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ABSTRACT 
Fault modeling is an important step towards both understanding 

and validating the implemented system. The focus of the paper 

is to present a unified system fault modelling framework, 

including input related faults model based on system theory. The 

complex embedded system (CES) is modelled using sequence of 

communicating FSM (SCFSM) and the system faults are 

represented by two components of system fault vector - system 

behaviour fault vector and system communication fault vector. 

These two system fault vector components are related and are 

components of the “change parameter vector Θ”, a general 

system level fault model based on Dynamic system theory. Input 

related faults are defined and their contribution is discussed. 

Faults propagation in mixed hardware software communication 

architecture is discussed, with the help of protocol example. 

General Terms 
Fault modeling and propagation, Embedded Systems 

development.  

Keywords 
System level Faults model, Fault propagation, system fault 

vector components, behaviour fault vector, communication 

channel fault vector, embedded system, Sequence of CFSM. 

1. INTRODUCTION 
The Embedded systems (ES) design and testing process are very 

challenging [1]. The growing system complexity and application 

domain demands are directly impacting the validation and or 

verification issues. Fault-based testing focuses on generating 

tests to detect particular faults, which is an important advantage 

compared to other testing approaches [2]. The two popular 

testing strategies, viz. conformance and composition testing rely 

on specific fault models [2]. The resulting tests are also effective 

in detecting faults in other classes [3]. Fault modeling is an 

important step towards development of tests. To efficiently test 

any system, it is important to know the possible failures, causes 

and the way they propagate. The first step is the identification 

and classification of design faults that occur during the early 

developmental stages. In general, fault taxonomy is the starting 

point for providing techniques and methods for assessing the 

quality [4].  

Faults of a system can be classified by the phase in which they 

occur as follows: design faults or errors which appear in the 

design phase, fabrication faults which appear in the 

manufacturing phase, and operational faults which occur during 

normal operation. The focus of the paper is to present a unified 

system fault (USF) modelling framework, including input 

related fault model based on system theory. The CES is 

modelled using sequence of communicating FSM (SCFSM) and 

the system faults are defined by two components of system fault 

vector - system behaviour fault vector and system 

communication fault vector. These two system fault vector 

components are related and are components of the “change 

parameter vector Θ”, a general system level fault (change) 

model which is based on Dynamic system theory [5]. Input 

related faults and their contribution to system fault vector are 

discussed. The USF model formalism is presented in section 3 

which depicts the two types of system fault(s) and their relation 

with already reported embedded system fault models. Section 4 

deals with faults propagation in mixed hardware software 

(MHS) communication architectures. 

2. RELATED WORK 
Fault modeling is an important aspect for the development of 

tests for systems. The functional test generation considers 

mainly two classes of fault models: Behavioral and Functional 

fault models. Fault models were developed and applied in 

different domains like Embedded Systems [6-7]; Software [4, 8-

12]; and digital hardware systems including VLSI [13-14]. 

Testing at higher level of abstraction has a lot in common with 

software testing [6]. The test pattern generation methods can be 

classified into two main categories, namely, code oriented 

methods and fault oriented methods.  A two-level fault model 

[6] is described to specify not only the control flow but also the 

data flow aspects for embedded system testing, based on simple 

FSMs and the extension of FSMs, i.e. with (p)-EFSM model. 

Apart from control flow faults [6], other error classes that are 

not represented by this model are similar to those of software 

[6]: Specific behavioural error classes and General data flow-

related error classes. A timing fault model, the Mis-Timed Event 

(MTE) fault model, is proposed [7] to model timing-induced 

functional errors for analysing complex systems.  

Software errors, their relationship with the development phase 

and system complexity are presented [8-9]. The results 

presented [9] are, (i) conditional faults (ii) operating faults and 

(iii) erroneous requirements are highly related with safety-

related software errors. In several embedded software 

applications errors in understanding requirements and 

implementations are major sources of errors [9-10]. Software 

fault taxonomy for using in the development and evaluation of 

software in component-based systems is presented in [4]. 

