as input

because they neither can deal with structured objects that have
variable size nor they can embed relations among atomic

constituents. In principle, recurrent neural networks might be

employed by converting the tree into a sequence (see, e.g. [25]

and [33]).

1.2.1 Recurrent Neural Network
A recurrent neural network (RNN) is a modification to

feedforward neural network architecture to allow temporal

classification, as shown in Figure 2. In this case a “context”

layer is added to the structure which retains information between

observations. At each time-step, new inputs are fed into the
RNN. The previous contents of the hidden layer are passed into

the context layer. These then feed back into the hidden layer in

the next time-step. So, during parsing, RNN is the best suitable

architecture to store the intermediate incremental trees

information for getting the final parse tree for a sentence.

1.3 Parsing
According to Aho et al. [2], parsing is the process of

determining whether a string of tokens can be generated by a

grammar. To analyze a sentence or a language statement,

parsing breaks down words into functional units that can be
converted into machine language. Parsing involves grouping the

tokens of the source program into grammatical phrases that are

used by the compiler to synthesize output. The grammatical

phrases of the source program are represented by parse tree. A

parse tree is a tree that represents the syntactic structure of a
string according to some formal grammar. In a parse tree the

interior nodes are labeled by nonterminals of the grammar while

the leaf nodes are labeled by terminals of the grammar. Parse

trees may be generated for sentences in natural languages as

well as during processing of computer languages such as
programming languages. A parser, capable of constructing parse

tree, is a program, usually part of a compiler that receives input

in the form of sequential source program instructions, interactive

online commands, markup tags, or some other defined interface

and breaks them up into parts that can then be managed by other
programming. A parser may also check that all necessary input

has been provided.

1.4 Graph Grammars
A grammar is a set of rules which can

o generate a construct from a list of terminals;

Fig 1: A typical feedforward neural network.

Hidden Layer Input Layer Output Layer

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

Fig 2: A Recurrent neural network architecture.

Inputs

Output

Context Layer

Output Layer

Hidden Layer

Input Layer

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

15

o recognize that a construct obeys the grammar rules.

In natural languages, a construct is a sentence and the terminals

are words. The grammar can specify such notions as subject-
verb agreement, the declaration of nouns and the conjugation of

verbs and the syntactic structure of sentences. In computational

linguistics, our area of interest is to find a natural language

grammar so that machine could recognize and interpret the

sentences. In natural language parsing, sentences are treated as
trees (graphs) and the parsing algorithm tries to obtain

incremental trees (graphs) using a set of graph grammar rules.

At each step of parsing, graph grammar maintains the legally

correct connection between two trees to get an enhanced one.

Thereby, all the connection process (of two trees) takes place
under the supervision of graph grammar rules defined for this

purpose.

According to McCreary [44] and Rozenberg [50], a graph

grammar is a grammar that operates on a graph. In a graph

grammar, graphs are generated from some initial graph by
replacing a sub graph of the host graph by another graph, and

embedding the inserted graph into the host graph. Thereby, a

graph grammar is a canonical generalization of a context free

string grammar. Its core is a finite set of productions of the form

(A, R, C), where A is the label of the replaced vertex, R is the
graph from the right hand side, and the connection relation C

specifies the embedding of the right hand side R into the local

environment of the replaced vertex. Graph grammars were

invented, in early seventies, in order to generalize (Chomsky)

string grammars. Graph grammars were originated from
Chomsky grammars by substituting the replacement of strings

with the replacement of graphs. The main idea was that of

extending concatenation of strings to a “gluing” of graphs. The

action of gluing two graphs is a construction, in the category of

graphs and graph morphisms, called pushout. A graph, defined
as an algebraic structure, is a 6-tuple (V, E, s, t, lV, lE), where

 V and E are two finite sets,

 V E = ,

 s, t : E V are two mappings indicating the source and the
target of an edge,

 lV: V V, and lE: E E are two mappings from V and E

in two finite sets of labels.

Given two graphs G = (V, E, s, t, lV, lE) and G’ = (V’, E’, s’, t’,

lV’, lE’), a graph morphism from G to G’ is a pair (1, 2), 1:

V V’, 2: E E’ such that satisfies the following two

conditions: (i) labels are preserved i.e. lV(vi) = lV’(1(vi)), and

(ii) incidence is preserved i.e. 1(s(e i)) = s’(2(e i)).

