
International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

34

Unified System Level Fault Modeling and Fault

Propagation

Hara Gopal Mani Pakala
Vignana Bharathi Institute of
Technology, Aushapur,

Hyderabad - 501301, India

Dr. KVSVN Raju
Computer Science & System

Engineering, Andhra University,
Visakhapatnam, 530003 India

Dr. Ibrahim Khan
RGUKT, Nuzvid- 521201, India

ABSTRACT
Fault modeling is an important step towards both understanding

and validating the implemented system. The focus of the paper

is to present a unified system fault modelling framework,

including input related faults model based on system theory. The

complex embedded system (CES) is modelled using sequence of

communicating FSM (SCFSM) and the system faults are

represented by two components of system fault vector - system

behaviour fault vector and system communication fault vector.

These two system fault vector components are related and are

components of the “change parameter vector Θ”, a general

system level fault model based on Dynamic system theory. Input

related faults are defined and their contribution is discussed.

Faults propagation in mixed hardware software communication

architecture is discussed, with the help of protocol example.

General Terms
Fault modeling and propagation, Embedded Systems

development.

Keywords
System level Faults model, Fault propagation, system fault

vector components, behaviour fault vector, communication

channel fault vector, embedded system, Sequence of CFSM.

1. INTRODUCTION
The Embedded systems (ES) design and testing process are very

challenging [1]. The growing system complexity and application

domain demands are directly impacting the validation and or

verification issues. Fault-based testing focuses on generating

tests to detect particular faults, which is an important advantage

compared to other testing approaches [2]. The two popular

testing strategies, viz. conformance and composition testing rely

on specific fault models [2]. The resulting tests are also effective

in detecting faults in other classes [3]. Fault modeling is an

important step towards development of tests. To efficiently test

any system, it is important to know the possible failures, causes

and the way they propagate. The first step is the identification

and classification of design faults that occur during the early

developmental stages. In general, fault taxonomy is the starting

point for providing techniques and methods for assessing the

quality [4].

Faults of a system can be classified by the phase in which they

occur as follows: design faults or errors which appear in the

design phase, fabrication faults which appear in the

manufacturing phase, and operational faults which occur during

normal operation. The focus of the paper is to present a unified

system fault (USF) modelling framework, including input

related fault model based on system theory. The CES is

modelled using sequence of communicating FSM (SCFSM) and

the system faults are defined by two components of system fault

vector - system behaviour fault vector and system

communication fault vector. These two system fault vector

components are related and are components of the “change

parameter vector Θ”, a general system level fault (change)

model which is based on Dynamic system theory [5]. Input

related faults and their contribution to system fault vector are

discussed. The USF model formalism is presented in section 3

which depicts the two types of system fault(s) and their relation

with already reported embedded system fault models. Section 4

deals with faults propagation in mixed hardware software

(MHS) communication architectures.

2. RELATED WORK
Fault modeling is an important aspect for the development of

tests for systems. The functional test generation considers

mainly two classes of fault models: Behavioral and Functional

fault models. Fault models were developed and applied in

different domains like Embedded Systems [6-7]; Software [4, 8-

12]; and digital hardware systems including VLSI [13-14].

Testing at higher level of abstraction has a lot in common with

software testing [6]. The test pattern generation methods can be

classified into two main categories, namely, code oriented

methods and fault oriented methods. A two-level fault model

[6] is described to specify not only the control flow but also the

data flow aspects for embedded system testing, based on simple

FSMs and the extension of FSMs, i.e. with (p)-EFSM model.

Apart from control flow faults [6], other error classes that are

not represented by this model are similar to those of software

[6]: Specific behavioural error classes and General data flow-

related error classes. A timing fault model, the Mis-Timed Event

(MTE) fault model, is proposed [7] to model timing-induced

functional errors for analysing complex systems.

Software errors, their relationship with the development phase

and system complexity are presented [8-9]. The results

presented [9] are, (i) conditional faults (ii) operating faults and

(iii) erroneous requirements are highly related with safety-

related software errors. In several embedded software

applications errors in understanding requirements and

implementations are major sources of errors [9-10]. Software

fault taxonomy for using in the development and evaluation of

software in component-based systems is presented in [4].

Component-based software systems are classified into two main

classes of faults: service and structure-related faults [4]. These

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

35

two classes are further categorized into seven type’s viz.,

Syntactic, Semantic, Non-Functional, Connectors,

Infrastructure, Topology and Other faults. A fault class
hierarchy that relates literal, term, operator, and expression

faults classes used in specification-based software testing is

reported [11]. A test case that detects a fault of a stronger class

will always detect the corresponding fault of a weaker class

amongst the hierarchy. Though the study of faults was carried

for Boolean specifications, the results are equally applicable to

the code-based testing of predicates [11]. During software

integration testing the emphasis is on interactions among

modules via their interfaces. Four types of Integration Error (IE)

occur when an incorrect value is passed through a module

connection [12].To efficiently test any mixed hardware-software

system in the design phase, it is important to know the possible

failures and their causes.