Component-based software systems are classified into two main 

classes of faults: service and structure-related faults [4]. These 
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two classes are further categorized into seven type’s viz., 

Syntactic, Semantic, Non-Functional, Connectors, 

Infrastructure, Topology and Other faults. A fault class 
hierarchy that relates literal, term, operator, and expression 

faults classes used in specification-based software testing is 

reported [11]. A test case that detects a fault of a stronger class 

will always detect the corresponding fault of a weaker class 

amongst the hierarchy. Though the study of faults was carried 

for Boolean specifications, the results are equally applicable to 

the code-based testing of predicates [11]. During software 

integration testing the emphasis is on interactions among 

modules via their interfaces. Four types of Integration Error (IE) 

occur when an incorrect value is passed through a module 

connection [12].To efficiently test any mixed hardware-software 

system in the design phase, it is important to know the possible 

failures and their causes.  

Models of physical and fabrication faults [13] are commonly 

required for testing of digital electronic circuits or cores. A 

survey of behavioural level fault models for testing of cores 

(SOC) at higher level of abstraction than logic level is given in 

[13]. The survey indicates that a large number of fault models 

were developed for validating the designs in IC domain. To 

model a physical fault inside component like ALU, knowledge 

of the logic level implementation of the component is required. 

The co-validation fault models [14] are behavioural-level fault 

models that are classified by the style of behavioural description 

upon which the models are based. A co-validation fault model 

allows the concise representation of the set of all design defects 

for an arbitrary design. For Hardware functional verification, 

high-level faults are mapped into logic-level faults and 

correspondence between behavioural / RT level signals and 

logic-level nets established. The current co-validation fault 

models are classified based on the style of behavioural 

description as textual, control-data flow, state machine, gate 

level, application-specific, and interface faults [14]. 

The issue of error-propagation conditions was considered [15] in 

terms of ‘impact’ on the program execution in causing a 

detectable output error, using the notion of ‘impact strength’ as a 

quantitative measure of the impact. The paper introduced 

dynamic impact analysts’ technique to determine the effect of 

components of program on the program output. The paper is on 

USF modelling framework, including input related fault model 

based on system theory.  Faults propagation to lower level 

hardware faults in mixed hardware software architectures is 

discussed for protocol example.  

3. COMPLEX EMBEDDED SYSTEM 

MODEL 
The elements of any complex embedded system (CES) are an 

external process and an Embedded Processing Component 

(EPC) (hardware component board consisting of at least one 

dedicated processor, memory, special interface circuit and 

optionally may contain sensors and actuators). Sensors provide 

information about the current state of the external process, while 

actuators communicate to the external process the results 

(actions) of computing “controller law”. The external process, 

which is known a priori, is a process that can be of physical, 

mechanical, or electrical nature; is controlled and implemented 

in real time by mixed hardware software or hardware only. The 

available strategies for simplifying a complex system in general 

are: abstraction, partition and segmentation.  

The embedded system specification consists of the specification 

of its environment (external process) and it’s EPC, in some 

formal notation, like state transition model [6] or sequence of 

communicating FSMs [16-17]. Here Complex embedded 

systems are modeled as a sequence of communicating FSM 

(SCFSM) Ai, i=1... k. This model supports well the sequential 

integration of components of CES or even specific sequence.  It 

is assumed that the component FSM [16]:   

(a)  Ai is deterministic FSM which communicate asynchronously 

with each other through bounded input queues, in addition to 

their communication with the environment through their 

respective external ports.  

(b) In response to an input produces only an internal or an 

external output 

(c) The system has at most one message in transit, i.e. the next 

external input is submitted to the system only after it produces 

an external output to the previous input. Then the collective 

behaviour of the communicating FSMs can be described by a 

finite product machine (PM). 

(d) System does not fall into a live-lock and the component 

machines are deterministic. Under these assumptions, composed 

machine )(;(CM) jiAA ji ≠◊= is deterministic. 

The complex embedded system XS, with the above 

assumptions, can be represented as 

);...1(;XS kiA
ii

== ∏ where the product 

sign represents the sequence. 