It is obvious that there is a morphism from a graph H to a graph

G if G contains H. For the graphs G and G’, as shown in Figure

3, there is a graph morphism from G to G’ as G’ contains G;

while for the next pair of graphs G and G’, as shown in Figure 4,

there is no graph morphism because neither of the graphs
contains the other.

1.5 Incremental Parsing
Incremental processing of natural language is based on the

intuitive fact that natural languages are processed from left to

right, and most of the times are processed incrementally (see,

e.g. [21] and [38]). The incrementality hypothesis implies that
the semantic interpretation of some initial part of the sentence,

to be parsed, is available as the initial scan of the input material

proceeding from left to right. The next step towards incremental

parsing is to further add a semantic interpretation into initial

semantic interpretation with the aim of getting a better semantic
interpretation for a larger part of input sentence. And this

process continues till we get an interpretation for the whole

sentence.

For incremental parsing, parse trees need to be connected

incrementally. The interaction rules during connection between
parse trees are described in various studies (see, e.g. [40], [46],

[54], [55], and [56]). The interaction between the parse trees

occurs at the word level and forces the syntactic analyzer to

keep an entirely connected structure at all times. Parsing

proceeds from left to right through a series of incremental trees,
each spanning one additional word to the right. Let us have a

sentence s = w1w2w3...w s and a parse tree T for it. All the

pendant vertices of T are labeled by words and the remaining

vertices (of degree 2 or more) are labeled by nonterminal

symbols. The recursive definition of T i (for i {1, 2, ..., s })

spanning w1w2...wi is as follows:

 T1 consists of the chain of vertices and edges from w1 to its

maximal projection.

 T i+1 consists of all the vertices and edges in T i and the chain
of vertices and edges from wi+1 to L, where L is either a

vertex of T i or the lowest vertex of T dominating both the

root of T i and wi+1.

Moreover, we also have the following definitions towards

finding the incremental trees for s:
 The connection path for wi+1 is the difference between T i+1

and T i. In other words the connection path for w i+1 is the

parse tree that has to be attached to T i to get T i+1.

 A vertex that is both in T i+1 and T i is called the host.

 The vertex labeled by the POS tag of wi+1 is called a foot.

To accommodate the next input word wi+1 to the incremental

tree T i, a connection path is computed. There can be more than

one such connection path. A selection procedure selects the best

connection path to obtain the next incremental tree T i+1. The

better is the selection procedure, the less time it will take to
compute T i+1. A selection procedure chooses the best connection

path and host to generate the next incremental tree T i+1. Once we

obtain T i+1, we look ahead to get T i+2, based on T i+1 and next

word wi+2, in exactly the same way as we obtained T i+1 and this

process continues till either we get T for s or we fail to get it. Fig 3: G’ contains G, showing that there is a

morphism from G to G’.

A

A

1

2 3

B

G

G’

A

A

1
2

3

B

B
E

Fig 4: Neither of the graphs contains the other,

showing that there is no morphism.

A

1

2 3

B

G

G’

A

A

1
2

3
B

B E

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

16

Figure 5 shows the sequence of incremental trees for a sentence

of the corpus.

1.6 Backtracking
With respect to the concept of trees, backtracking picks the first
path and tries to go into its depth, searching for the solution; if it

fails, then it steps backwards and picks the next path (another

alternative), and so on. As a result, we can conclude that in the

end the outcome is a resulting vector that contains the solutions.

Backtracking solves problems that can be narrowed down to
finding some sort of Descartes multiplication of N elements in

series, which can be combined to satisfy some strict inner

constraints between each other. It's our job to analyze how we

can "re-phrase" the problem to some sort of series. It means that

we must "code" the solution into a vector. It is also our job to
identify the source elements of series from which we're going to

build the possible paths of that so-called tree, or just a simple

vector where we are moving forward trying to combine the

elements from the source array, and on each failure taking one

step backwards and trying the next alternative. We do this until a
valid solution is found or we fail to get it.

According to Kruse [34], backtracking attempts to complete a

search for a solution to a problem by constructing partial

solutions and always ensures that the partial solutions remain

consistent with the requirements of the problem. Backtracking
then attempts to extend a partial solution towards completion but

when an inconsistency with the requirements of the problem

occurs the actual backtracking starts by removing the most

recently constructed part of the solution and tries another

possibility. Figure 6 shows the process of backtracking by a
depth-first search where there is just one root node.

