
International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

24

MultiClient MultiInstance Centralized File Server using

TCP protocol in Java Sockets

Arun Singh, Ajay Kr. Sharma, Ashish Kumar

Dr. B.R Ambedkar

NIT Jalandhar, India

ABSTRACT
In today’s scenario File Server using reliable connection

oriented protocol like TCP are well active, but majorly they

are task specific like for chat server, document file server,

image server, audio file server or Video Server etc. If they all

are present together the server might be using other file

transfer protocol and application is not transparent.

To promote easy and transparent file transfer across network

using Java Sockets, we introduce a Java TCP Server. The

Server is multiclient multithreaded multi format supported

Java Application. The requesting client validates the user

request at its end and improves server performance; on other

hand Server provide data only to authenticated client and

refuses connection to others. The server is profiled for

number of clients for mixed type of Input files like text, doc,

pdf, jpeg, mp3, flv and mp4. The client server design is well

implemented on 2, 4, and 8 systems in our laboratory and

tested for heap memory usage, server usage time and

bandwidth utilization; results are well satisfied and become

platform for this paper.

General Terms

Networking in Java, Java Socket, TCP.

Keywords

Java Server, File Server.

1. INTRODUCTION

All development in the field of network technology is used to

promote fast and easy data transfer at low cost . There has

been tremendous and continuous development in this

direction. The network speed and capacity of workstation,

made personal computers more powerful and efficient than

supercomputers of only 10 years ago[3]. The development of

the network technology promotes the information

management and the application mode of the enterprise to

develop in two directions. First, the traditional Client Server

architecture to the structure mode of the web system that

based on the multi-layer. Second, the network environment

transfers from the concentrated processing environment to

distributed environment [1].

Data file requirement is very necessary in today’s

environment, and if this environment is small like 5 to 50

computers, then the major challenge is to manage such file

transfer at low cost and less complexity. The Internet system

could not be used due to lack of security of confidential data

and threat of Intruder. The Open Source file transfer

protocols are difficult to implement and hard to use. The

establishment and management of such protocols is again a

specialized task.

So, there is requirement of personal Client Server

application, with capability to support majorly used file

types like txt, doc, pdf, jpeg, mp3, mp4, flv etc, with specific

security in personal environment, and answer is MM CFS

(MultiClient MultiInstance centralized File Server) using

TCP protocol in Java Sockets.

2. RELATED WORK
Programmers find difficult to use socket programming when

achieving functionality within the realm of distributed

systems [1, 4, 5]. As a result, many turn to RMI (Remote

Method Invocation) of Sun Microsystems or CORBA

(Common Object Requests Broker Architecture) of OMG

(Object Management Group), for distributed system. RMI,

one of the core Java APIs since version 1.1., is a way that

Java programmers can write object-oriented programs in

which objects on different computers can interact with each

other. A client can call a remote object in a server, and the

server can also be a client of other remote objects. CORBA is

well suited for Distributed system working on different

platforms with varying specifications and environment. But

the implementation of RMI and CORBA are very complex

and costly for small applications, and if there is requirement

of only single server, then Java Socket is better choice for

easy implementation [1, 5, 9].

A P2P network is a network of computers or nodes where

there is a concept of equality that is anyone could act like a

client if required a data and the one who serves act like a

server, it is different from traditional client/server architecture

where only dedicated system could act like a server and

requesting computers would acts like client to it. If one of the

client have the data required by other client, in any case it

could not serve him, this become a major drawback in

traditional client/server architecture. Since all the nodes are

equal in a P2P network, there is no requirement of dedicated

server, as each node can act like both client/server and free to

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

25

add or leave the network any time, without disturbing others

peers.

The P2P network architecture is mainly grouped into two

categories: centralized systems (Napster, BitTorrent etc.) and

decentralized systems (Gnutella, FreeNet etc.)[6].

It is found that P2P file sharing accounts for much more

traffic than any other application on the Internet.

3. Design and Implementation of MMCFS
A simple client/server architecture, with single server

connected to multiple clients by default 50. Figure 1 shows

the architecture view of MM CFS. The server composed of

functionality of creating multiple instances for each client, as

public class ts implements Runnable

{

Socket S;

ts(Socket S)

{

this.S=S;

}

public static void main(String aa[])

{

ServerSocket SS = new ServerSocket(8000);

While(true){

Socket S1 = SS.accept();

new Thread(new ts(S1)).start();

..

}}}

After accepting the client connection, the server accesses the

client Ipaddress and checks it with the list of authenticated

clients with it. If the client Ipaddress present in its list then it

allows authenticated client to access the data file otherwise

close the connection at the same time without any transfer.

