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ABSTRACT 
The purpose of this paper is to study the existence and 

uniqueness of common fixed point theorems for owc 

mappings satisfying a generalized mixed contractive 

condition of integral type in symmetric GV-fuzzy metric 

spaces. The perceptions of implicit relation function and 

control function has been utilized to establish the results. The 

efforts of this work unify, extend and complement many 

results existing in recent references and contain every 

theorem of multivalued self mappings of fuzzy metric space.   
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1. INTRODUCTION  

Generalization of the Banach contraction mapping principle 

is one of pivotal results of analysis and has been a heavily 

investigated branch of research. It is widely considered as the 

source of metric fixed point theory and the significance lies 

in its vast applicability in a number of branches of 

mathematics.  

The notion of a fuzzy set, which laid the foundation of fuzzy 

mathematics, was introduced by Zadeh [1]. Afterward, it was 

developed extensively by many authors and used in various 

fields. It is well known that both probabilistic metric spaces 

and fuzzy metric spaces are generalization of metric spaces. 

The concept of fuzzy metric spaces has become the area of 

interest for researcher due to its vast applicability such as to 

achieve access optimization in information system, history 

prediction, image filtering and product spaces. Many authors 

observed that various contracting mapping in metric spaces 

may be exactly translated in to probabilistic and fuzzy metric 

spaces endowed with special t-norm such as minimum. 

The motivation of introducing the probabilistic metric space 

is the fact that in many situations the distance between two 

points is inexact rather than a single real number. But when 

the uncertainty is due to fuzziness rather than randomness as 

in the measurement of an ordinary length, it seems that the 

concept of a fuzzy metric space is more suitable. There are 

view points of the notion of metric space in fuzzy topology. 

We can divide them in to the following two groups: 

The first group involve those results in which a fuzzy metric 

on a set X is treated as a map d : X × X → R+,  

where X represents the totality of all fuzzy points of a set and 

satisfy some axioms. Thus, in such a approach numerical 

distances are set up between fuzzy objects. On the other hand 

Zadeh [1] introduced the concept of fuzzy set as a new way 

to represent vagueness in everyday life. Since then, many 

authors following the Banach contraction principle 

investigated the existence of weaker contractive conditions 

or extended previous results restively weak hypothesis on 

metric space. Regarding the theory of fuzzy sets and its 

applications, have developed a lot of literatures. Especially, 

Deng [11], Erceg [12], Kaleva and Seikkala [2], Kramosil 

and Michalek [3] have introduced the concept of fuzzy 

metric in different ways. Grabiec [6], Kramosil and Michalek 

[3] have obtained the fuzzy version of Banach contraction 

principle. Grabiec [6] results for a pair of commuting 

mappings were further generalized by Subramanyam [7]. 

Moreover, George and Veeramani [4] modified the concept 

of fuzzy metric spaces, introduced by Kramosil and 

Michalek [3]. Further, George and Veeramani [4] introduced 

the concept of Hausdorff topology on fuzzy metric spaces 

and shows that every metric induces a fuzzy metric. 

In what follows, we collect some relevant 

definitions, results, examples for our further use.  

Definition 1.1 A fuzzy set A in X is a function with domain 

X and Values in [0, 1].  

Definition 1.2 A continuous t-norm (in sense of Schweizer 

and Sklar [5]) is a binary operation T on [0, 1] satisfying the 

following conditions: 

(i) T is a commutative and associative; 

        (ii) T(a, 1) = a for all a∈ [0,1]; 

        (iii) T(a, b) ≤ T(c, d) whenever a ≤ c and b ≤ d      

              (a, b, c, d ∈ [0,1]); 

        (iv) The mapping T : [0,1] × [0,1] → [0,1] is  

              continuous. 

Remark 1.1 The following are classical example of 

continuous t-norm  

          (i) TM(a, b) = min {a, b}, minimum t-norm. 
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         (ii) TH(a, b) =  

               Hamaacher product. 

        (iii) TP(a, b) = ab, product t-norm. 