The contents of this paper are arranged as follows.

Section 2 deals with review of literature on related work and its

current status. Next section 3 first details the significance of
graph grammars in parsing with neural networks followed by a

description on the role of graph grammars in parsing with finite

automata networks. Last Section 4 deals with the conclusions of

the present research paper.

2. RELATED WORK
Related work done in various areas by learned scholars is

divided into five sections: graph grammars and its applications;

conversion of regular expression into finite automata; parsing
with neural networks and natural language processing;

incremental parsing; and neural networks and recurrent neural

networks.

2.1 Graph Grammars and its Applications
As far as we know, very few algorithms exist for the inference

of graph grammars and its applications in parsing. Johnson et al.

[30] described a variant of the subset construction that required

the unique determination of the states in which a semantic action
was required. The use of graph grammars for syntactic pattern

recognition by providing an enumerative method for inferring a

limited class of context-sensitive graph grammars was described

by Bartsch-Spörl [3].

Briscoe et al. [8] described a substantial grammar to produce a
general purpose morphological and syntactic analyzer for

English language. Details of graph grammars and its various

applications were enumerated by Ehrig [18] and Rozenberg

[50]. Furthermore, McCreary [44] stated that the objects created

through productions of a graph grammar were graphs rather than
strings, showing that the theory of graph grammars is a

generalization of formal languages and the theory of string

grammars. All the above references were helpful for

understanding the graph grammar concepts in the present study.

Abney [1] first defined stochastic attribute-value grammars and
then gave an algorithm for computing the maximum-likelihood

estimate of their parameters. Palm [47] described the role of

graphs in natural language parsing. Later, Cook and Holder [14]

presented a scheme for discovering frequent substructures in

graphs. Schmid [52] gave a model on parsing using graph
grammars, which was a generative probability model for

unification-based grammars in which rule probabilities

depended on the feature structure of the expanded constituent.

Finally, Kukluk et al. [35] observed that graph grammars

combine relational aspects of graphs with the iterative and
recursive aspects of regular expressions.

2.2 Conversion of Regular Expression into

Finite Automata
There are very few methods available for conversion of a regular

expression into a minimal DFA without use of any NFA (see,

e.g. [4]). After scanning the available related literature, all the
reviewed methods fall into one of the following three categories.

(i) Conversion of a regular expression into an NFA (with or

without -transitions).

(ii) Conversion of a regular expression into a DFA by using
intermediate NFA.

(iii) Conversion of a set of strings (finite or infinite) into a

finite automaton (NFA or DFA).

Fig 5: The incremental trees of the sentence “He has no
stock”. Vertices are labeled with the incremental tree that

includes them for the first time.

T3

NP

NP VP

S

T1

T1

T2

T2

T2

T3 T4

Prp VBZ DT NN

He has no stock

Fig 6: Backtracking: Depth-first search for a solution.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

17

Besides the above three categories, Bhargava and Purohit [4]

gave a method to convert a regular expression into a minimal

DFA without the use of any NFA. This method was an ideal
example of parsing with finite automata networks using graph

grammars.

2.3 Parsing with Neural Networks and

Natural Language Processing
Tomita [58], Chapman [12], and Aho et al. [2] enumerated

various parsing techniques, starting from the very fundamental
topics of parsing up to its applications. A context-free parsing

algorithm that can parse sentences with unknown parts of

unknown length was designed by Lang [37]. Lavie [39]

described a method on developing an integrated heurist ic

scheme for selecting the parse that was deemed "best" from such
a collection. Later, another method to find the most probable

parse tree from a valid set of such trees was formulated by Bod

[6]. Charniak [13] and Manning and Schutze [43], on syntactic
parsing, enumerated statistical language processing techniques

such as word tagging, parsing with probabilistic context free

grammars, grammar induction, and syntactic disambiguation. A
neural network based statistical parser which was trained and

tested on the Penn Treebank was presented by Henderson [26].

In this parsing scheme, the neural network was used to estimate

the parameters of a generative model of left-corner parsing, and

these parameters were used to search for the most probable
parse.

Bhargava and Purohit [5] presented a distinctive approach of

parsing with neural network. In their approach, the use of

statistical function was minimized and hence the parsing time

was considerably reduced.

