
International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

1

A Modified and Efficient Algorithm for Static Task
Assignment in Distributed Processing Environment

Dr. Kapil Govil
Teerthanker Mahaveer University,

Moradabad

Dr. Avanish Kumar
Bundelkhand University,

Jhansi

ABSTRACT

The Distributed Processing Environment [DPE] in which
services provided for the network reside at multiple sites.

Instead of single large machine being responsible for all aspects

of process, each separate processor handles subset. In the

distributed environments the program or tasks are also often
developed with the subsets of independent units under various

environments. The Allocation problems in any computer system

play the key role for deciding the performance of the system.

The allocation put the direct impact of software resources as

well as hardware resources. In DPE, partitioning of the
application software in to module and the proper allocation of

these modules dissimilar processors are important factors, which

determine the efficient utilization of resources. The static model

discussed in this paper provide an optimal solution for assigning

a set of “m” modules of a task to a set of “n” processors where
m > n in a distributed system for evaluation for optimal time of

the system.

Keywords

Distributed Processing Environment, task, allocation, module

1. INTRODUCTION
A system in which a large number of separate but interconnected

computers do the jobs is called distributed network. In

distributed network, services reside at multiple sites. Instead of

single large processor being responsible for all aspects of

process, there are several separate processor handles these

aspects. In the distributed networking the program or tasks are

also often developed with the subsets of independent units under

distributed environments. Some of the task allocation methods

have been reported in the literature, such as Integer

Programming [6, 8], Branch and Bound technique [3], Load

Balancing [1, 2], Reliability Optimization [11, 4], and Modeling

[5]. It has seen that this concept is cost-effective and reliable to

meet the optimal solution. Sagar et al [10] proposed the problem

of distributing tasks to processors in a distributed computing

system is addressed. A task should be assigned to a processor

whose capabilities are most appropriate for the processing of

that task and excessive interprocessor communication is

avoided. The processing costs and communication costs of the

tasks are presented by arrays. A task is either assigned to a

processor or fused with another task using a simple criterion.

The processing and communication costs are then modified

suitably. The process continues until all the tasks are assigned to

processors. This algorithm also facilitates incorporation of

various system constraints. It is applicable to random program

structures and to a system containing any number of processors.

2. OBJECTIVE
In a Distributed Processing Environment, a task is allocated to a

processor in such a way that extensive Inter Task

Communication cost is avoided and the capabilities of the

processor suit to the execution requirements of the task. The

algorithm discussed in this paper provide an optimal solution for

assigning a set of “m” tasks of a program to a set of “n”

processors (where, m > n) in a Distributed Processing

Environment with the goal to maximize the overall throughput

of the system and allocated load on all the processors should be

evenly balanced. The objective of this problem is to enhance the

performance of the distributed processing environment by using

the proper utilization of its processors and as well as proper

allocation of tasks.

3. TECHNIQUE
In order to evaluate the overall optimal processing time of a

distributed processing environment, we have chosen the problem

where a set P = {p1, p2, p3, …….pn} of „‟n‟ processors and a set

T = {t1, t2, t3, …….tm} of „‟m‟ tasks. The processing time of

each task to each and every processor is known and it is

mentioned in the Processing Time Matrix PTM(,) of order m x

n. The communication time of task is also known and is

mentioned in CTM(,) of order m x m. Calculating the average of

each row of PTM(,) and store the result in the linear array

avg_row() along with their corresponding tasks.

On sorting the avg_row() in ascending order and store the results

in linear array avg_row_asc() and their corresponding tasks in

Taskseq. Select the first n task from Taskseq and check the

communication of those n tasks to each and every next n tasks or

less than n tasks to form the cluster of those set of tasks that

have maximum communication. If it is less than n and then goto

next step otherwise repeat the process. The maximum number of

tasks in a cluster shall be less than or equal to
1

n

m .

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

2

Modify the PTM(,) according the n clusters by adding the

processing time of those tasks that occurs in the same cluster.

