
International Journal of Computer Applications (0975 – 8887)

Volume 23– No.7, June 2011

49

Software Reliability Estimation using Yamada Delayed
S Shaped Model under Imperfect Debugging and

Time Lag

Dr. Ajay Gupta

Asstt.Professor

Department of Mathematics
Bhagwant Institute of

Technology,

Muzaffarnagar (U.P.), India.

Dr. Digvijay Choudhary

Asstt.Professor

Department of Mathematics
J.P. Institute of Engineering

Technology,

Meerut(U.P), India.

Dr. Suneet Saxena
Asstt.Professor

Department of Mathematics
J.P. Institute of Engineering

Technology.

Meerut(U.P), India.

ABSTRACT

Reliability of software has been analyzed using some existing

mathematical models often termed as software reliability growth

models(SRGM). We have considered Yamada Delayed S

shaped model and incorporated the fault dependency, debugging
time lag and imperfect debugging . Results shows that

reliability of software gets improved under imperfect debugging

General Terms

 Reliability, SRGM.

Keywords

Software Reliability, Imperfect debugging, Debugging time lag

and fault dependency .

1. INTRODUCTION

Software reliability is the probability of failure free software

operation for a specified period of time in specified

environment. Over past thirty years, many mathematical models
have been proposed for estimation of reliability growth of

product during software development process [4,6]. Such

models often referred as software reliability growth

models(SRGM).

The reliability of software depends on fault detection and
correction process. Removing all detected faults will presumably

increase the reliability of the software. Ohba [10] conceived that

there were two types of faults namely mutually independent and

mutually dependent faults. Mutually independent faults can be

detected and corrected immediately. There is no time delay
between detection and correction. Mutually dependent faults

cannot be removed immediately. Goel and Yang [2] analyzed

the problem whether detected faults can be corrected

immediately or not. Yang [13] reported that detected faults take

months to remove for large software system. Hung and Lin [5]
incorporated fault dependencies and debugging time lag into

exiting SRGM. They analyzed problem of optimal release time

for software system based on reliability and cost criterion. They

also assumed detected faults were removed with certainty

(perfect debugging). If some of the detected faults are not
removed with certainty or new faults introduced during

debugging process then it is called imperfect debugging.

Yamada, Tokunou and Osaki [12] studied imperfect debugging

model models with fault introduction rate. Xie and Yang [13]

analyzed imperfect debugging on software development cost.

In this paper we have analyzed the software reliability using

Yamada Delayed S shaped model and generalized it by

involving imperfect debugging (b=0.1) and time delay function

 .

2. NOTATIONS

 Expected number of initial faults.

 Total number of independent faults.

 Total number of dependent faults.

 Fault detection rate of independent faults.

 Fault detection rate of dependent faults.

 Proportion of independent faults.

 Inflection factor of inflected S shaped model.

 Delay effect factor.

 Mean value function (MVF) of the expected number of

 faults detected in time (0, t).

 MVF of the expected number of dependent faults

 detected in time (0, t).

 MVF of the expected number of independent faults

 detected in time (0, t).

b Independent fault introduction rate while

 removing/fixing a detected fault.

 3. ASSUMPTIONS
(a) All detected faults are either independent or dependent

(b) The total number of faults is finite.

(c) The detected dependent fault may not be removed

immediately and it lags the fault detection process by .
(d) Introduction of new independent faults during debugging

process.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.7, June 2011

50

4. SOFTWARE RELIABILITY GROWTH

MODEL

The total detected faults in time (0, t). are given by

 (1)

4.1 Independent faults
The rate of independent faults detected is proportional to the
remaining faults. We have following differential equation.