2.4 Incremental Parsing
Ghezzi and Mandrioli [21] and Larchevêque [38] enumerated

the concept of incremental parsing which was followed and is
modified in the present study. Regarding incremental parsing

concept, Frazier [20], Yamashita [61], and Kamide and Mitchell

[31] suggested that the human parser assembles substructures

eagerly before reaching the structure head. Steedman [55],

Stabler [54], Milward [46], Sturt and Crocker [56], and
Lombardo et al. [40] had discussed the interaction rules during

incremental connection between parse trees.

Lane and Henderson [36] described the use of Simple

Synchrony Networks (SSNs) for learning to parse English

language sentences drawn from a corpus of naturally occurring
text, by means of an incremental parsing. An algorithm that

simulated the building of structure by marking, during the scan

of the tree, the branches which would be built by a perfectly

informed incremental parser, was designed by Lombardo and

Sturt [41]. Several issues related to incremental (left-to-right)
beam-search parsing of natural language using generative or

discriminative models, either individually or in combination,

were enumerated by Roark [49].

2.5 Neural Networks and Recurrent Neural

Networks
Neural Networks: Kitano [32] and Boers & Kuiper [7]

described their approaches of grammar-based encodings of

neural networks. The above approaches were helpful in “joining

of graph grammars and neural networks” and are modified in the
present study. Later, neural network parsers were enumerated by

Miikkulainen [45] and Lane and Henderson [36]. Hebbian

parsers ([23]) and holistic parsers ([27]) were two classical

examples of neural network parsers. Patterson [48] defined a
neural network as a composition of individual units called

neurons.

Recurrent Neural Networks: A detailed overview on the use

and features of various recurrent neural network architecture

(RNN) was enumerated by Jain and Waibel [29], Elman [19],
Sharkey [53], Wermter and Weber [60], Hammer and Tiňo [24],

erňanský et al. [17], Grüning [22], Cartling [10], and Dobnikar

and Šter [16]. Kolen and Kremer [33] used the concept of

recurrent neural networks as advancement over feed forward

neural networks. In a closely related description, Hawkins and
Boden [25] stated that “as compared to feedforward neural

networks recurrent neural networks generally performed better

on sequence analysis tasks”.

3. PARSING USING GRAPH GRAMMAR
In Parsing with neural networks using graph grammars,

Bhargava and Purohit [5] provides an algorithm in which a

sentence of natural language is taken as input and the algorithm

decides whether it is syntactically correct or not. Bhargava and
Purohit [5] made use of recurrent neural networks and

incremental parsing in this method. At each step of incremental

parsing, the correct connection path linking the next word to the

incrementally build parse tree was predicted using a recurrent

neural network model. A set of rules for all the graph operations
required to obtain incremental trees for this parser graph

grammar was devised and kept together in the form of an

algorithm.

In Parsing with finite automata networks using graph

grammars, Bhargava and Purohit [4] converts an input regular
expression into a minimal deterministic finite automaton (DFA)

without the use of any NFA by means of a parsing algorithm. A

set of graph grammar rules, that is, the rules for union,

concatenation, kleene closure, and minimization operations over

DFA was designed for the above conversion and kept together in
the form of an algorithm. During the conversion process graph

operations took place using an appropriate graph grammar rule.

This method exhibited an example of parsing with finite

automata networks in a dual manner, that is,

(i) If the input regular expression was not valid then the
algorithm would stop without producing the output DFA. Hence

the input regular expression was parsed for its validity, which is

the first aspect of parsing using graph grammars. Here the graph

grammar belongs to parser grammars because it parses the

regular expression.
(ii) If the input regular expression was valid then the algorithm

would convert it into an equivalent minimal DFA which is in

some way the second aspect of parsing using graph grammars.

Here the graph grammar belongs to generator grammars

because it constructs the DFA for the language extracted from
regular expression thereby representing the language by a new

structure.

The present research paper discusses in detail the implication of

graph grammars with respect to parsing with the two networks,

viz. neural and finite automata networks. For this we take two
previous research works attempted by Bhargava and Purohit

(see, e.g. [4] and [5]) and bequeath the authority of graph

grammars during parsing.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

18

3.1 Parsing with Neural Networks
From the basic results of natural language processing, parsing of

natural languages, graph grammars and neural network

architectures, Bhargava and Purohit [5] have derived a simple,

efficient and innovative method for parsing with neural

networks using graph grammars. They have presented a novel
methodology for parsing a natural language, based upon the

incrementality hypothesis, a generally held assumption about

human parser. In addition, the method ([5]) also relies upon one

more unique hypothesis, that is, “a sentence‟s parse tree has the

best possibility to be accepted as a connection path in future if it
is used as a connection path for most of the times in past”.

