
International Journal of Computer Applications (0975 – 8887)
Volume 23– No.4, June 2011

1

Efficient Modular Adders for Scalable Encryption

Algorithm

K.J. Jegadish Kumar
Assistant Professor

 SSN College of Engineering
Kalavakkam-603110 Chennai,

K.Chenna Kesava Reddy
Principal

Jyothismathi College of
Engineering and Technology

Shamirpet-500078, India

S. Salivahanan
Principal

SSN College of Engineering
Kalavakkam-603110

Chennai, India

ABSTRACT
SEA – Scalable Encryption Algorithm is a block cipher based
symmetric encryption scheme, specially designed for resource
constrained devices. SEA proposes low computational
encryption routines (i.e. less code size, memory and power) for
processors with a restricted instruction set. SEA is parametric

with plain-text, key and microprocessor size, and meant for
efficient combination of encryption/decryption and key
derivation. The performance of modified SEA using efficient
architectures of 2b and 2b-1 modular adders in a Field
programmable gate array (FPGA) device is investigated. In this
paper, an iterative based loop design of the block cipher is first
implemented on FPGA. The proposed modular adders in SEA
achieve lower area and power consumption on the target

platform VIRTEX-4, xc4vl25-10ff668. Beyond its low cost
performances, the proposed architecture is fully flexible with
any parameters and takes advantage of generic VHDL coding.

Keywords: Block ciphers, constrained applications,

Modular adders, FPGA implementation.

1. INTRODUCTION

Symmetric encryption schemes designed for resource
constrained devices do not have a long history. Remarkable
examples of such encryption schemes are the Tiny Encryption
Algorithm (TEA) or Yuval's proposal [1]. However, both of
them are old and could not afford commendable security against
attacks such as linear and differential cryptanalysis [2]. Recent

ciphers fairly concentrate on finding a good trade-off between
cost, security and performance. Consequently, there arises a
requirement for a new cryptosystem that endows with apt
solution for resource constrained systems. Embedded
applications that are basic building infrastructures represent a
noteworthy opportunity and challenge for new cryptosystem like
Scalable Encryption Algorithm (SEA) [1, 2,].

1.1 SEA: Delineation

The primary purpose for SEA is to implement in limited

processing resources (e.g. a small processor); the proposed
architecture is parametric with respect to plain-text, cipher-text,
key and the processor size. Since the architecture is parametric
in nature, there is flexibility of implementing in all platforms
with minimum code change. Most algorithms perform
differently on different platforms. But SEA is an exception. This

is due to the fact that for a given processor, SEA uses a smaller
sized ciphering routine and the security is achieved based on the
key size. Since we operate on a limited resource processor, only
some basic operations like XOR, AND, OR, efficient mod 2b
addition are done [3].

1.2 Related Work

There are many cryptographic algorithms that require high or
moderate processing power and area. They are Advanced
Encryption Standard (AES) [4-7], Data Encryption Standard
(DES) [8], Tiny Encryption Algorithm (TEA) [9,10], and

Extended TEA (XTEA) [11]. These encryption algorithms are
not suited to be implemented in a resource constrained system
due to various complexities involved like i.e. Non-scalability,
Processor Intensive, and Security Level [2].

AES (Rijndael) [4-7] comprises three block ciphers, all the
block cipher vary depending on the number of bits. AES is a
fixed block cipher of 128 bits with a key size of 128,192,256.

AES requires four 256 entry, 32 bit tables, so totally 4096 of
memory which equals 1kB for each table. AES is more
processor intensive and is non-scalable, so it cannot be
implemented on constrained systems. Though there are efficient
implementations of AES, there are still non- scalable for need of
any processing platform.

DES [8] is based on symmetric key algorithms of bit size 56.
DES is the classic symmetric key encryption algorithm that
receives a finite length of plain-text bits and alters through the
series of complex operations into a different bit sequences
known as cipher-text by using the similar key. Though DES is

not highly secured, it is widely used in a mode of operation as
suggested by Federal Information Processing Standard (FIPS-
81). DES is more processor intensive, non-scalable and
breakable by Linear Cryptanalysis.