Under imperfect debugging the differential equation becomes

Solving equation using initial condition and

involving time delay function , we propose

 (2)

4.2 Dependent faults
The rate of dependent faults detected is proportional to the

remaining dependent faults in the system and to the ratio of

independent faults removed at time t to the total number of

faults. Thus, we have

 0 < θ <1

Putting the we get,

exp− 1− −
 (3)

4.3 Yamada Delayed S shaped model
This model describe S shaped curve for the cumulative number

of faults detected such that failure rate initially increases, and

later decays. The S shaped curve can be regarded as a learning

process because the testers’ skills will gradually improve as time

progresses.

Assuming ,

simplifying equations (2) and (3) , and using

 , we get

]

5. RELIABILITY ANALYSIS
Removing all detected faults will presumably increase the

reliability of the software. The software reliability defined as
the probability that a software failure does not occur in the time

interval is

 t ≥ 0, Δt ≥ 0

Assuming , , ,
,

(These numerical constants taken from reference paper [5]).

Number of failures m(t) and software reliability R(10/t)

have been evaluated under perfect debugging (b = 0) and

imperfect debugging (b = 0.1). Further, graphs have also been

plotted for m(t) and R(10/t) with respect to testing time t.

6. CONCLUSION
Graph 1 reveals the variation of number of faults detected with

respect to testing time. During initial phase of testing time the

faults detected are very high and later on becomes constant. The

number of faults debugged under imperfect debugging is higher

than that in under perfect debugging. This is due to generation of

new faults while debugging of detected faults.

Graph 2 shows the variation of software reliability with respect

to testing time. Software reliability increases rapidly with testing

time during initial phase . Under imperfect debugging (b=0.1)
after 140 units of testing time the probability of failure free

execution of software in 10 units time interval is 90 % whereas

under perfect debugging (b=0) the probability is 84%. This

shows that if we incorporate the factors fault dependency,

debugging time lag and imperfect debugging into model,
prediction of software reliability is more realistic and

generalized. Also, we can predict when to stop testing based on

reliability of software

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.7, June 2011

51

Table 1: Imperfect Debugging and Software Reliability

Graph 1: No. of Failures m(t) and time (t)

Graph 2: Reliability R(10/t) and time (t)

0

50

100

150

200

250

300

350

400

450

0 100 200 300

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300

Tim

e(t)

No. of Failures under

perfect and imperfect

debugging m(t)

Software Reliability under

perfect and imperfect

debugging R(10/t)

 b=0 b=0.1 b=0 b=0.1

10 168.486071 170.3327 30 3.92292E-49 2.83521E-56

20 279.9459043 298.2353796 2.41674E-22 7.0759E-26

30 329.7203558 356.1458972 2.42796E-12 3.07245E-13

40 356.4643255 384.9570294 9.86708E-08 1.08693E-07

50 372.5958026 400.991772 4.15088E-05 8.24615E-05

60 382.6854085 410.3949515 0.001718807 0.003652453

70 389.0515334 416.0073079 0.017875033 0.034491484

80 393.0758837 419.3743507 0.078475136 0.132281549

90 395.6208572 421.3971734 0.199978303 0.296503826

100 397.2304036 422.6128685 0.36133188 0.481577918

110 398.248362 423.3435558 0.525287239 0.644561008

120 398.892172 423.7827416 0.665524857 0.767990546

130 399.2993513 424.0467194 0.772964933 0.853280241

140 399.5568729 424.2053867 0.84970147 0.909037438

150 399.7197431 424.3007557 0.902120042 0.944289228

160 399.8227508 424.3580784 0.936929277 0.966132204

170 399.8878983 424.392533 0.9596346 0.979503584

180 399.929101 424.4132424 0.97427785 0.987629508

190 399.9551597 424.4256901 0.983654144 0.992546101

200 399.9716407 424.4331719

Time (t)

No. of

Failures

m(t)

b=0

b=0.1

Time (t)

Reliability

b=0

b=0.1

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.7, June 2011

52

7. REFERENCES
[1] Dwyer, D. & D'Onofrio, P., (2011). Improvements in

estimating software reliability from growth test data.
Reliability and Maintainability Symposium (RAMS),

2011 Proceedings - Annual, 1 – 5.

[2] Goel, A. L. & Yang, K. J. (1997). Software reliability

And readiness assessment based on the

non-homogenous Poisson process, Advances in
Computers, 45, 197-267.