        (iv) TN(a, b) =      

               Nilpotent minimum. 

         (v) TL(a, b) = max{a +  b – 1, 0}, Lukasiewict t-norm. 

       (vi) TD(a, b) =     

               Drastic t-norm. 

The minimum t-norm is point wise largest t-norm and the 

drastic t-norm is point wise smallest t-norm; that is, TM(a, b) 

≥ T(a, b) ≥ TD(a, b) for any t-norm t with a, b∈ [0,1]. 

Kramosil and Michalek in [3] generalized the concept of 

probabilistic metric space given by Menger [8] to the fuzzy 

framework as follows. 

Definition 1.3 A fuzzy metric space (in sense of Kramosil 

and Michalek [3] ) is a triple (X, M, ∗), where X is a 

nonempty set, ∗ is a continuous t-norm and M is a fuzzy set 

on X2 × [0, ∞) such that the following axioms holds: 

       (FM-1) M(x, y, 0) = 0 (x, y∈ X); 

       (FM-2) M(x, y, t) = 1for all t > 0 iff x = y; 

       (FM-3) M(x, y, t) = M(y, x, t) (x, y∈ X, t > 0); 

        (FM-4) M(x, y, ∙): [0, ∞) → [0, 1]is left continuous for  

                     all x, y∈ X; 

       (FM-5) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for  

                     all x, y, z∈ X and s, t > 0. 

We will refer to these spaces as KM-fuzzy metric spaces. 

Lemma 1.1([6]) For every x, y∈ X, the mapping M(x, y, ∙) is 

nondecreasing on (0, ∞). 

In order to introduce an Hausdorff topology on the fuzzy 

metric spaces, George and Veeramani in [4] modified in a 

slight but appealing way the notion of fuzzy metric spaces of 

Kramosil and Michalek.  

Definition 1.4 A fuzzy metric space (in sense of George and 

Veeramani [4]) is a triple (X, M, ∗), where X is a nonempty 

set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × (0, 

∞) such that the following axioms holds: 

      (GV-1) M(x, y, t) > 0 (x, y∈ X); 

      (GV-2) M(x, y, t) = 1for all t > 0 iff x = y; 

      (GV-3) M(x, y, t) = M(y, x, t) (x, y∈ X, t > 0); 

        (GV-4) M(x, y, ∙): (0, ∞) → (0, 1] is continuous for all  

                     x, y∈ X; 

        (GV-5) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all x,  

                     y, z∈ X and s, t > 0. 

Notice that condition (GV-5) is a fuzzy version of triangular 

inequality. The value M(x, y, t) can be thought of as degree 

of nearness between x and y with respect to t and from axiom 

(GV-2) we can relate the value 0 and 1of a fuzzy metric to 

the notions of ∞ and 0 of classical metric respectively. 

We will refer to these spaces as GV-fuzzy metric spaces. 

Definition 1.5 ([10]) A fuzzy metric M on X is said to be 

stationary if M does not depend on t, i.e., the function Mx, y(t) 

= M(x, y, t) is constant.  

We can fuzzify example of metric space into fuzzy metric 

spaces in a normal way: 

Example 1.1([9]) Let (X, d) be metric space and g : R+ → R+ 

is an increasing continuous function. For m > 0, we define 
the function M by  

(1.1)    M(x, y, t) =                                                                                            

Then for a ∗ b = a∙b, (X, M, ∗) is a GV-fuzzy metric space on 

X. 

        As a particular case if we take g(t) = tn where n∈ N and 

m = 1. Then (1.1) becomes 

(1.2)     M(x, y, t) =                                                                                                

Then for a ∗ b = TM(a, b), (X, M, ∗) is a GV-fuzzy metric 

space on X. 

        If we take n = 1in (1.2), the well-known fuzzy metric 

space is obtained. 

On the other hand, if we take g as a constant function in (1.1) 

i.e., g(t) = k > 0 and m = 1, we obtain 

              M(x, y, t) =  

And so (X, M, ∗) is a stationary GV-fuzzy metric space for a 

∗ b = a∙b but, in general, (X, M, TM) is not. 