TEA [9] or Yuval‟s proposal [10] is notable for its simplicity
and implementable on various platforms (scalability). It works
on 64 bit blocks and makes use of 128 bit key. When crypt is
analyzed with equivalent key, each key gives three other keys.
So in terms of security TEA is insecure. XTEA[11] was an
advanced version of TEA, mainly aimed at improving all the
security glitches. XTEA has complex key scheduling and

rearrangement of Shift XOR and addition operations. XTEA is
vulnerable to related key differential attack. Like SEA, HIGHT
[12] is also another Block Cipher for resource constrained

International Journal of Computer Applications (0975 – 8887)
Volume 23– No.4, June 2011

2

systems, but it is non-scalable and consumes more number of
gates and the throughput and operating frequency are much less
when compared to SEA. So, implementing SEA for constrained
systems is a better option.

This paper is organized as follows: The introduction and
literature survey are provided in Section 1. Section 2 describes
parameters, definitions and basic operations for implementation

of SEA. Section 3 illustrates hardware implementation of
efficient Modular adders. In Section 4, implementation results of
different modular adder architectures are presented and
compared. Finally, conclusion is given in Section5.

2. SEA IMPLEMENTATION

Recent symmetric ciphers observe tradeoffs between the cost
and implementation of hardware/software, which has influence
in their performance. They are especially designed for efficient

implementations on wide range of applications. SEA on other
hand defines to be better choice as they are friendly enough to
restrict processing resources and achieve high throughput.
Generally, design objective of SEA is to be a cost effective
cipher and certification schemes for processors having restricted
instruction set. Similar to AES [5-8] and DES, Ciphers SEA also
combines plain-text and key and are parameterized by bus sizes.
In contrast, solutions that are old for low cost ciphers like TEA
or Yuval‟s proposal, SEA additionally promotes a resistance to

cryptanalysis. When put into practice, SEA was demonstrated
to be convenient for embedded applications using
microcontrollers and low cost hardware implementations.
However, SEA‟s efficient hardware implementation and
performances are described by Standaert et.al [1, 2] are yet to be
investigated to meet efficiency in hardware costs. In [3], we
proposed a modified SEA with a simple modular adder and
successfully achieved efficiency in terms of area, power and

Computation speed. This paper therefore further proposes to
investigate this algorithm, modified for area and power in
constrained applications, with different variants of modular
adders. The investigation begins with an exploration of the
quality of a cost effective FPGA implementation of SEA [1, 2]
and our aim is to modify SEA using efficient modular adders as
in Beuchat [13] to reduce the hardware complexities.

2.1 Explanation of Algorithm

2.1.1 Fundamental Operations

Due to its simplicity constraints, SEAn,b is based on a restricted
number of uncomplicated operations (Chosen for their ease of
use in any processing device) denoted as bitwise XOR ,
substitution box S(S-Box), word (left) rotation R and inverse

word rotation R-1, bit rotation r, addition mod 2b. The thorough
explanation of algorithm has been presented [1]. Studies were
done on each operator to understand finally the Substitution Box
and Modulo 2b adders costs for more hardware complexity.

The fundamental addition mod 2b is narrated [1] as follows:

⊞:ℤ
2b

nb × ℤ
2b

nb → ℤ
2b

nb : x, y → z = x ⊞ y ⟺

zi = xi ⊞ yi ,
In this Section, we give a complete description of the algorithm,
starting with the important parameters, and then emphasizing its

basic operation. Afterwards follows the round and key round
description of SEA is presented [1].