The embedded system can be broadly divided into two 

orthogonal operations: computations and communications. 

These operations are separated in two types of components [18]: 

applications and interfaces, and communications to and from 

these types of components are indicated in figure1.  The point-

to-point communications from ‘applications’ are denoted as 

orders and results; and from ‘interfaces’ as requests and 

responses. For example port_ send (port, data, size, mode) and 

port_ receive (port, data, size, mode) orders of applications 

which the interface will execute. 

 

         
 

The system partitioning and the design of the communication 

will be the most important tasks that will greatly influence the 

performance of the whole system. The various abstraction levels 

of embedded system components (from implementation point of 

view) are given in table-I. It is to be noted that partioning is not 

possible when the CES has emergent properties and 

Segmentation is difficult, if not impossible,   for highly 

concurrent processes and associated behaviour. In the next 

section system level fault model is defined, based on CSFSM 

representation. 

ORDERS 

  

APPLICATION 

RESPONSES 
 

INTERFACE 

REQUESTS 

RESULTS 

Figure 1:  Computation, Communication, and 

Interconnection 

ORDERS: (operation, location, data) 

RESULTS: (status or the status of data) 

REQUESTS: (R/W, addr, data) (R/W = 1 

means a read operation at address 

“addr” is requested) 

RESPONSES:  (status or the status of 

data) 
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4. UNIFIED EMBEDDED SYSTEM 

FAULT MODEL 
In section 3 the complex embedded system XS, is represented as 

);...1(;XS kiA
ii

== ∏  where the product 

sign represents the sequence. A “linear fault operator L” can be 

defined that modifies the operations of  individual component 

machine Ai either the behaviour [6,16-17] or alternately modifies 

the events of communicating channel [19-21] between the fault-

free, communicating component machines Ai and Aj. Formally 

combinations of these two operations are also can be defined on 

XS. For simplicity, “fault operators” on behaviour and 

communication channel only are considered in this work. The 

effect of linear “fault operator L” on the system can be written 

as: 

).1();...1(},{XS L{XS} L kiAL
ii

=== ∏  

The faulty behaviour of FSM is another FSM known as mutation 

machine [16]. Therefore a fault relative to some F be defined as 

any mutation of F, say F’, such that F ≠ F’ and the fault model 

be a set  = FF of such all possible modified FSM’s, is the fault 

domain. In general a fault model is defined as [16]: A fault 

model for F is a set  = FF of mutations of F, such that  F ≠ F’ 

for all F '  the fault domain.  

Representing the Mutation Operator by “Ψ” its effect on the 

system XS can be written as:  

)2(];[][XS [XS] iiii
AA Ψ=Ψ==Ψ ∏∏Ψ

Assuming that the operations of “Mutation Operator Ψ” on each 

of the component machines are disjoint and denoting the 

operations of “Mutation Operator Ψ” on each of the component 

machines by ψi the overall effect on the system can be written as 

)3(]};)[({][ iii ii AAXS ∏ ∏=Ψ=Ψ ψ  

The effect of ψi on individual component machine A i can be the 

error prone version of that machine the ‘mutation machine Ai’. 

The mutation machine may have any of the possible faults [16]: 

transition has an output fault, transfer fault, missing state and an 

additional state. 

)4(];'[]})[{(XS iiiii
AA ∏∏ ==Ψ ψ  

Denoting )5(;][
i Bi Ω=∏ ψ   

and calling it as the subsystem or EPC behaviour fault (EBF) 

vector; the equation (4) describes the sequence of mutation 

machines in the given system. 