[3] Gokhale, S.S., Lyu, M.R. & Trivedi, K.S. (2006).

Incorporating fault debugging activities into software

reliability models: a simulation approach. Reliability,

IEEE Transactions on, 55(2), 281 – 292.

[4] Hung, C. Y., Lyu, M. R. & Kuo, S. Y. (2003). A

unified scheme of some non-homogeneous poisson

process models for software reliability estimation,

IEEE Trans. On Software Engineering 29(3), 261-269.

[5] Hung, C. Y. & Lin, C. T. (2006).Software reliability
analysis by considering fault dependency and

debugging time lag, IEEE Trans. on Reliability,

55(3), 436-450.

[6] Hung, C. Y., Lin, C. T., Kuo, S. Y., Lyu, M. R. & Sue,

C. C. (2004).Software reliability growth models
incorporating fault dependency with various

debugging time lags,Proceedings of the 28th Annual

International Computer Software and Application

Conference, Hong Kong, China, 186-191.

[7] Hung, C. Y., Lin, C. T., Lo, J. H. & Sue, C. C. (2004).
Effect of fault dependency and debugging time lag on

software error models, Proceedings of the 2004 IEEE

Region 10 Conference, Thailand, 243-246.

[8] Kapur, P.K., Pham, H., Anand, S. & Yadav, K.

(2011). A Unified Approach for Developing Software

Reliability Growth Models in the Presence of

Imperfect Debugging and Error Generation

Reliability, IEEE Transactions on , 60 (1), 331 – 340.

[9] Lyu, M. R. (1993) .Handbook of Software Reliability

Engineering : McGraw-Hill. 428-443.

[10] Ohba, M. (1984). Software reliability analysis models,

IBM Journal of Research and Development, 28(4),

[11] Ohba, M. & Chou, X. (1989). Does imperfect
debugging affect software reliability growth,

Proceedings of the 11th International Conference on

Software Engineering, Pittsburgh, USA, 237-244.

[12] Yamada, S., Tokunou, K. & Osaki, S. (1992).

Imperfect debugging models with fault introduction
rate for software reliability assessment, International

Journal of System Science, 23(12), 2241-2252.

[13] Yang, K. Z. (1996). An infinite server queuing model

for software readiness and related performance

measures, Ph.D. Dissertation, Department of
Electrical Engineering and Computer Science,

Syracuse University.

[14] Xie, M. & Yang, B. (2003). A study of the effect of

imperfect debugging on software development cost,

IEEE Trans. Software Engineering, 29(5) ,471-473.

[15] Zhang, X. Liu, .,Gao, Y., Zhang, T.,& Liu,

H.(2009).The Prediction Model of Software

Reliability Based on the Modular. Information

Technology and Applications, 2009. IFITA '09.

International Forum on, 2 , 315 – 318.

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5754434&queryText%3DSoftware+Reliability%26openedRefinements%3D*%26pageNumber%3D6%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5754434&queryText%3DSoftware+Reliability%26openedRefinements%3D*%26pageNumber%3D6%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5754434&queryText%3DSoftware+Reliability%26openedRefinements%3D*%26pageNumber%3D6%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5749431
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5749431
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1638411&queryText%3DSoftware+Reliability%26openedRefinements%3D*%26pageNumber%3D6%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1638411&queryText%3DSoftware+Reliability%26openedRefinements%3D*%26pageNumber%3D6%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=24
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=24
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5231186&queryText%3DSoftware+Reliability%26openedRefinements%3D*%26pageNumber%3D2%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5231186&queryText%3DSoftware+Reliability%26openedRefinements%3D*%26pageNumber%3D2%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5231181
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5231181
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5231181
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5231181