2.1.2 Encryption/Decryption and Key

 Generation

The encryption round FE, decryption round FD and key
scheduling round FK are defined as:

Encryption Round FE :

 Li+1, Ri+1 = FE Li , Ri , Ki ⟺ Ri+1

= R Li ⨁r S Ri ⊞ Ki ,

Li+1 = Ri

Decryption Round FD :

 Li+1, Ri+1 = FD Li , Ri , Ki ⟺ Ri+1

= R−1 Li⨁r S Ri ⊞ Ki ,

Li+1 = Ri

Figure 2.1. Encrypt /decrypt round and key round [1]

Key Scheduling Round FK :

 KLi+1, KRi+1 = FK KLi , KRi , Ci ⟺ KRi+1

= KLi⨁R r S KRi ⊞ Ci ,

KLi+1 = KRi

2.1.3 Cipher Process

Enciphering is done iteratively by a number of rounds denoted
as „nr‟. This procedure is illustrated by the pseudo code [1]. P is
the plain-text representing the original data, K is the key and C
is the cipher-text. A parametric bit size known as „n‟ is used in

International Journal of Computer Applications (0975 – 8887)
Volume 23– No.4, June 2011

3

P, C and K. The operations within the cipher are performed
considering parametric words of b-bit. In this pseudo code, the
„&‟ relates to the concatenation operator, KR nr/2 is taken before
the switch and C(i) is a nb -word vector of which all the words
have value 0 excepted the LSB that equals i. Decryption is

exactly the same, using the decrypt round FD. Since nr is odd, for
key scheduling and encryption the value of nr must rounded up
or down [2].

2.1.4 Advised Number of rounds

Recommended Number of rounds nr is calculated which gives
high resistant to various known attacks like linear and
differential attacks. The value of nr must be always odd, if not 1
must be added to make it odd [1,2].

3. HARDWARE REALIZATION

3.1 Explanation

The first analysis step to the hardware implementation of SEA
proposes to take a look at a simple and direct implementation of

the algorithm on an FPGA platform, achieving one round per
clock cycle and represents as the loop implementation.
Components of the cipher that consume resources are the S-
boxes and the mod 2b adder; the Word Rotate and Bit Rotate
operations are simply implemented by swapping wires [1].
Based on the specifications, the key scheduling routines uses
two multiplexers permitting to switch the right and left part of
the round key at half the way of executing the algorithm, using

the suitable command signal Swap. The multiplexer is managed
by Switch that offers the round function with the right part of the
round key for the first half of the execution and transmits its left
part instead after the switch. The Generic Loop Architecture is
simple and only changes in the location of the R and R-1 Block.
The number of rounds nr is an elective input that can be
involuntarily derived from n and b. In this paper, we mainly
focus on modified SEA with different architectures of light
weight Modular adders [13] in consideration of efficient area

and low power optimization at the synthesizable VHDL design
level. Each architecture of modular adders is implemented
individually in VHDL and then combined with other
components to build a whole SEA [1, 2].

3.2 Realization of efficient Modular adders

Our proposed modification of SEA based on various Modular
adder designs [13] are constructed using basic components like

carry propagate adders, 21 multiplexers, OR gate.
Let x and y are the two numbers and assume that they belong to

a set {0, 1, 2, … m-1}. Then the modulo m addition is defined
as:
 (x + y) mod m = x + y if x +y < m

 = x + y − m if x + y ≥ m (3.1)

Though it appears that the above mentioned equation can be
realized using simple arithmetic operators, it involves with the
complexity in the implementation procedures. It requires a
suitable algorithm to reduce the cost of implementation and area.

Powerful hardware operators are essential for this purpose.

Let b= [log2 m]+1 be the number of bits. It is used in encoding
modulo m arithmetic operators by considering the inputs and
outputs. This can be done by using any of the three operating
methods based on table, adder or hybrid.

3.2.1 Adder-Based Operators

Figure 3.1 illustrates the implementation aspects of the operation
shown in Equation (3.1). The proof of the evaluation of these
procedures is given [13, 14, 15]. This architecture is very much
suitable for FPGAs as it uses only multiplexer and two carry

propagate adders.