Alternately, the machine can be assumed to be fault free and the 

fault(s) if any can be incorporated in the communication channel 

(or link) between the machines [19-21]. This is similar to 

separating and encapsulating communication and the 

computation [19]. It suffices to consider communication channel 

fault (CCF) and assume fault-free component machines. The 

assumption of the component machine being fault free is very 

useful since it allows to completely ignoring the internal 

structure. Based on functionality the subsystem (level) faults can 

be further categorized into three groups [19-20] based on 

functionality. It also supports hierarchy. When each process is 

decomposed, new communication links become visible, and 

based on the “internal” faults in the original process, the newly 

visible communication links are modelled as faulty. Referring to 

figure 2(a), two fault-free communicating component machines 

Ai and A j and fault free communication channels V and Z are 

shown. Figure 2(b) describes the effect of “Fault Operator- Φ” 

on the individual communication channel ‘Z’ and the other 

communication channel ‘V’ is shown to be fault free, between  

two fault-free communicating component machines Ai and A j. 

The effect of “Fault Operator- Φ” on the communication 

channel Z can be written as Є = Φ (Z).  

 

   
Following same lines, the operations of “Fault Operator- Φ” on 

the system XS can be written as 

=Φ==Φ ∏Φ ][XS [XS]
ijij

A

).6();,;...1,()]};(,][[{ jiandkjiA ijijij
≠=∏ φ

Let Vi and Zj be the communication channels between the two 

machines Ai and Aj, then assuming the effect of “faulty process 

Φ” on the communication channels  (i →j) and (j → i) are 

independent and may be denoted by )(),(i jji ZV φφ . Using 

this effect of fault operator can be written as: 

)](),([][ i jjiijij ZVAA φφ=Φ . The effect of 

communication channel “Fault Operator- Φ” on the system XS 

can be represented as: 

)7();,;...1,(

)]};(),([{][XS

jiandkji

ZVAA jjiiij ijijij

≠=

=Φ= ∏∏Φ φφ

The above equation (7) can be rewritten as: 

)8();,;...1,(

()]};(),[][XS

jiandkji

A jiijijij

≠=

= ∏∏Φ φφ
 

Denoting  

)9(;()](),[()][
ij Cjiijij Ω== ∏∏ φφφ

        

 

as the subsystem communication channel fault (CCF) vector, 

equation (8) describes the sequence of CFSMs interconnected by 

faulty communication channels. This model can support 

multiple channel faults, by associating several ports with the 

“Fault Operator- Φ”, modelling interactions between several 

channels and/or processes. Equations (5) and (9) indicate that 

the effect of the “linear fault operator’s Ψ and Φ” respectively is 

to divide the overall system faults, into two hierarchical 

 

Ai 

 

Aj 

  V 

Z 

Figure 2(a): A fault free Communication Channel 

Φ 

V 

Figure 2(b): A communication Channel fault 
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component vectors of faults. It is to be noted that these 

component of fault vector do not represent orthogonal faults. 

These two component system fault vectors are related to the 

“change parameter vector Θ” shown in Fig. 3, a general system 

level fault model, as
CB Ω∪Ω=Θ . The system level fault 

model is based on Dynamic system theory [5] which assumes 

that models of the system is available and considers that all the 

events like - deviation, change, failure, fault, damage and 

malfunction, are incorporated by a change in the parameter 

vector of a model of the system. Referring to Fig.3 neglecting 

the dynamics for the moment, the observed data Y can be 

expressed as: 

)10();,,( ooSi WWUfY +++Θ= γγ  

 

 

 

 

 

 

 

 

 

 

Input U is assumed to be known (measured). The unknown 

quantity Ws stands for non-measured inputs, unknown non-

stationary excitation or perturbation of the system, and input 

noise. The unknown quantity Wo stands for output noise. If the 

system is error free, then the output noise Wo depends on Ws 

only. Equation (10) shows three types of faults: the first two 

types of faults o and i are additive type and appropriately 

model some faults due to sensors and actuators. The third type 

of faults modeled by the change in the parameter Θ, is often 

referred as component or system faults.  

These systems (processes) can be static or dynamic, linear or 

nonlinear. They are all subject to component faults. In the case 

of linear dynamic systems, it is useful to assume that faults as 

multiplicative faults, because they affect the input-output 

transfer function in a multiplicative manner [5]. Equation 10 is 

the starting point for fault diagnosis and isolation of dynamic 

systems. 