Models of physical and fabrication faults [13] are commonly

required for testing of digital electronic circuits or cores. A

survey of behavioural level fault models for testing of cores

(SOC) at higher level of abstraction than logic level is given in

[13]. The survey indicates that a large number of fault models

were developed for validating the designs in IC domain. To

model a physical fault inside component like ALU, knowledge

of the logic level implementation of the component is required.

The co-validation fault models [14] are behavioural-level fault

models that are classified by the style of behavioural description

upon which the models are based. A co-validation fault model

allows the concise representation of the set of all design defects

for an arbitrary design. For Hardware functional verification,

high-level faults are mapped into logic-level faults and

correspondence between behavioural / RT level signals and

logic-level nets established. The current co-validation fault

models are classified based on the style of behavioural

description as textual, control-data flow, state machine, gate

level, application-specific, and interface faults [14].

The issue of error-propagation conditions was considered [15] in

terms of ‘impact’ on the program execution in causing a

detectable output error, using the notion of ‘impact strength’ as a

quantitative measure of the impact. The paper introduced

dynamic impact analysts’ technique to determine the effect of

components of program on the program output. The paper is on

USF modelling framework, including input related fault model

based on system theory. Faults propagation to lower level

hardware faults in mixed hardware software architectures is

discussed for protocol example.

3. COMPLEX EMBEDDED SYSTEM

MODEL
The elements of any complex embedded system (CES) are an

external process and an Embedded Processing Component

(EPC) (hardware component board consisting of at least one

dedicated processor, memory, special interface circuit and

optionally may contain sensors and actuators). Sensors provide

information about the current state of the external process, while

actuators communicate to the external process the results

(actions) of computing “controller law”. The external process,

which is known a priori, is a process that can be of physical,

mechanical, or electrical nature; is controlled and implemented

in real time by mixed hardware software or hardware only. The

available strategies for simplifying a complex system in general

are: abstraction, partition and segmentation.

The embedded system specification consists of the specification

of its environment (external process) and it’s EPC, in some

formal notation, like state transition model [6] or sequence of

communicating FSMs [16-17]. Here Complex embedded

systems are modeled as a sequence of communicating FSM

(SCFSM) Ai, i=1... k. This model supports well the sequential

integration of components of CES or even specific sequence. It

is assumed that the component FSM [16]:

(a) Ai is deterministic FSM which communicate asynchronously

with each other through bounded input queues, in addition to

their communication with the environment through their

respective external ports.

(b) In response to an input produces only an internal or an

external output

(c) The system has at most one message in transit, i.e. the next

external input is submitted to the system only after it produces

an external output to the previous input. Then the collective

behaviour of the communicating FSMs can be described by a

finite product machine (PM).

(d) System does not fall into a live-lock and the component

machines are deterministic. Under these assumptions, composed

machine)(;(CM) jiAA ji ≠◊= is deterministic.

The complex embedded system XS, with the above

assumptions, can be represented as

);...1(;XS kiA
ii

== ∏ where the product

sign represents the sequence.

The embedded system can be broadly divided into two

orthogonal operations: computations and communications.

These operations are separated in two types of components [18]:

applications and interfaces, and communications to and from

these types of components are indicated in figure1. The point-

to-point communications from ‘applications’ are denoted as

orders and results; and from ‘interfaces’ as requests and

responses. For example port_ send (port, data, size, mode) and

port_ receive (port, data, size, mode) orders of applications

which the interface will execute.

The system partitioning and the design of the communication

will be the most important tasks that will greatly influence the

performance of the whole system. The various abstraction levels

of embedded system components (from implementation point of

view) are given in table-I. It is to be noted that partioning is not

possible when the CES has emergent properties and

Segmentation is difficult, if not impossible, for highly

concurrent processes and associated behaviour. In the next

section system level fault model is defined, based on CSFSM

representation.