Though in most previous attempts, a statistical function for

obtaining a parse decision has been a necessary component;

however, Bhargava and Purohit [5] removes the necessity of any

such statistical function thus reducing the amount of parsing
time. In addition, it also has been shown that the parsing time by

the proposed parser ([5]) was shorter as compared to the parsing

time of four most time-efficient EFD parsers hence, showing the

supremacy of the proposed parser ([5]) over EFD parsers.

Bhargava and Purohit [5] dealt with a combination of two
different but related streams, that is, graph grammars and

parsing of natural languages, even though an almost equal

attention was paid towards both the above streams in their

method. For this, they emphasized on the use of graph grammars

for parsing a natural language by applying it at each stage of
parsing. Therefore, the method ([5]) showed its supremacy over

the previous works of similar approach by paying concentration

on two streams, that is, graph grammars and parsing of natural

languages, unlike the other attempts which were aimed at only

one stream that is, parsing of natural languages.

3.2 Parsing with Finite Automata Networks
From the basic results of formal language parsing, graph

grammars and automata theory , Bhargava and Purohit [4] have
derived a simple novel method to construct a minimal

deterministic finite automaton from a regular expression. This

method ([4]) removes the dependency over the necessity of

lengthy chain of conversion, that is, regular expression NFA

with ε-transitions NFA without ε-transitions DFA

minimal DFA. Therefore the main advantages of the minimal

DFA construction algorithm by Bhargava and Purohit [4] are its

minimal intermediate memory requirements and hence, it‟s

reduced time complexity. This algorithm ([4]) converts a regular
expression of size n in to its minimal equivalent DFA in

O(n.log2n) time. In addition to this, the time complexity is

further shortened to O(n.logen) for n ≥ 75.

Again, Bhargava and Purohit [4] dealt with a combination of

two different but related streams, that is, graph grammars and
parsing with finite automata networks, even though an almost

equal attention was paid towards both the above streams in their

method. For this, they emphasized on the use of graph grammars

in the form of graph algorithms for conversion of regular

expression into DFA. Therefore, the method ([4]) again had
shown its supremacy over the earlier efforts of the same kind by

paying concentration on two streams, that is, graph grammars

and parsing of finite automata networks, unlike the other

attempts which were aimed at only one stream that is, parsing of

finite automata networks.

4. CONCLUSION & FUTURE WORK
In this study we use graph grammar learning for parsing with (i)

finite automata networks and (ii) neural networks, hoping that

the expressive power of graphs and the ability of graph

grammars to generalize the string grammars will turn out to be

an influential learning paradigm. Thereby, this twofold study
will be able to discuss the inference of graph grammars in

parsing with neural and finite automata networks.

The method by Bhargava and Purohit [5] dealt with a

combination of two different but related streams, that is, graph

grammars and parsing of natural languages, even though an
almost equal attention was paid towards both the above streams

in the method. The future applications of the above parsing of

natural language may lead to the development of an efficient

incremental parser which is informed by the network

architecture in taking decisions about attachment ambiguity.
Contribution of some other knowledge sources like semantic

knowledge-base and a set of subcategorization frames, so that

ambiguity is reduced, will also help in developing a parser for

natural language.

Further, most researches attempted hitherto are based on the use
of intermediate NFA for the conversion of regular expression

into DFA. Further most of the researches have not focused on

the role of graph grammar during such conversion. Bhargava

and Purohit [4] presented the algorithm that uses intermediate

DFA in place of NFA. The algorithm ([4]) was fully equipped
with graph transformation rules and hence was emphasizing the

graph grammar role in parsing with finite automata networks.

The algorithm ([4]) had shown a time complexity which was

shorter as compared to other available methods, thus motivating

the use of DFA in place of NFA for similar studies.

Finally as the present research paper depicts a speckled role of

graph grammars in parsing with neural and finite automata

networks, its future applications are immediate with respect to

some other automata networks like cellular automata networks.

In future, we are planning to investigate the role of graph
grammars in parsing with cellular automata networks.