4.1 Input Related Faults 
The cause-effect analysis [9] shows that conditional faults, 

operating faults and erroneous requirements are the main 

contributors of of safety related software faults. Erroneous 

requirements and operation faults are required to be identified 

and resolved very early as they warrant modification of software 

[10] else they create safety related problems. Conditional faults 

are closely related to limit values. The two input related faults 

that are due to conditional faults are: input domain fault and 

input bound-limit fault.  

4.2 Input Domain fault 
The system XS, can also be represented as a set of function or 

mappings according to some group of specifications, Spec, from 

a set of input values (its domain, D) to a set of output values (its 

range, R), as shown in figure 4. A system which implements 

specification Spec should also map from D to R. For real 

numbers R will be m-dimensional space of real numbers - Rm. 

However for CES the external process is known, which is 

physical process and under the control of a MHS platform. All 

physical processes are required to be controlled within certain 

limits, and as such restrict the input to specific bounds in the 

domain D 
B  D, which in turn limits the range to RB; RB

R. 

But the input values U  D U DB D may also contribute to 

values RU RB  R, which is outside the range.  This implies 

the input values U contribute to violation in domain and denote 

this as a faulty domain DF. The input values U that contributes 

to violation in input domain and triggers faulty result, as shown 

in figure 3, is called input domain fault – DF. 

 

 

 

 

 

 

 

 

 

 

This certainly arises among complex systems that have more 

than one operation modes, like Radar, Sonar or Missile and also 

software initiating fault referred as mode confusion [22], an 

automation design related problem. The application domain 

dictates the nature or criticality of its effect. This is also similar 

to the idea of Application Domain Modeling or Input validation 

analysis [23] and Data Mutation. For obtaining an insight into 

the nature of program faults, a distinction between the syntactic 

and the semantic nature of faults is drawn [4]. Obviously, 

semantic fault size depends on the input domain and output 

range. For example, if a program P computes on the domain-DF 

produces faulty result RF contain values both in R
B and outside 

R
U. Note that the domain and the range can be considered for an 

entire program, an individual program component, a program 

path or simply a single program location.  

4.3 Input bound-limit faults 
For physical systems the input values are required to be limited 

to certain bounds in their range of values: called input bound 

limits. For a CES, any variation of input that causes one or more 

input bound limits to be violated is defined as an input bound-

limit fault. The input bound-limit violation may be due to any 

input parameter that is specified, including time.  A p-dimension 

bound vector, λi, represents the variations in the limits of the 

input U. A set of these vectors, Λ = {λ1, λ2 . . . λN}, define the 

bounds limit in the input vector U. The mapping of the input 

vector ‘ui’, to the output vector ‘yi’ is given by yi = f (ui). 

Denoting Rm as m-dimensional space of real numbers Rm ,the 

region of acceptability, Ra, is defined by a set of vectors Λ Lowi 

and Λ Maxi , where i = 1, . . . , p, representing upper and lower 

bounds limits. For every ‘ui’  RU, the corresponding ‘yi’  RY 
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Figure 4: Input Domain Fault 
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is mapped inside Ra or outside it. This implies that a region of 

acceptability, R’a is defined in the physical output space, by 

evaluating the function f ( ) and is defined as  

)11(};)(|{' aiia RufyR ∈=  

This map in the physical output space domain provides a 

definition of a fault in terms of the CES physical parameters. A 

simple example of input is: Amplitude shift keying (ASK) is 

used in many communication applications and especially M-ary 

amplitude–shift keying (MASK).  

An M-ary amplitude-shift keying signal s (t) can be defined by 

 
elsets

TttfCosD ci

;0)(

)12();0();2(s(t)

=

≤≤= π
     

 where Di = D[2i - (M-1)] for i=1, 2, … (M-1) and M > 4. 

   

MASK signal, for M=4 is shown in figure 5. Figure 5 shows the 

4-ASK signal sequence generated by the binary sequence 00 01 

1011. The carrier frequency fc and amplitude Di have tolerances 

as per the application. Typical tolerance for amplitude D and 

frequency fc are 1%. Beyond tolerance limits the detected binary 

data will not be recognized and resulting in malfunction. This 

application shows tolerance of even time duration T.  