The architecture of implemented algorithm[13] is portrayed in
Figure 3.1. This modulo addition algorithm is used to modify
SEA [1] which reduces the overall complexity.

Figure 3.1

3.2.1 Modulo (2
b
 ± 1) Addition

A few improvising of the adder-based operator illustrated earlier
are given for specific values of m i.e., 2b. For example, one‟s
complement addition or modulo (2b − 1) addition [12] is
defined by

(x + y) mod (2b − 1)

= (x + y + 1) mod 2b , if x + y + 1 ≥ 2b

 = x + y , if x + y + 1 < 2b (3.2)

Figure 3.2 [13] shows the architecture of the equivalent
hardware operator. Because of the condition x + y + 1 ≥ 2b, we
execute two additions in parallel and select the better result with
a multiplexer by considering that zero has a double
representation in one‟s complement, namely “0 . . . 0” and “1 . .
. 1” (i.e. 0 is congruent to 2b − 1 (modulo 2b − 1)). In case of
second encoding of zero accommodated by the path of
computation, Equation (3.2) can be rewritten as in (3.3) [13].

(x + y) mod (2b − 1)

= (x + y + 1) mod 2b if x + y ≥ 2b

= x + y if x + y < 2b (3.3)

International Journal of Computer Applications (0975 – 8887)
Volume 23– No.4, June 2011

4

0
2000
4000
6000
8000

10000

48
,4

72
,6

10
8

,6

14
4,

4

14
4,

1
2

N
o

: o
f

G
at

e
C

o
u

n
ts

DataSize Variants

Area(Gate Counts)

Mod_adder
1

Mod_adder
2

Mod_adder
3

Figure 3.2

The carry-out (cout) of the addition of x + y specifies whether the
increment is to be done. Figure 3.2 depicts the advantage of
evaluating the addition of x + y and
x + y = 1 in parallel based on the result of Cout. Figure 3.3 [13]
illustrates an another architecture in which the sum x + y is
added with Cout

Figure 3.3

4. IMPLEMENTATION RESULTS

We have used synthesizable VHDL code for designing and
implementing each circuit as illustrated in Figure 3.1, 3.2 and
3.3. Implementation results were extracted with the Xilinx ISE
9.2i tool on a device XC4VLX25, VIRTEX-4 platform with
speed grade-12 and XPower Analyzer tool was used to analyze
the power consumption of the implementation. We have then
performed a sequence of trials with the tool in order to estimate
the memory constraints in terms of slices/area and power
consumption both static and dynamic power of each modular

adder according to m. Our main objective was to weigh against
three architectures of a modular adders Mod_adder1 (Figure
3.1), Mod_adder2 (Figure 3.2) and Mod_adder3 (Figure 3.3).

The operators depicted in Figure 3.2 do not appreciably progress
as in adder-based operator in Figure 3.1. The modulo (2b− 1)
adder described in [13] is shown in Figure 3.3 is compact as it

does not use any multiplexer for its operation. The area and
power consumption of the three architectures are compared with
each other. This points out that a determination of the double
representation of zero can direct the hardware implementation
of an arithmetic operator in superior way.

The implementation was done for variants bit data (n) and a
processor word size (b). We achieved reduction in number of
slices in Figure 4.1, area in terms of Gate Count in Figure 4.2,
Dynamic power consumption in Figure 4.3, Static power
consumption in Figure 4.4 and Total power consumption in
Figure 4.5. Consequently, our implementation of SEA exhibited
a extremely small area consumption that comes at the cost of
increased throughput and decreased power consumption.
Therefore, it can be considered as the attractive substitute for
constrained devices.