The required code is as

DataInputStream dis0=new DataInputStream (new

FileInputStream ("auth.txt"));

while((str0=dis0.readLine())!=null)

{

if(str0.equals((S1.getInetAddress()).toString()))

{

new Thread(new ts(S1)).start();

flag0=true;

break;

}}

if(!flag0)

{

S1.close();

}

Figure 1. The Architecture view of MMCFS

The server Administrator is provided the functionality of

looking the file present at server repository and client request

for the file as

DataOutputStream dos0=new DataOutputStream(new

FileOutputStream("d:\\filename.txt"));

File folder=new File("d:\\shared");

File[] lof=folder.listFiles();

for(int i=0;i<lof.length;i++)

{

if(lof[i].isFile())

{

System.out.println("File : "+lof[i].getName());

dos0.writeBytes((lof[i].getName())+"\r\n");

}

}

dos0.close();

The waiting server looks like as in Figure 2. The server

automatically map the client request for the respective file

present in its repository otherwise return no match, hence

breaking down the connection with the client. The server

entertains client request for file by following code.

BufferedInputStream bis = new BufferedInputStream(fis);

try {

bis.read(buf, 0, buf.length);

out = S.getOutputStream();

out.write(buf,0,buf.length);

out.flush();

}

catch (IOException e1

{

e1.printStackTrace();

}

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

26

Figure 2. The Server Instance in Waiting S tate

The client is provided with the functionality of authenticating

client request at its end, by checking the connecting server

Ipaddress at specified port. The requesting client is shown in

figure 3. The client is dynamically connected to default

server, if required Ipaddress and port are not correct or does

not exist. There is an additional functionality of requesting

the file efficiently, by categorizing the request . This

categorization is much more efficient for video files and

support multiple video formats, as shown in figure4.

Java code at client side for requesting files of multiple formats

like txt, doc, pdf, jpeg, and mp3 etc. is as

BufferedOutputStream bos = new

BufferedOutputStream(fos);

try {

num_bytes_read = in.read(buf,0,buf.length);

current=num_bytes_read;

do{

num_bytes_read = in.read(buf, current,(buf.length - current));

if(num_bytes_read>=0)current += num_bytes_read;

}while(num_bytes_read>-1);

bos.write(buf, 0,current);

bos.flush();

bos.close();

} catch (IOException e)

{

e.printStackTrace();

}

Java code specially for requesting mp4, flv etc. is as

BufferedOutputStream bos = new

BufferedOutputStream(fos);

try {

num_bytes_read=64;

do{

num_bytes_read=in.read(buf,current,num_bytes_read);

bos.write(buf, current, num_bytes_read);

current=current + num_bytes_read;

}while(num_bytes_read!=0);

bos.flush();

bos.close();

}

catch (IOException e) {

e.printStackTrace();

}

Java code written specially for mp4 and flv file increases the

performance and accuracy for file transfer.

Figure 3. The Client Instance in Requesting State

Figure 4. The Client Filtering process

4. Performance Evaluation
The implemented server is tested on Systems with Intel(R)

Pentium Processor(R) D CPU 2.80 GHz 2.79 GHz, 1.25 GB

Ram, Windows 7 (32 bit) Operating System.

The server contains a dedicated folder to respond to all client

requests, the file contained in a folder composed of various

extensions and sizes, as stated in table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

27

The clients have access to only dedicated folder, hence

provide a security; also clients have permission only to copy

a file.

Table 1. The Server Repository

File Extension File size

Txt 822 Bytes

Java 1.99 KB

Docx 13.0 KB

PDF 52.0 KB

HTM 19.4 KB

MP3 6.80 MB

MP4 10.1 MB

FLV 39.6 MB

 Server is tested for 2, 4, and 8 numbers of clients, with

multiple requests in mixed format. The Heap memory utilized

by CPU running the server for responding to different

number of clients for different period of time is shown in

Figure 5, 6, and 7.

Figure 5. Server Connected to 2 Clients

Figure 6. Server Connected to 4 Clients

Figure 7. Server Connected to 8 Clients

The Figure 5, 6 and 7 shows that for mixed format file

transfer, the heap memory utilization does not exceed 4M for

given input files and after the file transfer the memory

consumption decreases slowly.

The Figure 8, 9 and 10 specially shows the interaction time of

clients with the server for file transfer that is serving time

versus time utilized for garbage collection. In any case the

percent of time utilized for garbage collection is negligible and

shown by blue line traced along x axis.

Figure 8. Server Connected to 2 Clients

Figure 9. Server Connected to 4 Clients

Figure 10. Server Connected to 8 Clients

The figure 11, 12 and 13 shows network bandwidth

utilization for file transfer present at server which is

mentioned in Table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

28

Figure 11. Bandwidth Utilization for 2 Clients

Figure 12. Bandwidth Utilization for 4 Clients

Figure 13. Bandwidth Utilization for 8 Clients

Figure 11, 12 and 13 shows that for as the number of clients

increases their connecting request and file request will

increase correspondingly hence increasing bandwidth

utilization.

5. Conclusion and Future Work
This article puts forward a kind of MultiClient MultiInstance

Centralized Java Server, design and implemented for limited

number of users. The client/server system proposed is

effectively deployed in our laboratory, with a dedicated

server and 0 to 50 clients at a time connecting to it. The

system supports a large variety of files with varying sizes

and tested for heap memory utilization which does not

increase 4M in any case and maximum bandwidth utilization

of 7.7M for defined input files at server. The transfer is

implemented for authenticated users in personal network,

hence secured.