The violation of timing constraints on signals within a complex 

system can create timing-induced functional errors which alter 

the value of output signals without affecting output signal 

timing. One such error is Mis-Timed Event (MTE) [7] fault and 

it is ‘association of pair of signals’ at the ‘wrong-time’ resulting 

in receiving ‘faulty-data’.  This is communication channel 

output data ‘timing association error’ for subsequent use. 

Similar design error is possible in data exchange protocols 

between any two processes or tasks. The input related faults may 

trigger or contribute to either of the system fault vector 

components. But the communication fault vector is logical 

choice for analyzing input related faults, as the region of 

acceptability R’a is defined in the physical output space. 

Naturally the input noise component Ws generally add up and 

adversely affect the region of acceptability. Sensors and 

actuators are likely to develop malfunction more due to input 

related faults. Several software program defects, like array or 

string function, are related to improperly bound inputs. An 

example of this type of defect is the buffer overflow - where 

memory outside of the intended buffer (or array) is accessed. 

For example, many arrays are created dynamically meaning that 

the size is only known at run-time. In addition to the required 

data value, the proper path is also necessary, to ensure that the 

array reference is executed. Complete software verification for 

arbitrary programs with unbounded memory is un-decidable.  

5. FAULTS PROPAGATION 
For preventing fault propagation, the requirements are [24], 

“abstractions and models are stable even in case of failures 

(error containment principle)”, which implies partioning of 

system into independent fault containment units. Generally the 

error containment principle is violated in systems other than 

Fault Tolerant Systems, allowing fault propagation. In such case 

the fault diagnosis may be performed at lower levels of 

abstraction [24]. Faults propagation will be analyzed with 

reference to different levels of communication abstractions of 

the embedded systems, shown in table-I. Design faults, 

hardware, software or HSI; affect various levels of system 

hierarchy in the target MHS platform (TMP) architecture. The 

error occurrence to fault manifestation is highly implementation 

dependent.  

In section 3 the embedded system operations are separated in to 

two types of components, [18]: applications and interfaces, as 

shown in figure1.Though errors are possible in both 

‘computations and communications’ operations, their 

propagation greatly depends on implementation of the 

‘communications architectures’ and for this reason the CCF 

model defined in section3 is very useful for testing. Critical part 

in embedded system is the hw/sw interactions that are governed 

by communication and interfacing architectures. 

Communication includes protocols, physical interfaces and 

physical channels that carry data and control. One of the general 

system level communication primitive operations are: port_ 

send (port, data, size, mode) and port_ receive (port, data, size, 

mode).They are example ORDERS of an application.  

In the TMP architecture the implementation choices are: (i) 

hardware (ii) and hardware-software (mixed). The 

communication primitive like the port_ send ( ) and port_ 

receive ( ) can be implemented using the SEND and RECEIVE 

functions.  To obtain an insight into the hw/sw interaction, and 

its propagation through the hw/sw communication, a simple 

synchronous wait protocol example is considered. The 

synchronous protocol is sufficient to bring out the hw/sw 

interaction issues very clearly.      

5.1 The synchronous wait protocol  
The synchronous wait protocol shown in figure 6. Though it is 

simple the completion of communication is certain and one item 

per cycle data transfer takes between the two functional 

modules. The SEND and RECEIVE together synchronize the 

communication by a pair of ‘SndRd and RcvRd’ signals, as 

shown in Figure 6. The timing diagram shows that both are 

ready in the same state. But in practice either of them may have 

to wait for one more cycle and the sender has to ensure the data 

remains valid during those cycles on the data bus. Note both 

modules initiate the transfer of data and there is no notion of 

master / slave. This protocol is widely used in asynchronous 

circuit implementations and can also be used with a synchronous 

Figure5: M-ary Amplitude Shift Keying Signal 
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positive edge-trigged design. This scheme requires at least two 

clock cycles for each transfer to account for the explicit 

acknowledgment. In this example clocking issues are not 

addressed. The next section describes SEND function 

implementation in hardware.    