Definition 1.6 Let (X, M, ∗) be a (KM- or GV-) fuzzy metric 

space. A sequence {xn} is said to be  

              (i) convergent to a point x∈ X (denoted by  xn  

                   = x), if M(xn, x, t) = 1, for all t > 0. 

             (ii) a Cauchy sequence if M(xn + p, xn, t) = 1,  

                   for all t > 0 and n, p∈ N. 

             (iii) a complete if every Cauchy sequence in X is  

                   convergent to some point in X. 

 A map f : X → X is called continuos at x0 if 

{f(xn)} converges to f(x0) for each {xn} converges to x0. 
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In 1994, Mishra et. al [13] introduced the concept of 

compatible mapping in FM-space akin to concept of 

compatible mapping in metric space as follows: 

Definition 1.7 Maps f : X → X and T : X → B(X) are said to 

be compatible if fTx ∈ B(X) for each x ∈ X and M(fTxn, 

Tfxn, t) → 1, whenever {xn} is sequence in X such that Txn 

→ {z} (M(Txn, z, t) →1) and fxn → z for some z ∈ X  

Definition 1.8 Maps f : X → X and T : X → B(X) are said to 

be weakly compatible if fTx ⊆ Tfx whenever fx ∈ Tx. 

It is known that a pair {f, g} of compatible maps is weakly 

compatible but converse is not true in general. 

Definition 1.9 Let f, g be two self mappings of (X, M, ∗). A 

point x in X is called a coincidence point of f and g iff fx = 

gx. We shall call w = fx = gx a point of coincidence of f and 

g.  

Definition 1.10 Maps f : X → X and T : X → B(X) are said 

to be occasionally weakly compatible (owc) if and only if 

there exist some point x ∈ X such that fx ∈ Tx and fTx ⊆ 

Tfx. 

Definition 1.11 A symmetric GV-fuzzy metric space  is a 

triple (X, M, ∗), where X is a nonempty set, ∗ is a continuous 

t-norm and M is a fuzzy set on X2 × (0, ∞) such that the 

following axioms holds:  

         M(x, y, t) = 1 iff x = y, 

         M(x, y, t) = M(y, x, t), for all x, y∈ X, t > 0. 

A set X together with a symmetric fuzzy metric M is called 

symmetric fuzzy metric space. 

Lemma 1.2 Let X be a set, and f, g owc self mapping of X. 

If f and g have unique point of coincidence, w = fx = gx, then 

w is a unique common fixed point of f and g.  

Lemma 1.3([7]) If for all x, y ∈ X, t > 0 with positive 

number k ∈ (0,1) and M(x, y, kt) ≥ M(x, y, t) then x = y.  

In 2002 Branciari [20] analyzed the existence of fixed point 

for mapping f defined on complete metric space (X, d) 

satisfying a contractive condition of integral type. (see the 

following theorem).  

Theorem 1.1 Let (X, d) be a complete metric space, α ∈ (0, 

1) and f : X → X be a mapping such that for each x, y ∈ X, 

 dt ≤  dt, where  : [0, +∞) → [0, 

+∞) is Lebesgue-integrable mapping which is summable ( 

i.e., with finite integral) on each compact subset of [0, +∞), 

nonnegative, and such that for each ε > 0,  > 0; then f 

has a unique fixed point a ∈ X such that for each x ∈ X, 

  = a.       

The aim of this paper is to obtain fixed point theorems for 

maps involving hybrid pairs of single valued and multivalued 

owc maps satisfying a generalized mixed contractive 

condition of integral type in the frame work of symmetric 

fuzzy metric space. 

Lemma 1.3( Lebesgue Dominated Convergence Theorem) 
If a sequence {fn} of Lebesgue measurable functions 

converges almost everywhere to f and if there exist an 

integrable function ≥ 0 such that   ≤ g(x) for every n, 

then  ≤ g(x) and   (x)dx  = (x)dx.   