5. REFERENCES
[1] Abney, S. P. [1997]. “Stochastic attribute-value

grammars”. Computational Linguistics. vol. 23, no. 4, pp.

597-618.

[2] Aho, A. V., R. Sethi, and J. D. Ullman [2001]. Compilers:

Principles, Techniques and Tools. Pearson Education Asia.

New Delhi.

[3] Bartsch-Spörl, B. [1983]. “Grammatical inference of graph

grammars for syntactic pattern recognition”. Lecture Notes

in Computer Science no. 153. Springer-Verlag,

Berlin/Heidelberg, New York. pp. 1-7.

[4] Bhargava, S. and G. N. Purohit [2011]. “Construction of
a minimal deterministic finite automaton from a regular

expression”. International Journal of Computer

Applications (IJCA) . vol. 15, no. 4, pp. 16-27.

[5] Bhargava, S. and G. N. Purohit [2011]. “Parsing a

Natural Language: A Non-Statistical Approach”. National

Journal of Computer Science & Technology (NJCST).

vol. 3, no. 1, pp. 23-33.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

19

[6] Bod, R. [1995]. “The problem of computing the most

probable tree in data-oriented parsing and stochastic tree

grammars”. In Proceedings of the 7th Conference on
European Chapter of the Association for Computational

Linguistics. Association for Computational Linguistics,

Morgan Kaufmann Publishers, San Francisco, CA. pp. 104-

111.

[7] Boers, E. J. W. and H. Kuiper [1992]. “Biological

metaphors and the design of modular artificial neural

networks”. Master‟s Thesis. Leiden University, The

Netherlands.

[8] Briscoe, E., C. Grover, B. Boguraev, and J. Carroll [1987].

"A formalism and environment for the development of a

large grammar of English”. In Proceedings of the 10th

International Joint Conference on Artificial Intelligence

(IJCAI’87), Milan, Italy. Morgan Kaufmann Publishers,

San Francisco, CA, USA. pp. 703-708.

[9] Carrasco, R. C. and M. L. Forcada [2001]. “Incremental
construction and maintenance of minimal finite-state

automata”. Computational Linguistics. vol. 28, no. 2, pp.

207-216.

[10] Cartling, B. [2008]. “On the implicit acquisition of a

context-free grammar by a simple recurrent neural

network”. Neurocomputing. vol. 71, no. 7-9, pp. 1527-

1537.

[11] Chang, C. H. and R. Paige [1992]. “From regular
expressions to DFAs using compressed NFAs”. In

Proceedings of the 3rd Annual Symposium on

Combinatorial Pattern Matching. Lecture notes in

Computer Science no. 644. Springer-Verlag, London. pp.

90-110.

[12] Chapman, N. P. [1987]. LR Parsing Theory and Practice.

Cambridge University Press. New York.

[13] Charniak, E. [1996]. Statistical Language Learning. Mass.

[u.a.] : MIT Press. Cambridge, MA.

[14] Cook, D. J., and L. B. Holder [2000]. “Graph-based data
mining”. IEEE Intelligent Systems. vol. 15, no. 2, pp. 32-

41.

[15] Daciuk, J., S. Mihov, B. W. Watson, and R. E. Watson

[2000]. “Incremental construction of minimal acyclic

finite-state automata”. Computational Linguistics. vol. 26,

no. 1, pp. 3-16.

[16] Dobnikar, A. and B. Šter [2009]. “Structural properties of

recurrent neural networks”. Neural Processing Letters. vol.

29, no. 2, pp. 75-88.

[17] erňanský, M., M. Makula, and u. Beňušková [2007].
“Organization of the state space of a simple recurrent

network before and after training on recursive linguistic

structures”. Neural Networks. vol. 20, no. 2, pp. 236-244.

[18] Ehrig, H. [1988]. Graph-Grammars and their Application

to Computer Science. Springer-Verlag, New York, Inc.

Secaucus, NJ, USA.

[19] Elman, J. L. [1991]. “Distributed representations, simple

recurrent networks, and grammatical structure”. Machine

Learning. vol. 7, no. 2-3, pp. 195-224.

[20] Frazier, L. [1987]. “Syntactic processing: Evidence from

Dutch”. Natural Language and Linguistic Theory. vol. 5,

no. 4, pp. 519-559.

[21] Ghezzi, C. and D. Mandrioli [1979]. “Incremental parsing”.