 

5.2 Hardware implementation  
One possible SEND-function block implementation for an 8-bit 

data, using 74xxx541 buffer / driver with tri-state outputs, 

device is given in Figure 7. In this case, there is a direct data 

connection between SEND and RECEIVE. The implementation 

assumes that two independent ‘SndRd and RcvRd’ signal-wires 

are available. It is further assumed that 74xxx541buffer/driver 

I0-I7 pins are connected to the source-data-bus or the block 

itself is generating data. The two inverters (from 7406 or 

equivalent) use the independent signal-wires ‘SndRd and 

RcvRd’ for generating OE1bar and OE2 bar control signals, as 

shown in figure 7. If data is required to be latched for reading by 

RECEIVE-function, then the buffer can be replaced with 8-bit 

octal transparent D-latch (74x573 or its equivalent).  RECEIVE-

function can be implemented similarly. If data is valid for rising 

edge of clock then 8-bit octal transparent positive edge triggered 

D-latch (74x574 or its equivalent) can be used.  

The generation of independent ‘SndRd and RcvRd’ signal 

becomes important, as the remaining devices are fairly reliable 

and mal-function is expected after long use only. The devices 

are expected to develop “stuck-at-1 or 0” type of faults, in 

general, after fair use. However such faults are easily detected 

during independent hardware tests. The RECEIVE block 

hardware implementation is similar. The independent generation 

of ‘SndRd and RcvRd’ signals, if error prone, fault is generated. 

5.3 Synchronous hardware-software 
implementation 

The hardware component of the synchronous input interface is 

made up of the flag and the input bus interface is similar to the 

tri-state buffer described. The software component of the 

synchronous interface reads data from the hardware component, 

and can be declared as a procedure Rcv_synch_rd (v, c, RD) 

where the parameter v is the holder of the input message, c is the 

selected address and RD is a control signal for reading. The 

software module of the synchronous interface reads data from 

the hardware component of figure 8 and RD is a control signal 

for reading.  

      

Here, the software program waits for the flag ‘FRd’ to be set to 

indicate availability of an input data on the data Bus. The 

‘RcvRd’ signal is connected to both HW and SW components 

and shown as can be reset by RD, to be consistent with the 

example. The reset wire of the flag is linked to the control wire 

‘OE’, which is driven by the control signal RD. For 

implementing the example protocol ‘SndRd’ is connected to ‘S’ 

and the ‘soft-module’ reads the flag-FRd; and also generates 

‘RcvRd’ signal. The generation of ‘RD’ for reading operation 

will reset the flag-FRd and the ‘RcvRd’ signal. Any error in the 

‘soft-module’ prevents input data from hardware component. 

Apart from timing considerations, initialization of hardware and 

sequencing of software is important, for error generation. It is 

possible that the ‘flag-FRd’ is already set before HW component 

initiated SEND operation, resulting in reading wrong data or 

preventing in sending data. 

5.4 Mixed hardware - software 

communication architectures 
More general system level communication primitive operations 

are: port_ send (port, data, size, mode) and port_ receive (port, 

data, size, mode). Based on the design partitioning, the interface 

need to connect two hardware modules, two software modules, 

or hardware and a software module. In the case where two 

processes that communicate through ports are mapped to 

hardware implementation (as in section 4.2), code or software is 

not involved in handling specific communication.  Hardware to 

software communications can be implemented by either 

interrupts or using memory-mapped addresses for the polling 

case. One solution is shown in Figure 10. The bus adaptation 

layer for the hardware module sends and receives data from the 

bus. In the case of a memory-mapped communication, a device 

driver is also required to reside in the processor, for monitoring 

the bus for activity in the memory-mapped region. The device 

driver is responsible for transferring data from the bus to the 

processor memory, to a port structure.  The software process 

will access the port data structure retrieving data and updating 

event flags.  