The work is going on to make server lighter by distributing

server job with clients connecting with it and also with peer

servers.

6. REFERENCES
[1] Delin Hou and Huosong Xia,”Design of Distributed

Architecture based on Java Remote Method Invocation

Technology”, pp. 618, 2009 International Conference on

Environmental Science and Information Application

Technology (IEEE Computer Society 2009).

[2] SeungJun Bang and JinHo Ahn,”Implementation and

Performance Evaluation of Socket and RMI based Java

Message Passing Systems”, pp.153, Fifth International

Conference on Software Engineering Research,

Management and Application (IEEE Computer Society

2007).

[3] J.T. Rough and A.M. Goscinski,”The development of an

efficient checkpointing facility exploiting operating

systems services of the GENESIS cluster operating

system”, Future Generation Computer Systems, Vol.

20, No. 4, pp 523-538, 2004.

[4] V.Getov, G. von Laszewski, M. Philippsen, I. Foster.

Multi-paradigm Communications in Java for Grid

Computing. Communications of the ACM, Vol. 44, No.

10, pp. 118-125, 2001.

[5] R. Metkowski and P.Bala, “Parallel Computing in Java:

Looking for the Most Effective RMI Implementation for

Clusters”, Lecture Notes in Computer Science, Springer-

Verlag Berlin, Vol. 3911, pp.272-277,2006.

[6] Amol Vasudeva, Sandeepan, Nitin Kumar,” PASE: P2P

Network Based Academic Search and File Sharing

Application”, 2009 First International Conference on

Computational Intelligence, Communication Systems

and Networks.

[7] What is peer-to-peer? Peer-to-Peer working group

http://www.p2pwg.org/

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

29

[8] Martin Alt, Sergei Gorlatch, “Adapting Java RMI for

grid computing”, Future Generation Computer Systems,

Vol 21, pp699-707, 2005.

[9] J2SE 1.5.0 API Specification, http://java.sun.com.

[10] Java Socket Tutorial,

http://www.cs.swan.ac.uk/~csneal/InternetComputing/Ja

vaSockets.html.

[11] C. Nester, M. Phillippsen, and B. Haumacher, “A more

efficient RMI for java”, In Proc. Of the ACM Java

grande Conference, pp. 152-159, June 1999.

Arun Singh is an M.Tech. Student in computer science &

engineering department of Dr. B R Ambedkar National

Institute of Technology. He has completed his B.Tech.

Degree in 2009 from A.K.G.E.C Ghaziabad affiliated to Uttar

Pradesh Technical University (Lucknow). He is SCJP

certified (2009). His research area is Distributed System and

Computer Networks with a special interest in Java

Technologies.

Ajay k Sharma received his BE in Electronics and Electrical

Communication Engineering from Punjab University

Chandigarh, India in 1986, MS in Electronics and Control

from Birla Institute of Technology (BITS), Pilani in the year

1994 and PhD in Electronics Communication and Computer

Engineering in the year 1999. His PhD thesis was on “Studies

on Broadband Optical Communication Systems and

Networks”. From 1986 to 1995 he worked with TTTI, DTE

Chandigarh, Indian Railways New Delhi, SLIET Longowal

and National Institute of technology (Erstwhile Regional

Engineering College), Hamirpur HP at various academic and

administrative positions. He has joined National Institute of

Technology (Erstwhile Regional Engineering College)

Jalandhar as Assistant Professor in the Department of

Electronics and Communication Engineering in the year 1996.

From November 2001, he has worked as Professor in the

ECE department and presently he is working as Professor in

Computer Science & Engineering in the same institute. His

major areas of interest are broadband optical wireless

communication systems and networks, dispersion

compensation, fiber nonlinearities, optical soliton

transmission, WDM systems and networks, Radio-over-

Fiber (RoF) and wireless sensor networks and computer

communication. He has published 237 research papers in the

International/National Journals/Conferences and 12 books. He

has supervised 12 Ph.D. and 36 M.Tech theses. He has

completed two R&D projects funded by Government of

India and one project is ongoing. Presently he was associated

to implement the World Bank project of 209 Million for

Technical Education Quality Improvement programme of the

institute. He is technical reviewer of reputed international

journals like: Optical Engineering, Optics letters, Optics

Communication, Digital Signal Processing. He has been

appointed as member of technical Committee on Telecom

under International Association of Science and Technology

Development (IASTD) Canada for the term 2004-2007 and

he is Life member of Indian Society for Technical Education

(I.S.T.E.), New Delhi..

Ashish Kumar is an M.Tech. Student in computer science &

engineering department of Dr. B R Ambedkar National

Institute of Technology.He has completed his B.Tech. Degree

in 2007 from Vivekananda Institute Of Technology Bangalore

affiliated to Visvesvaraya Technological University

(Belgaum). He is CCNA cerified. His research area is

Computer Networks, Distributed System and Operating

System.