ORDERS

APPLICATION

RESPONSES

INTERFACE

REQUESTS

RESULTS

Figure 1: Computation, Communication, and

Interconnection

ORDERS: (operation, location, data)

RESULTS: (status or the status of data)

REQUESTS: (R/W, addr, data) (R/W = 1

means a read operation at address

“addr” is requested)

RESPONSES: (status or the status of

data)

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

36

4. UNIFIED EMBEDDED SYSTEM

FAULT MODEL
In section 3 the complex embedded system XS, is represented as

);...1(;XS kiA
ii

== ∏ where the product

sign represents the sequence. A “linear fault operator L” can be

defined that modifies the operations of individual component

machine Ai either the behaviour [6,16-17] or alternately modifies

the events of communicating channel [19-21] between the fault-

free, communicating component machines Ai and Aj. Formally

combinations of these two operations are also can be defined on

XS. For simplicity, “fault operators” on behaviour and

communication channel only are considered in this work. The

effect of linear “fault operator L” on the system can be written

as:

).1();...1(},{XS L{XS} L kiAL
ii

=== ∏

The faulty behaviour of FSM is another FSM known as mutation

machine [16]. Therefore a fault relative to some F be defined as

any mutation of F, say F’, such that F ≠ F’ and the fault model

be a set = FF of such all possible modified FSM’s, is the fault

domain. In general a fault model is defined as [16]: A fault

model for F is a set = FF of mutations of F, such that F ≠ F’

for all F ' the fault domain.

Representing the Mutation Operator by “Ψ” its effect on the

system XS can be written as:

)2(];[][XS [XS] iiii
AA Ψ=Ψ==Ψ ∏∏Ψ

Assuming that the operations of “Mutation Operator Ψ” on each

of the component machines are disjoint and denoting the

operations of “Mutation Operator Ψ” on each of the component

machines by ψi the overall effect on the system can be written as

)3(]};)[({][iii ii AAXS ∏ ∏=Ψ=Ψ ψ

The effect of ψi on individual component machine A i can be the

error prone version of that machine the ‘mutation machine Ai’.

The mutation machine may have any of the possible faults [16]:

transition has an output fault, transfer fault, missing state and an

additional state.

)4(];'[]})[{(XS iiiii
AA ∏∏ ==Ψ ψ

Denoting)5(;][
i Bi Ω=∏ ψ

and calling it as the subsystem or EPC behaviour fault (EBF)

vector; the equation (4) describes the sequence of mutation

machines in the given system.

Alternately, the machine can be assumed to be fault free and the

fault(s) if any can be incorporated in the communication channel

(or link) between the machines [19-21]. This is similar to

separating and encapsulating communication and the

computation [19]. It suffices to consider communication channel

fault (CCF) and assume fault-free component machines. The

assumption of the component machine being fault free is very

useful since it allows to completely ignoring the internal

structure. Based on functionality the subsystem (level) faults can

be further categorized into three groups [19-20] based on

functionality. It also supports hierarchy. When each process is

decomposed, new communication links become visible, and

based on the “internal” faults in the original process, the newly

visible communication links are modelled as faulty. Referring to

figure 2(a), two fault-free communicating component machines

Ai and A j and fault free communication channels V and Z are

shown. Figure 2(b) describes the effect of “Fault Operator- Φ”

on the individual communication channel ‘Z’ and the other

communication channel ‘V’ is shown to be fault free, between

two fault-free communicating component machines Ai and A j.

The effect of “Fault Operator- Φ” on the communication

channel Z can be written as Є = Φ (Z).

Following same lines, the operations of “Fault Operator- Φ” on

the system XS can be written as

=Φ==Φ ∏Φ][XS [XS]
ijij

A

).6();,;...1,()]};(,][[{ jiandkjiA ijijij
≠=∏ φ

Let Vi and Zj be the communication channels between the two

machines Ai and Aj, then assuming the effect of “faulty process

Φ” on the communication channels (i →j) and (j → i) are

independent and may be denoted by)(),(i jji ZV φφ . Using

this effect of fault operator can be written as:

)](),([][i jjiijij ZVAA φφ=Φ . The effect of

communication channel “Fault Operator- Φ” on the system XS

can be represented as:

)7();,;...1,(

)]};(),([{][XS

jiandkji

ZVAA jjiiij ijijij

≠=

=Φ= ∏∏Φ φφ

The above equation (7) can be rewritten as:

)8();,;...1,(

()]};(),[][XS

jiandkji

A jiijijij

≠=

= ∏∏Φ φφ

Denoting

)9(;()](),[()][
ij Cjiijij Ω== ∏∏ φφφ

as the subsystem communication channel fault (CCF) vector,

equation (8) describes the sequence of CFSMs interconnected by

faulty communication channels. This model can support

multiple channel faults, by associating several ports with the

“Fault Operator- Φ”, modelling interactions between several

channels and/or processes. Equations (5) and (9) indicate that

the effect of the “linear fault operator’s Ψ and Φ” respectively is

to divide the overall system faults, into two hierarchical

Ai

Aj

 V

Z

Figure 2(a): A fault free Communication Channel

Φ

V

Figure 2(b): A communication Channel fault

Z

Aj

Ai

�

 Z

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

37

component vectors of faults. It is to be noted that these

component of fault vector do not represent orthogonal faults.