The application programs communicate with the external world 

via function calls to the appropriate send and receive operations. 

The send and receive routines are implemented using the 

memory “read” and “write” instructions if memory mapped I/O 
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is used for the specific channel, or the corresponding special 

programmed I/O instructions if instruction programmed I/O is 

used. For interrupt-driven I/O service routine scheme, the 

“send” and “receive” routines in software are each split into two 

operations. In the case of a “send” operation, the processor 

transfers the data to the I/O unit and proceeds with other tasks. 

After completion only the “receive” operation is initiated. The 

direct memory access is similar to the single “send” and 

“receive” operations above, but parameterized for block 

transfers. In the interrupt-based communication, the actual data 

is still transferred through a memory-mapped location to the port 

structure. 

5.5 Discussion on communication 

architectures 
In the previous section SEND block and communication 

primitive implementations are described. Referring to table-I 

both “SEND and RECEIVE” are ‘event or signals’ type in the 

abstractions levels of communication. A system level 

communication primitive like port_ send ( ) makes use of the 

same.  If there is an error in SEND, it is triggered when a higher 

level abstraction like port_ send ( ) makes use. It is clear that if 

an error exists at a lower level abstraction, then it is likely to be 

triggered when a higher level abstraction uses it. As such tests 

designed using higher levels of abstraction, are likely to detect 

errors at the lower levels also [3]. Physical hardware is the 

lowest level. A module or routine’s assumptions and 

initialization errors result in errors similar to hardware errors.  

For example OE1bar and RcvRd signals error effect is same as 

SEND circuit malfunction. It can be said that hardware errors 

are triggered by the operations or functions that make use of the 

erroneous part. Based on these examples, it can be strongly 

stated that- 

1. An error at lower level, like hardware, impacts all 

related higher levels of abstractions.  

2. Also initialization errors, control signal errors mimic 

hardware errors. 

3. Error in Software function / module, will effect only 

when used by other modules. 

4. In a data dependent function/module the error may be 

triggered under certain conditions. Similarly error may 

not show if alternate path exists. 

5. Error at a higher level abstraction may not impact 

adversely all related lower levels, if an alternate path 

exists [15]. 

6. Possible error prone spots are: Hardware dependent 

Software: Initialization of hardware flip-flops, registers, 

enable /disable and other control signals, Initialization 

of flags, pointers, semaphores, mailboxes, and etc. 

7. During integration, four types of Integration Error (IE) 

occur when an incorrect value is passed through a 

module connection [12]. The incorrect hardware 

software interaction passes through hw/sw 

communication and results into a fault at the various 

interface architectures used in the application. 

It is also possible that error propagation can be prevented by the 

intermediary states, either by ignoring the fault or mapping it to 

a proper state [15]. As such integration tests are to be designed 

to identify faults. Hence system level functional tests created to 

verify the system design will be able to detect errors in software 

and assure correct function [10]. Careful design of functional 

tests and proper reuse of the same tests during integration are 

likely to give better results. 

                                    

Table1. Embedded system levels of abstraction

Hardware [25] Software [26] Computation [27] Communication[27] 

Domain Application Concepts Services 

Transaction 
Application Program 

Interface 
Behaviours Tokens 

Behavioral + data 

types 

OS + Drivers + Boot 

firmware 
Processes Messages 

Behaviour 
Hardware abstraction layer 

(HAL) 
Processes Buses/Ports 

RTL --- FSMD Events or Signals 

6. CONCLUSIONS 
A hierarchical unified system fault (USF) modelling framework 

is proposed for the MHS platform. The complex embedded 

system (CES) is modelled using sequence of communicating 

FSM (SCFSM) and the system faults are represented by two 

components of system fault vector - system behaviour fault 

vector and system communication fault vector. These two 

component system fault vectors are related to the “change 
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parameter vector Θ” of generic system level fault model based 

on Dynamic system theory. Input related faults and their 

contribution to system fault vector are discussed. The 

propagation of faults in mixed hardware software architecture is 

discussed with examples. 
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