Figure 4.1

 Figure 4.2

International Journal of Computer Applications (0975 – 8887)
Volume 23– No.4, June 2011

5

0
20
40
60

4
8

,4

7
2

,6

10
8,

6

14
4,

4

14
4,

12

D
yn

a
m

ic
 p

o
w

e
r

in
 m

W

Datasize Variants

Dynamic Power
Consumption

Mod_adder
1

Mod_adder
2

Mod_adder
3

Figure 4.3

Figure 4.4

 Figure 4.5

5. CONCLUSION
The flexible cipher SEA is primarily designed for efficient
implementation in software. Later the design proved its
significance in hardware realization as this implementation lead
to better solutions compared to software realization. Thorough

investigation of SEA and efficent modular adders in various
papers guided us to efficiently implement the modified version
of SEA and to be more specific, the optimized modulo 2b
addition in hardware. It also gives better performance in terms
of area, power and delay. It has promising merits like

simplicity, scalability and combination of good encrypting and
decrypting routines. Hence, Our modified SEA shows better
fittness performance in resource constrained devices.

6. REFERENCES
[1] F.Mace, F.X Standaert, J J Quisquater “FPGA

implementation(s) of a Scalable Encryption algorithm”
IEEE Transactions on VLSI Systems, Vol.16, 2008,
pp.212-216.

[2] Francois-Xavier Standaert, Gilles Piret, Neil Gershenfeld,
Jean-Jacques Quisquater “SEA a Scalable Encryption
Algorithm for Small Embedded Applications” in
Proc.CARDIS, 2006, pp 222-236.

[3] K.J.Jegadish Kumar, S.Salivahanan, K.Chenna Kesava
Reddy, “Implementation of Low power Scalable
Encryption algorithm”,International Journal of Computer
applications, Volume-11, Dec 2010, pp.14-18.

[4] Advanced Encryption Standard, FIPS PUB 197, Nov.
2001.

[5] N. Pramstaller and J. Wolkerstorfer, “A universal and
efficient AES co-processor for field programmable logic

arrays,” in Proc. FPL, 2004, pp. 565–574.
 [6] Francisco Rodriguez-Henriquez, N.A. Saqib,A. Diaz-

Perez,Cetin Kaya K09, “Cryptographic Algorithms on
Reconfigurable Hardware”, Springer Series on Signals
and Communication Technology, 2006.

[7] J. Daemen and V. Rijmen, The Design of Rijndael. New
York: Springer-Verlag, 2001.

[8] Data Encryption Standard, FIPS PUB 46-3, Oct. 1999.
[9] D.J. Wheeler, R. Needham, TEA, a Tiny Encryption

Algorithm, proceedings of FSE 1994, Lecture Notes in
Computer Science, vol 1008, Springer-Verlag, Leuven,
Belgium, December 1994, pp 363-366.

[10] G. Yuval, “Reinventing the travois: Encryption/MAC in
30 ROM bytes,” in Proc. Fast Softw. Encryption (FSE),
1997, pp. 205–209.

[11] J.P. Kaps, “Chai-Tea, Cryptographic Hardware
Implementations of XTEA, 9th International Conference

on Cryptology in India – INDOCRYPT 2008, LNCS
5356, pp. 363-375, 2008.

[12] D. Hong et al., “HIGHT: A New Block Cipher Suitable for
Low-Resource Device,” Proceedings of CHES 2006,
Lecture Notes in Computer Science, Vol.4249, pp. 46-59,
Yokohama, Japan, October 2006.

[13] Beuchat,J.-L.; Lab. De l'Infonnatique du Parallelisme, “
Some Modular adders and multipliers for Field

programmable Gate arrays”, in Proc. Parallel and
Distributed processing symposium 2003.

[14] J.-L. Beuchat. “Modular Multiplication for FPGA
Implementation of the IDEA Block Cipher”, Technical
Report 2002-32, Laboratoire de l‟Informatique du
Parall´elisme, Ecole NormaleSup´erieure de Lyon, 46
All´ee d‟Italie, 69364 LyonCedex 07, Sept. 2002.

[15] J.-L. Beuchat and A. Tisserand. “Small Multiplier-based

Multiplication and Division Operators for Virtex-II
Devices”, number 2438 in Lecture Notes in Computer
Science, Springer, 2002, pp 513–522.