These two component system fault vectors are related to the

“change parameter vector Θ” shown in Fig. 3, a general system

level fault model, as
CB Ω∪Ω=Θ . The system level fault

model is based on Dynamic system theory [5] which assumes

that models of the system is available and considers that all the

events like - deviation, change, failure, fault, damage and

malfunction, are incorporated by a change in the parameter

vector of a model of the system. Referring to Fig.3 neglecting

the dynamics for the moment, the observed data Y can be

expressed as:

)10();,,(ooSi WWUfY +++Θ= γγ

Input U is assumed to be known (measured). The unknown

quantity Ws stands for non-measured inputs, unknown non-

stationary excitation or perturbation of the system, and input

noise. The unknown quantity Wo stands for output noise. If the

system is error free, then the output noise Wo depends on Ws

only. Equation (10) shows three types of faults: the first two

types of faults o and i are additive type and appropriately

model some faults due to sensors and actuators. The third type

of faults modeled by the change in the parameter Θ, is often

referred as component or system faults.

These systems (processes) can be static or dynamic, linear or

nonlinear. They are all subject to component faults. In the case

of linear dynamic systems, it is useful to assume that faults as

multiplicative faults, because they affect the input-output

transfer function in a multiplicative manner [5]. Equation 10 is

the starting point for fault diagnosis and isolation of dynamic

systems.

4.1 Input Related Faults
The cause-effect analysis [9] shows that conditional faults,

operating faults and erroneous requirements are the main

contributors of of safety related software faults. Erroneous

requirements and operation faults are required to be identified

and resolved very early as they warrant modification of software

[10] else they create safety related problems. Conditional faults

are closely related to limit values. The two input related faults

that are due to conditional faults are: input domain fault and

input bound-limit fault.

4.2 Input Domain fault
The system XS, can also be represented as a set of function or

mappings according to some group of specifications, Spec, from

a set of input values (its domain, D) to a set of output values (its

range, R), as shown in figure 4. A system which implements

specification Spec should also map from D to R. For real

numbers R will be m-dimensional space of real numbers - Rm.

However for CES the external process is known, which is

physical process and under the control of a MHS platform. All

physical processes are required to be controlled within certain

limits, and as such restrict the input to specific bounds in the

domain D
B D, which in turn limits the range to RB; RB

R.

But the input values U D U DB D may also contribute to

values RU RB R, which is outside the range. This implies

the input values U contribute to violation in domain and denote

this as a faulty domain DF. The input values U that contributes

to violation in input domain and triggers faulty result, as shown

in figure 3, is called input domain fault – DF.

This certainly arises among complex systems that have more

than one operation modes, like Radar, Sonar or Missile and also

software initiating fault referred as mode confusion [22], an

automation design related problem. The application domain

dictates the nature or criticality of its effect. This is also similar

to the idea of Application Domain Modeling or Input validation

analysis [23] and Data Mutation. For obtaining an insight into

the nature of program faults, a distinction between the syntactic

and the semantic nature of faults is drawn [4]. Obviously,

semantic fault size depends on the input domain and output

range. For example, if a program P computes on the domain-DF

produces faulty result RF contain values both in R
B and outside

R
U. Note that the domain and the range can be considered for an

entire program, an individual program component, a program

path or simply a single program location.

4.3 Input bound-limit faults
For physical systems the input values are required to be limited

to certain bounds in their range of values: called input bound

limits. For a CES, any variation of input that causes one or more

input bound limits to be violated is defined as an input bound-

limit fault. The input bound-limit violation may be due to any

input parameter that is specified, including time. A p-dimension

bound vector, λi, represents the variations in the limits of the

input U. A set of these vectors, Λ = {λ1, λ2 . . . λN}, define the

bounds limit in the input vector U. The mapping of the input

vector ‘ui’, to the output vector ‘yi’ is given by yi = f (ui).

Denoting Rm as m-dimensional space of real numbers Rm ,the

region of acceptability, Ra, is defined by a set of vectors Λ Lowi

and Λ Maxi , where i = 1, . . . , p, representing upper and lower

bounds limits. For every ‘ui’ RU, the corresponding ‘yi’ RY

INPUT

DOMAIN

D

D
B

D
U

RANGE - R

R
B

R
U

DF FAULTY RESULT RF

Figure 4: Input Domain Fault

Y

γi

unknown W0

Change in Θ

known U

unknown

WS

γ0

Figure 3: General System

Fault (GSF) Model

SYSTEMΘ

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

38

is mapped inside Ra or outside it. This implies that a region of

acceptability, R’a is defined in the physical output space, by

evaluating the function f () and is defined as

)11(};)(|{' aiia RufyR ∈=

This map in the physical output space domain provides a

definition of a fault in terms of the CES physical parameters. A

simple example of input is: Amplitude shift keying (ASK) is

used in many communication applications and especially M-ary

amplitude–shift keying (MASK).