        We will use the following notations, throughout this 

paper, where (X, M, ∗) is a symmetric fuzzy metric space, 

and B(X) is the class of all nonempty, bounded subset of X.  

                   Assume that F: [0, 1] → [0, 1] satisfies the 

following. 

          (i) F(1) = 1 and F(t) ≥ t for each t ∈ (0, 1). 

           (ii) F is non-decreasing on [0, 1]. 

    Define, Γ[0, 1] ={F: F satisfies (i)-(ii) above}. 

     Let ψ : [0, 1] → R satisfies the following    

          (iii) ψ (t) > t for each t ∈ (0, 1). 

          (iv) ψ is non-decreasing and left continuous. 

     Define, Ψ(0, 1]={ ψ : ψ satisfies (iii)-(iv) above}. 

2. COMMON FIXED POINT THEOREM 

In this section, we prove fixed point theorems for hybrid pair 

of single valued and multivalued maps satisfying mixed 

contractive condition of integral type in the frame work of 

symmetric fuzzy metric spaces. 

Theorem 2.1 Let f, g be self mapping of a symmetric GV-

fuzzy metric space (X, M, ∗) and T, S be mappings from X 

into B(X) such that the pairs {f, T} and {g, S} are 

occasionally weakly compatible, satisfying  

 (1)     ds ≥ ds                                          

for each x, y ∈ X and t > 0, for which fx ≠ gy, where 

 (2)     m(x, y) = p M(gy, Ty, t)   

                      + min{M(fx, gy, t), M(fx, Tx, t), M(gy, Sy, t),   

                                                    M(fx, Sy, t), M(gy, Tx, t)},  

where 0 < p < 1, then f, g, T and S have a unique common 

fixed point. 

Proof - Since the pairs {f, T} and {g, S} are occasionally 

weakly compatible, therefore by definition, there exist x, y in 

X such that fx∈ Tx, gy∈ Sy, fTx ⊆ Tfx and gSy ⊆ Sgy. Also 

M(f2x, g2y, t) ≥ M(Tfx, Sgy, t).We first show that fx = gy, if 

not then (2) implies 

 (3)    m(fx, gy, t) = p M( y, Tgy, t)   

                     + min {M(f2x, g2y, t), M(f2x, Tfx, t),               

                      M(g2y, Sgy, t), M(f2x, Sgy, t), M(g2y, Tfx, t)} 

                            ≥ M(Tfx, Sgy, t) 

Now, we have by use of (3) in (1) that 

           ds ≥  ds   

                                                                                  

                                                ≥  ds  
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(4)                                            >  ds                                         

It leads to a contradiction and hence, gy = fx. Obviously, 

M(fx, g2y, t) ≥ M(Tx, Sfx, t). 

Next, we claim that x = fx, if not then consider by (2) 

         m(x, fx, t) = p M(gfx, Tfx, t)   

                  + min{M(fx, g2y, t), M(fx, Tx, t),M(g2y, Sgy, t),  

                     M(gy, Sgy, t), M(g2y, Tx, t)} 

(5)                    ≥ M(Tx, Sfx, t)                                                                               

Using (5), we have by (1), 

          ds ≥ ds   

                                               ≥ ds  

(6)                                          >  ds                                                                                          

Which is again a contradiction and the claim follows. On the 

same account, we can prove y = gy. 

Thus f, g, T and S have a common fixed point and 

uniqueness follows easily from (1). 

Corollary 2.1 The theorem (2.1), will remain proved if the 

contractive condition (2) is replaced by any of following 

(i)    m(x, y, t) = p M(gy, Ty, t)   

                 + h min{M(fx, gy, t), M(fx, Tx, t), M(gy, Sy, t),  

                    [M(fx, Sy, t) ∗ M(gy, Tx, t)]}, where 0 ≤ h < 1. 