ACM Transactions on Programming Languages and

Systems. vol. 1, no. 1, pp. 58-70.

[22] Grüning, A. [2007]. “Elman backpropagation as

reinforcement for simple recurrent networks”. Neural

Computation. vol. 19, no. 11, pp. 3108-3131.

[23] Hadley, R. F. and M. B. Hayward [1997]. “Strong semantic

systematicity from hebbian connectionist learning”. Minds

and Machines. vol. 7, no. 1, pp. 1-37.

[24] Hammer, B. and P. Tiňo [2003]. “Recurrent neural

networks with small weights implement definite memory

machines”. Neural Computation. vol. 15, no. 8, pp. 1897-

1929.

[25] Hawkins, J. and M. Boden [2005]. “The applicability of

recurrent neural networks for biological sequence

analysis”. IEEE/ACM Transactions on Computational

Biology and Bioinformatics (TCBB). vol. 2, no. 3, pp. 243-

253.

[26] Henderson, J. [2003]. “Neural network probability

estimation for broad coverage parsing”. In Proceedings of
the 10th Conference on European Chapter of the

Association for Computational Linguistics - Volume 1.

Association for Computational Linguistics, Morristown,

NJ. pp. 131-138.

[27] Ho, E. K. S. and L. W. Chan [1999]. “How to design a

connectionist holistic parser”. Neural Computation. vol. 11,

no. 8, pp. 1995-2016.

[28] Hopcroft, J. E. and J. Ullman [1979]. Introduction to
Automata Theory, Languages and Computation. Addison-

Wesley Longman Publishing Company, Inc. Boston, MA,

USA.

[29] Jain, A. N. and A. H. Waibel [1990]. “Incremental parsing

by modular recurrent connectionist networks”. In Advances

in Neural Information Processing Systems 2. Morgan

Kaufmann Publishers, San Marco, CA. pp. 364-371.

[30] Johnson, W. L., J. H. Porter, S. I. Ackley, and D. T. Ross
[1968]. “Automatic generation of efficient lexical

processors using finite state techniques”. Communications

of the ACM. vol. 11, no. 12, pp. 805-813.

[31] Kamide, Y. and D. C. Mitchell [1999]. “Incremental pre-

head attachment in Japanese parsing”. Language and

Cognitive Processes. vol. 14, no. 5-6, pp. 631-662.

[32] Kitano, H. [1990]. “Designing neural networks using

genetic algorithms with graph generation systems”.

Complex Systems. vol. 4, no. 4, pp. 461-476.

[33] Kolen, J. and S. Kremer [2001]. A Field Guide to

Dynamical Recurrent Networks. IEEE Press. New York.

[34] Kruse R. L. [1991]. Data Structures and Program Design.

2nd edn. Prentice Hall of India Private Limited. New Delhi.

[35] Kukluk, J. P., L. B. Holder, and D. J. Cook [2007].
“Inference of node replacement graph grammars”.

Intelligent Data Analysis. vol. 11, no. 4, pp. 377-400.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.4, June 2011

20

[36] Lane, P. C. R. and J. B. Henderson [2001]. “Incremental

syntactic parsing of natural language corpora with simple

synchrony networks”. IEEE Transactions on Knowledge

and Data Engineering. vol. 13, no. 2, pp. 219-231.

[37] Lang, B. [1988]. “Parsing incomplete sentences”. In
Proceedings of the 12th International Conference on

Computational Linguistics Volume - 1. Association for

Computational Linguistics, Morristown, NJ. pp. 365-371.

[38] Larchevêque, J. [1995]. “Optimal incremental parsing”.

ACM Transactions on Programming Languages and

Systems (TOPLAS). vol. 17, no. 1, pp. 1-15.

[39] Lavie, A. [1994]. “An integrated heuristic scheme for

partial parse evaluation”. In Proceedings of the 32nd
Annual Meeting on Association for Computational

Linguistics. Association for Computational Linguistics,

Morristown, NJ. pp. 316-318.

[40] Lombardo, V., L. Lesmo, L. Ferraris, and C. Seidenari

[1998]. “Incremental processing and lexicalized

grammars”. In Proceedings of 20th Annual Conference of

the Cognitive Science Society, Madison, WI - USA.
Lawrence Erlbaum Associates, Publishers Mahwah, New

Jersey, London. pp. 621-626.