An M-ary amplitude-shift keying signal s (t) can be defined by

elsets

TttfCosD ci

;0)(

)12();0();2(s(t)

=

≤≤= π

 where Di = D[2i - (M-1)] for i=1, 2, … (M-1) and M > 4.

MASK signal, for M=4 is shown in figure 5. Figure 5 shows the

4-ASK signal sequence generated by the binary sequence 00 01

1011. The carrier frequency fc and amplitude Di have tolerances

as per the application. Typical tolerance for amplitude D and

frequency fc are 1%. Beyond tolerance limits the detected binary

data will not be recognized and resulting in malfunction. This

application shows tolerance of even time duration T.

The violation of timing constraints on signals within a complex

system can create timing-induced functional errors which alter

the value of output signals without affecting output signal

timing. One such error is Mis-Timed Event (MTE) [7] fault and

it is ‘association of pair of signals’ at the ‘wrong-time’ resulting

in receiving ‘faulty-data’. This is communication channel

output data ‘timing association error’ for subsequent use.

Similar design error is possible in data exchange protocols

between any two processes or tasks. The input related faults may

trigger or contribute to either of the system fault vector

components. But the communication fault vector is logical

choice for analyzing input related faults, as the region of

acceptability R’a is defined in the physical output space.

Naturally the input noise component Ws generally add up and

adversely affect the region of acceptability. Sensors and

actuators are likely to develop malfunction more due to input

related faults. Several software program defects, like array or

string function, are related to improperly bound inputs. An

example of this type of defect is the buffer overflow - where

memory outside of the intended buffer (or array) is accessed.

For example, many arrays are created dynamically meaning that

the size is only known at run-time. In addition to the required

data value, the proper path is also necessary, to ensure that the

array reference is executed. Complete software verification for

arbitrary programs with unbounded memory is un-decidable.

5. FAULTS PROPAGATION
For preventing fault propagation, the requirements are [24],

“abstractions and models are stable even in case of failures

(error containment principle)”, which implies partioning of

system into independent fault containment units. Generally the

error containment principle is violated in systems other than

Fault Tolerant Systems, allowing fault propagation. In such case

the fault diagnosis may be performed at lower levels of

abstraction [24]. Faults propagation will be analyzed with

reference to different levels of communication abstractions of

the embedded systems, shown in table-I. Design faults,

hardware, software or HSI; affect various levels of system

hierarchy in the target MHS platform (TMP) architecture. The

error occurrence to fault manifestation is highly implementation

dependent.

In section 3 the embedded system operations are separated in to

two types of components, [18]: applications and interfaces, as

shown in figure1.Though errors are possible in both

‘computations and communications’ operations, their

propagation greatly depends on implementation of the

‘communications architectures’ and for this reason the CCF

model defined in section3 is very useful for testing. Critical part

in embedded system is the hw/sw interactions that are governed

by communication and interfacing architectures.

Communication includes protocols, physical interfaces and

physical channels that carry data and control. One of the general

system level communication primitive operations are: port_

send (port, data, size, mode) and port_ receive (port, data, size,

mode).They are example ORDERS of an application.

In the TMP architecture the implementation choices are: (i)

hardware (ii) and hardware-software (mixed). The

communication primitive like the port_ send () and port_

receive () can be implemented using the SEND and RECEIVE

functions. To obtain an insight into the hw/sw interaction, and

its propagation through the hw/sw communication, a simple

synchronous wait protocol example is considered. The

synchronous protocol is sufficient to bring out the hw/sw

interaction issues very clearly.

5.1 The synchronous wait protocol
The synchronous wait protocol shown in figure 6. Though it is

simple the completion of communication is certain and one item

per cycle data transfer takes between the two functional

modules. The SEND and RECEIVE together synchronize the

communication by a pair of ‘SndRd and RcvRd’ signals, as

shown in Figure 6. The timing diagram shows that both are

ready in the same state. But in practice either of them may have

to wait for one more cycle and the sender has to ensure the data

remains valid during those cycles on the data bus. Note both

modules initiate the transfer of data and there is no notion of

master / slave. This protocol is widely used in asynchronous

circuit implementations and can also be used with a synchronous

Figure5: M-ary Amplitude Shift Keying Signal

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

39

positive edge-trigged design. This scheme requires at least two

clock cycles for each transfer to account for the explicit

acknowledgment. In this example clocking issues are not

addressed. The next section describes SEND function

implementation in hardware.