(ii)    m(x, y, t) = p M(gy, Ty, t)   

                 + α M(fx, gy, t) ∗ β{M(fx, Tx, t) ∗ M(gy, Sy, t)}  

                ∗ γ min{ M(fx, gy, t), M(fx, Sy, t), M(gy, Tx, t)},       

                     where α, β, γ >0 and α + β + γ = 0. 

(iii)     m(x, y, t) = p M(gy, Ty, t)   

                   + (α + β + γ) min{M(fx, gy, t), M(fx, Tx, t),  

                      M(gy, Sy, t), M(fx, Sy, t), M(gy, Tx, t)}. 

(iv)    m(x, y, t) = p M(fy, Ty, t)   

                  + min{M(fx, fy, t), [M(fx, Tx, t) ∗ M(fy, Ty, t)],    

                   [M(fx, Ty, t) ∗ M(fy, Tx, t)]},  

         where we have assumed f = g and T = S. As all above 

cases are special cases of condition (2.2), result follows from 

theorem (2.1). 

Theorem 2.3 Let f, g be self mapping of a symmetric GV-

fuzzy metric space (X, M, ∗) and T, S be mappings from X 

into B(X) such that the pairs {f, T} and {g, S} are 

occasionally weakly compatible, satisfying  

(7)     ds ≥ ds    

for each x, y ∈ X, for which fx ≠ gy, where 

(8)       mp(x, y) = q (M(gy, Ty, t))p   

                    + α(M(Tx, gy, t))p  

                    + (1 – α) max  {(M(fx, Tx, t))p, (M(gy, Sy, t))p,  

                                   (M(fx, Tx, t))p/2 (M(gy, Tx, t))p/2, 

                       (M(gy,Tx, t))p/2 (M(fx,Sy, t))p/2}, 

Where 0< q < 1, 0 < a ≤ 1, and p ≥ 1, then f, g, T and S 

have a unique common fixed point. 

Proof - The result follows immediately on the same pattern 

as in theorem (2.1).  

                     Define G = { g : R5 → R5} such that 

            (g1) g is non-decreasing in the 4th and 5th variables, 

            (g2) if u ∈ R+ is such that  

                                u ≤ g(u, 1, 1, u, u) or u ≤ g(1, u, 1, u, u)  

                           or u ≤ g(1, 1, u, u, u), then u = 1. 

Theorem 2.4 Let f, g be self mapping of a symmetric Gv-

fuzzy metric space (X, M, ∗) and T, S be mappings from X 

into B(X) such that the pairs {f, T} and {g, S} are 

occasionally weakly compatible, satisfying  

(9)       ds ≥  ds 

for each x, y ∈ X, for which fx ≠ gy, where 

 (10)    m(x, y, t) = p M(gy, Ty, t)   

                           + g{F(M(fx, gy, t)), F(M(fx, Tx, t)),  

           F(M(gy, Sy, t)), F(M(fx, Sy, t)), F(M(gy, Tx, t))}  

where 0 < p < 1, then f, g, T and S have a unique common 

fixed point. 

Proof - Since the pairs {f, T} and {g, S} are occasionally 

weakly compatible, therefore by definition, there exist x, y in 

X such that fx ∈ Tx, gy ∈ Sy, fTx ⊆ Tfx and gSy ⊆ Sgy. 

Also M(fx, gy, t) ≥ M(Tx, Sy, t). First, we show that gy = fx. 

Suppose not, then by (10), we have 

           m(x, y, t) = g{F(M(fx, gy, t)), 1, 1, F(M(fx, Sy, t)),  

                                                                     F(M(gy, Tx, t))} 

                           ≥ g{F(M(Tx, Sy, t)), 1, 1, F(M(Tx, Sy, t)),  

                                                                    F(M(Sy, Tx, t))}. 