[41] Lombardo, V. and P. Sturt [2002]. “Incrementality and

lexicalism: A treebank study”. In Lexical Representations

in Sentence Processing. John Benjamins: Computational

Psycholinuguistics Series - 2002. pp.137-156.

[42] Luerssen M. H. [2005]. “Graph grammar encoding and

evolution of automata networks”. In Proceedings of the
28th Australasian Conference on Computer Science -

Volume 38 (ACSC ’05). Australian Computer Society, Inc.

Darlinghurst, Australia. pp. 229-238.

[43] Manning, C. D. and H. Schutze [1999]. Foundations of
Statistical Natural Language Processing. Cambridge,

Mass. [u.a.] : MIT Press.

[44] McCreary, C. L. [1988]. “Parsing a graph grammar”. In

Proceedings of the 1988 ACM 16th Annual Conference on

Computer Science (CSC ’88). ACM, New York, NY. pp.

249-255.

[45] Miikkulainen, R. [1996]. “Subsymbolic case-role analysis
of sentences with embedded clauses”. Cognitive Science.

vol. 20, no. 1, pp. 47-73.

[46] Milward, D. [1995]. “Incremental interpretation of

categorial grammar”. In Proceedings of the 7th Conference

on European Chapter of the Association for Computational

Linguistics. Association for Computational Linguistics,

Morgan Kaufmann Publishers, San Francisco, CA. pp. 119-

126.

[47] Palm, A. [1999]. “The expressivity of tree languages for

syntactic structures”. The Mathematics of Syntactic

Structure: Trees and Their Logics. The theory of syntactic

domains, Technical Report no. 75, Department of

Philosophy, University of Utrecht. pp. 113-152.

[48] Patterson, D. W. [2007]. Introduction to Artificial

Intelligence and Expert Systems. Pearson Education in

South Asia. New Delhi.

[49] Roark, B. [2004]. “Efficient incremental beam-search

parsing with generative and discriminative models: keynote
talk”. In Proceedings of the Workshop on incremental

Parsing: Bringing Engineering and Cognition Together.

ACL Workshops. Association for Computational

Linguistics, Morristown, NJ. pp. 16-17.

[50] Rozenberg, G. [1991]. Handbook of Graph Grammars and

Computing by Graph Transformation. World Scientific.

[51] Rytter, W. [1989]. “A note on optimal parallel

transformations of regular expressions to nondeterministic
finite automata”. Information Processing Letters. vol. 31,

no. 2, pp. 103-109.

[52] Schmid, H. [2002]. “A generative probability model for

unification-based grammars”. In Proceedings of the 19th

International Conference on Computational Linguistics -

Volume 1. Association for Computational Linguistics,

Morristown, NJ. pp. 1-7.

[53] Sharkey, N. [1992]. Connectionist Natural Language

Processing. Intellect. Oxford, England.

[54] Stabler, E. P. [1994]. “The finite connectivity of linguistic
structure”. In Perspectives on Sentence Processing.

Lawrence Erlbaum Associates, Hillsdale, New Jersey

Hove, UK. pp. 303-336.

[55] Steedman, M. J. [1989]. “Grammar, interpretation and

processing from the lexicon”. In Lexical Representation

and Process. MIT Press, Cambridge, MA. pp. 463-504.

[56] Sturt, P. and M. Crocker [1996]. “Monotonic syntactic

processing: A cross linguistic study of attachment and
reanalysis”. Language and Cognitive Processes. vol. 11,

no. 5, pp. 449-494.

[57] Thompson, K. [1968]. “Regular expression search

algorithms”. Communications of the ACM. vol. 11, no. 6,

pp. 419-422.

[58] Tomita, M. [1985]. Efficient Parsing for Natural Language:

a Fast Algorithm for Practical Systems. Kluwer Academic

Publishers.

[59] Watson, B. [1995]. “Taxonomies and toolkits of regular

language algorithms”. Ph.D. Thesis. Eindhoven University
of Technology, CIP-DATA Koninklijke Bibliotheek, Den

Haag.

[60] Wermter, S. and V. Weber [1997]. “SCREEN: Learning a

flat syntactic and semantic spoken language analysis using

artificial neural networks”. Journal of Artificial Intelligence

Research. vol. 6, no. 1, pp. 35-85.

[61] Yamashita, K. [1994]. “Processing of Japanese and

Korean”. Ph.D. Thesis. Ohio State University, Columbus,

Ohio.