5.2 Hardware implementation
One possible SEND-function block implementation for an 8-bit

data, using 74xxx541 buffer / driver with tri-state outputs,

device is given in Figure 7. In this case, there is a direct data

connection between SEND and RECEIVE. The implementation

assumes that two independent ‘SndRd and RcvRd’ signal-wires

are available. It is further assumed that 74xxx541buffer/driver

I0-I7 pins are connected to the source-data-bus or the block

itself is generating data. The two inverters (from 7406 or

equivalent) use the independent signal-wires ‘SndRd and

RcvRd’ for generating OE1bar and OE2 bar control signals, as

shown in figure 7. If data is required to be latched for reading by

RECEIVE-function, then the buffer can be replaced with 8-bit

octal transparent D-latch (74x573 or its equivalent). RECEIVE-

function can be implemented similarly. If data is valid for rising

edge of clock then 8-bit octal transparent positive edge triggered

D-latch (74x574 or its equivalent) can be used.

The generation of independent ‘SndRd and RcvRd’ signal

becomes important, as the remaining devices are fairly reliable

and mal-function is expected after long use only. The devices

are expected to develop “stuck-at-1 or 0” type of faults, in

general, after fair use. However such faults are easily detected

during independent hardware tests. The RECEIVE block

hardware implementation is similar. The independent generation

of ‘SndRd and RcvRd’ signals, if error prone, fault is generated.

5.3 Synchronous hardware-software
implementation

The hardware component of the synchronous input interface is

made up of the flag and the input bus interface is similar to the

tri-state buffer described. The software component of the

synchronous interface reads data from the hardware component,

and can be declared as a procedure Rcv_synch_rd (v, c, RD)

where the parameter v is the holder of the input message, c is the

selected address and RD is a control signal for reading. The

software module of the synchronous interface reads data from

the hardware component of figure 8 and RD is a control signal

for reading.

Here, the software program waits for the flag ‘FRd’ to be set to

indicate availability of an input data on the data Bus. The

‘RcvRd’ signal is connected to both HW and SW components

and shown as can be reset by RD, to be consistent with the

example. The reset wire of the flag is linked to the control wire

‘OE’, which is driven by the control signal RD. For

implementing the example protocol ‘SndRd’ is connected to ‘S’

and the ‘soft-module’ reads the flag-FRd; and also generates

‘RcvRd’ signal. The generation of ‘RD’ for reading operation

will reset the flag-FRd and the ‘RcvRd’ signal. Any error in the

‘soft-module’ prevents input data from hardware component.

Apart from timing considerations, initialization of hardware and

sequencing of software is important, for error generation. It is

possible that the ‘flag-FRd’ is already set before HW component

initiated SEND operation, resulting in reading wrong data or

preventing in sending data.

5.4 Mixed hardware - software

communication architectures
More general system level communication primitive operations

are: port_ send (port, data, size, mode) and port_ receive (port,

data, size, mode). Based on the design partitioning, the interface

need to connect two hardware modules, two software modules,

or hardware and a software module. In the case where two

processes that communicate through ports are mapped to

hardware implementation (as in section 4.2), code or software is

not involved in handling specific communication. Hardware to

software communications can be implemented by either

interrupts or using memory-mapped addresses for the polling

case. One solution is shown in Figure 10. The bus adaptation

layer for the hardware module sends and receives data from the

bus. In the case of a memory-mapped communication, a device

driver is also required to reside in the processor, for monitoring

the bus for activity in the memory-mapped region. The device

driver is responsible for transferring data from the bus to the

processor memory, to a port structure. The software process

will access the port data structure retrieving data and updating

event flags.

The application programs communicate with the external world

via function calls to the appropriate send and receive operations.

The send and receive routines are implemented using the

memory “read” and “write” instructions if memory mapped I/O

Data

Bus

 RD

 RcvRd

Address

Bus

SOFTWARE

COMPONENT

Data Bus

x

SndRd

Address

Bus

HARDWARE

COMPONENT
FRd

Figure8. SEND – Synchronous Hardware-

Software Implementation

R S

OE

 Clock (b) Clock

SndRd

RcvRd

Ready to send

Ready to Receive

Data

Figure6. Synchronous wait protocol

SEND

RECEIVE

Clock

SndRd

Data

SEND

RECEIVE

SndRd

RcvRd

Data

T1 T2 T3

(a)

(c)

Figure7. SEND - Hardware Implementation

SndRd

 (OE1bar)

(OE2bar) RcvRd

 Data Bus

SEND

74xxx

541

RECEIVE

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

40

is used for the specific channel, or the corresponding special

programmed I/O instructions if instruction programmed I/O is

used. For interrupt-driven I/O service routine scheme, the

“send” and “receive” routines in software are each split into two

operations. In the case of a “send” operation, the processor

transfers the data to the I/O unit and proceeds with other tasks.