By (g2), we get M (x, y, t) =1, with this, (9) implies that 

 ds ≥ 1, implies that M(Tx, Sy, t) = 1, 

further implies that M(fx, gy, 1) = 1.Which is a contradiction, 

hence claim follows i.e., fx = gy. Also M(fx, f2x, t) ≥ M(Tfx, 

Sy, t). Next we claim that, fx = f2x if not, then by (10), we 

have 

          m(fx, y, t) = g{F(M(f2x, gy)), 1, 1, F(M(f2x, Sy)),  
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                                                                       F(M(gy, Tfx))} 

          

          ≥ g{F(M(Tfx, Sy)), 1, 1, F(M(Tfx, Sy)),  

                                                                     F(M(Sy, Tfx))}. 

By (g1) and (g2), we have, m(x, y, t) = 1, using this (2.9) 

gives  

 ds ≥ 0, implies that M(Tfx, Sy, t) = 1, 

further implies that M(f 2x, fx, t) = 1, 

Which is a contradiction, hence our claim follows i.e., fx = 

f2x, in the similar fashion, we can prove gy = gy2. Hence fx is 

common fixed point of f, g, T and S and uniqueness follows 

easily from (1). 

          A control function Φ: [0, 1] → [0, 1] is continuous, 

monotonically increasing function that satisfies Φ(2t) ≥ 

2Φ(t) and Φ(1) = 1 if and only if t =1. 

      Let ψ: R+ → R+ be such that ψ(t) > t, for each t ∈ (0, 1). 

Theorem 2.5 Let f, g be self mapping of a symmetric GV-

fuzzy metric space (X, M, ∗) and T, S be mappings from X 

into B(X) such that the pairs {f, T} and {g, S} are 

occasionally weakly compatible, satisfying  

(11)    ds ≥  ds 

for each x, y ∈ X, for which fx ≠ gy, where 

(12)   (x, y, t) = min{F(Φ(M(fx, gy, t))),  

                                 F(Φ(M(fx, Tx, t))), F(Φ(M(gy, Sy, t))),  

                                            Φ[(M(fx, Sy, t) ∗ M(gy, Tx, t)]} 

where 0 < p < 1, then f, g, T and S have a unique common 

fixed point. 

Proof - Since the pairs {f, T} and {g, S} are occasionally 

weakly compatible, therefore by definition, there exist x, y in 

X such that fx ∈ Tx, gy ∈ Sy, fTx ⊆ Tfx and gSy ⊆ Sgy. 

Also M(fx, gy, t) ≤ M(Tx, Sy, t).  

(13)   (x, y, t) = max{F(Φ(M(fx, gy, t))), 1, 1,    

                                                             [Φ(2(M(Tx, Sy, t)))]} 

                         ≥ Φ(M(Tx, Sy, t))      

First, we show that gy = fx. Suppose not, and then by (11) 

and (13), we have  

           ds ≥  ds  

                                                  ≥  ds  

                                                  >  ds   

It leads to contradiction, therefore M(Tx, Sy, t) = 1, which 

further implies that M(fx, gy, t) = 1 i.e., fx = gy. Hence the 

claim follows. Also, M(fx, f2x, t) ≤ M(Tfx, Sy, t). Next we 

claim that, fx = f2x if not, then by (12), we obtain 

 (14) (fx, y, t)   = max {Φ(M(f 2x, gy, t)), 1, 1,   

                                                              [Φ(2M(Tfx, Sy, t))]} 

                               ≥ Φ(M(Tfx, Sy, t))   

Next we claim that, fx = f2x if not, then by (11) and (14), we 

have 

           ds ≥  ds  

                                              ≥  ds  

                                        ≥  ds   

Again, we approaches to contradiction, therefore M(Tfx, Sy, 

t) = 0, further implies that M(f 2x, fx, 1) = 1, hence our claim 

follows i.e., fx = f2x, in the similar fashion, we can prove gy 

= gy2. Hence fx is common fixed point of f, g, T and S. 

Uniqueness follows easily from (11). 