After completion only the “receive” operation is initiated. The

direct memory access is similar to the single “send” and

“receive” operations above, but parameterized for block

transfers. In the interrupt-based communication, the actual data

is still transferred through a memory-mapped location to the port

structure.

5.5 Discussion on communication

architectures
In the previous section SEND block and communication

primitive implementations are described. Referring to table-I

both “SEND and RECEIVE” are ‘event or signals’ type in the

abstractions levels of communication. A system level

communication primitive like port_ send () makes use of the

same. If there is an error in SEND, it is triggered when a higher

level abstraction like port_ send () makes use. It is clear that if

an error exists at a lower level abstraction, then it is likely to be

triggered when a higher level abstraction uses it. As such tests

designed using higher levels of abstraction, are likely to detect

errors at the lower levels also [3]. Physical hardware is the

lowest level. A module or routine’s assumptions and

initialization errors result in errors similar to hardware errors.

For example OE1bar and RcvRd signals error effect is same as

SEND circuit malfunction. It can be said that hardware errors

are triggered by the operations or functions that make use of the

erroneous part. Based on these examples, it can be strongly

stated that-

1. An error at lower level, like hardware, impacts all

related higher levels of abstractions.

2. Also initialization errors, control signal errors mimic

hardware errors.

3. Error in Software function / module, will effect only

when used by other modules.

4. In a data dependent function/module the error may be

triggered under certain conditions. Similarly error may

not show if alternate path exists.

5. Error at a higher level abstraction may not impact

adversely all related lower levels, if an alternate path

exists [15].

6. Possible error prone spots are: Hardware dependent

Software: Initialization of hardware flip-flops, registers,

enable /disable and other control signals, Initialization

of flags, pointers, semaphores, mailboxes, and etc.

7. During integration, four types of Integration Error (IE)

occur when an incorrect value is passed through a

module connection [12]. The incorrect hardware

software interaction passes through hw/sw

communication and results into a fault at the various

interface architectures used in the application.

It is also possible that error propagation can be prevented by the

intermediary states, either by ignoring the fault or mapping it to

a proper state [15]. As such integration tests are to be designed

to identify faults. Hence system level functional tests created to

verify the system design will be able to detect errors in software

and assure correct function [10]. Careful design of functional

tests and proper reuse of the same tests during integration are

likely to give better results.

Table1. Embedded system levels of abstraction

Hardware [25] Software [26] Computation [27] Communication[27]

Domain Application Concepts Services

Transaction
Application Program

Interface
Behaviours Tokens

Behavioral + data

types

OS + Drivers + Boot

firmware
Processes Messages

Behaviour
Hardware abstraction layer

(HAL)
Processes Buses/Ports

RTL --- FSMD Events or Signals

6. CONCLUSIONS
A hierarchical unified system fault (USF) modelling framework

is proposed for the MHS platform. The complex embedded

system (CES) is modelled using sequence of communicating

FSM (SCFSM) and the system faults are represented by two

components of system fault vector - system behaviour fault

vector and system communication fault vector. These two

component system fault vectors are related to the “change

PRODUCER

PORT_

DAT

D

E

C

O

D

E

R

PORT
Device

Driver Consumer

Interrupt Line

Figure10. Hardware to Software Communication

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

41

parameter vector Θ” of generic system level fault model based

on Dynamic system theory. Input related faults and their

contribution to system fault vector are discussed. The

propagation of faults in mixed hardware software architecture is

discussed with examples.

7. REFERENCES
[1] Tom Henzinger, Joseph Sifakis. "The embedded systems

design challenge". Proceedings of the 14th International

Symposium on Formal Methods (FM), Lecture Notes in

Computer Science, Springer, August, 2006.

[2] Bernhard K. Aichernig, Martin Weiglhofer, Franz Wotawa
“Improving Fault-based Conformance Testing”, Electronic

Notes in Theoretical Computer Science 220 (2008) 63–77.

[3] Vadim Okun a,b Paul E. Black a Yaacov Yesha,
Comparison of Fault Classes in Specification-Based

Testing , Preprint submitted to Elsevier Science 2 April

2004

[4] Leonardo Mariani, “A Fault Taxonomy for Component-
based Software” Electronic Notes in Theoretical Computer

Science 82 No. 6 (2003).

[5] M. Basseville and I. Nikiforov (1993). Detection of Abrupt
Changes: Theory and Applications. Prentice Hall, N.J.

[6] A Guerrouat, and Harald Richter, Adaptation of

State/Transition-Based Methods for Embedded System

Testing” Proceedings Of World Academy Of Science,

Engineering And Technology Volume 10 December 2005

Issn 1307-6884

[7] Qiushuang Zhang and Ian G. Harris, “A Validation Fault
Model for Timing-Induced Functional Errors”,

International Test Conference 2001 (ITC'01) Baltimore,

Maryland, October 30-November 01.

[8] Boris Beizer, “ Software Testing Techniques”, Second
Edition The Coriolis Group

ISBN: 1850328803 Date: 06/01/90

[9] R. R. Lutz. Analyzing software requirements errors in
safety-critical, embedded systems. In IEEE International

Symposium on Requirements Engineering, pages 126–133,

San Diego, CA, 1993. IEEE Computer Society Press.

[10] T. L. Bennett and Paul Wennberg, “Eliminating Embedded
Software Defects Prior to Integration Test”, Triakis

Corporation ; VSILTriakis2005Article-c

[11] Man F. Lau, Yuen T. Yu, “An Extended Fault Class
Hierarchy for Specification-Based Testing” ACM

Transactions on Software Engineering and Methodology,

Vol. 14, No. 3, July 2005, Pages 247–276.

[12] P. Prema, and B. Ramadoss, “A New Type of Integration
Error and its Influence on Integration Testing Techniques”,

World Academy of Science, Engineering and Technology

42 2008.

[13] Abramovici, M., Breuer, M., and Friedman, A. D., Digital
Systems Testing and Testable Design. IEEE, 1993

[14] Ian G. Harris, “Fault Models and Test Generation for
Hardware-Software Co-validation” IEEE Design & Test

Volume 20 , Issue 04 (July 2003) Pages: 40 - 47

[15] Goradia, T., “Dynamic impact analysis: a cost-effective
technique to enforce error-propagation”, Proc. Int. Symp.

On Software Testing and Analysis (ISSTA ’93), Cambridge,

MA, U.S.A., ACM Press, pp. 171-181 (June 1993).

[16] Petrenko, A., Yevtushenko, N., Bochmann, G., and
Dssouli, R. (1996). Testing in context: Framework and test

derivation. Computer Communications, 19: 125-140.

[17] Hara Gopal Mani Pakala, K. V. S. V. N. Raju and Ibrahim
Khan, “ Integration Testing of Multiple Embedded

Processing Components”, Springer Advanced Computing,

Communications in Computer and Information Science,

2011, Volume 133, Part 2, 200-209.

[18] J. Schmaltz and D. Borrione, “Validation of a

Parameterized Bus Architecture Model,” Proc. TIMA-VDS,

2003.

[19] J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface-
based design”, in Design Automation Conference, pp. 178–

183, June 1997.

[20] D. Panigrahi, C. N. Taylor, and S. Dey, “Interface based
hardware/software validation of a system-on-chip”, in High

Level Design Validation and Test Workshop, pp. 53–58,

2000.

[21] Hara Gopal Mani Pakala, Dr. Raju KVSVN and Dr.
Ibrahim Khan, “Sensors Integration in Embedded

Systems”, International Conference on Power, Control and

Embedded Systems (ICPCES 2010) Nov 29, 2010 - Dec

1, 2010 Allahabad, India

[22] Victor Vui-Kiat Chong, “Heuristics for Mitigating Mode
Confusion in Digital Cameras” A thesis submitted in partial

fulfillment of the requirements for the degree of MASTER

OF SCIENCE in the Department of Computer Science,

University of Victoria, 2006

[23] Jane Huffman Hayes, Jeff Offutt, “Input Validation
Analysis and Testing” pp1-29, Empirical Software

Engineering ©2005 Kluwer Academic Publishers.

[24] Hermann Kopetz, "The Complexity Challenge in

Embedded System Design," isorc, pp.3-12, 2008 11th IEEE

Symposium on Object Oriented Real-Time Distributed

Computing (ISORC), 2008.

[25] John Sanguinetti, Abstraction Levels and Hardware Design,
EDA Design Line (07/17/07).

[26] W. Ecker, V. Esen, T. Steininger, and M. Velten. HW/SW
interface - implementation and modeling. In W. Ecker, W.

M¨uller, and R. D¨omer, editors, Hardware-dependent

Software - Principlesand Practice. Springer, 2008

[27] Andreas Gerstlauer, Daniel D. Gajski, "System-Level
Abstraction Semantics," CECS, UC Irvine, Technical

Report CECS-TR-02-17, July 2002.