           Set G = { : [0, ∞) → [0, ∞) ;  is a continuous and 

decreasing mapping with (t) = 1 iff t = 1} 

Theorem 2.6 Let f, g be self mapping of a symmetric GV-

fuzzy metric space (X, M, ∗) and T, S be mappings from X 

into B(X) such that the pairs {f, T} and {g, S} are 

occasionally weakly compatible, satisfying 

(15)   ds ≥   

                                         )ds 

for every x, y ∈ X, for which right hand side of (15) is not 

equal to 0, where ∈ G, then f, g, T and S have a unique 

common fixed point. 

Proof - Since the pairs {f, T} and {g, S} are occasionally 

weakly compatible, therefore by definition, there exist x, y in 

X such that fx ∈ Tx, gy ∈ Sy, fTx ⊆ Tfx and gSy ⊆ Sgy. 

Also M(fx, gy, t) ≥ M(Tx, Sy, t). First, we show that gy = fx. 

Suppose not, then by (15), we have 

  ds ≥ )s   

                                     ≥ )ds   

This leads to contradiction. Therefore fx = gy. Hence the 

claim follows. Again, M(f2x, fx, t) ≥ M(Tfx, Sy, t), now we 

claim that f2x = fx, if not, the condition (2.15) implies that 

ds ≥  

                                      )ds  

                                  = )ds 

                                  ≥ )ds    

which is a contradiction, and hence the claim follows. On the 

similar account, it can be proved that gy = g2y.  Hence fx is 

common fixed point of f, g, T and S. Uniqueness follows 

easily from (15). 

Example 2.7 Let X = {a, b, c}. For t > 0, we define M : X2 

× (0, ∞) → (0,1] by 
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          M(a, a, t) = M(b, b, t) = d(c, c, t) =1,               

          M(a, b, t) = d(b, a, t) = b, 

          M(a, c, t) = M(c, a, t) = e, ( with e < b + a)                

             M(b, c, t) = d(c, b, t) = a, 

Obviously, M is symmetric GV-fuzzy metric but not fuzzy 

metric on X. 

We define T, S : X → B(X) by 

             T(a) = {a, c},  T(b) = {a, b, c},      

             T(c) = { a, c}, S(a) = {a, b},  S(b) = {a, c},              

             S(c) = { b, c}, 

And f, g : X → X as follows: 

             f(a) = a, f(b) = c, f(c) = a, 

             g(a) = a, g(b) = a, g(c) = b, 

Now, it is obvious f(a) ∈ T(a) but fT(a) ≠ Tf(a), and  f(c) ∈ 

T(c) but fT(c) ≠ Tf(c), therefore {f, T} is not weakly 

compatible. On the other hand, f(b) ∈ T(b) but fT(b) = Tf(b). 

Hence {f, T} is occasionally weakly compatible. Also, g(a) ∈ 

S(a) but gS(a) ≠ Sg(a), and  g(c) ∈ S(c) but gS(c) ≠ Sf(c), 

therefore {g, S} is not weakly compatible. On the other hand, 

g(b) ∈ S(b) but gS(b) = Sg(b). Hence {g, S} is occasionally 

weakly compatible. As f(a) = g(a) ∈ T(a) and  f(a) = g(a) ∈ 

S(a), so a is a unique common fixed point of f, g, T and S. 

Remark 2.8 

As integral contractive condition are indeed generalizations 

of corresponding contractive condition. Every contractive 

condition of integral type automatically induces the 

corresponding conractive condition, not including integral, 

by setting ) = 1over R+. 

Weakly compatible are owc but converse is not true, as in 

above example. 

The Class of symmetric fuzzy metric spaces is more general 

than that of fuzzy metric spaces. 

3. CONCLUSION 

In this paper, common fixed point theorems in GV-fuzzy 

metric space have been proved using control function and 

implicit relation function. There are some possible 

applications of results in real engineering problems like 

quantum particle physics, image processing, to achieve 

access optimization in information system, history 

prediction. In future scope it is an open problem to relax 

symmetric condition or occasionally weak compatibility by 

weaker variants.  

  Question 1: Are the above mentioned theorems true in weak 

non-Archimedean fuzzy metric space or in 

generalized menger spaces.  
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