Modify the CTM(,) by putting the communication zero amongst

those tasks that are in same cluster. On applying the algorithm

developed by Kumar et al [7] we get the optimal assignment as

well as Processing Time, Communication Time and Optimal

Time.

4. ALGORITHM
Start algo

 Read the number of processors in n

Read the number of tasks in m

Read the Processor Time Matrix PTM(,) of order m x

n

Read the Communication Time Matrix CTM (,) of

order m x m

Calculate the average of each row of PTM (,) and

store in avg_row()

Sort the avg_row() and store the average in

avg_row_asc and correspongding task in Taskseq

 While (number of available tasks < n)

 {

 Select n task from Taskseq

Check the communication of selected n task

to each and every next n tasks

Form the cluster(s) to those set of tasks that

have maximum communication

 }

 Modify the PTM(,) by adding the processing time of

tasks in each cluster

Modify the CTM(,) by putting communication zero

amongst those tasks that are in the same cluster

 Apply [7] algorithm on PTM(,)

 Calculate Execution Time, Communication Time

 Optimal Time = Execution Time + Communication

Time

End algo

5. IMPLEMENTATION
Let us consider a distributed computing system consist a set P =

{p1, p2, p3, p4} of 4 processors and a set T = {t1, t2, t3, t4, t5, t6, t7,

t8, t9, t10} of 10 tasks. The task - processor graph is shown by

figure 1.

t10

t9

t8

t7
t6

t5

t4

t3

t2
t1

p1

t10

t9

t8

t7
t6

t5

t4

t3

t2
t1

p2

t10

t9

t8

t7
t6

t5

t4

t3

t2
t1

p3

t10

t9

t8

t7
t6

t5

t4

t3

t2
t1

p4

 Figure 1: Task Processor Graph

The processing time of every task on various processors are

known and mentioned in the following matrix of order 4 x 10,

namely, Processing Time Matrix PTM(,):

 4321 pppp

10
t

9
t
8

t
7

t
6

t
5

t
4

t
3

t
2

t
1
t

) , (PTM

2473

2654

9876

7682

9812

2654

3641

4378

1235

3926

The graphical representation of the inter task communication are

shown by figure 2
t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t1

t2

t3

t4

t5

t6

t7

t8

t9

Figure 2: Task Communication

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

3

The communication time amongst the tasks has also taken into

consideration and shown by the square symmetric matrix i.e.

Communication Time Matrix CTM(,) as given below:

Calculating the average of each row of PTM(,) and store the

result in linear array avg_row() along with their corresponding

tasks i.e.,

44.2565.7554.253.55.52.755

tttttttttt
) avg_row(

10987654321

On sorting the avg_row() in ascending order and store the

results in linear array avg_row_asc() and their corresponding

tasks in Taskseq. These are given below;

65.755.5554.254.2543.52.75

tttttttttt
) c(avg_row_as

87361951042

Taskseq = {t2, t4, t10, t5, t9, t1, t6, t3, t7, t8}

Select the first n task from Taskseq and check the communication

of these n tasks to each and every next n tasks or less than n

tasks to form the cluster of those set of tasks that have maximum

communication as considered in CTM(,). If it is less than n then

goto next step otherwise repeat the process. The maximum

number of tasks in a cluster shall be less then or equal

to 1
n

m . We obtain the following n clusters as given below:

Cluster 1: (t1 * t5 * t7)

Cluster 2: (t2 * t3 * t8)

Cluster 3: (t4 * t6)

Cluster 4: (t9 * t10)

Modify the PTM(,) according the n clusters by adding the

processing time of those tasks that occurs in same cluster.

4321 pppp

109

64

832

751

t*t

t*t

t*t*t

t*t*t

) , (PTM

410127

121453

14141719

12211512

Modify CTM(,) by putting the communication zero amongst

those tasks that are in same cluster. The modified CTM(,) as:

10964832751 t*tt*tt*t*tt*t*t

109

64

832

751

t*t

t*t

t*t*t

t*t*t

) , (CTM

0

20

120

7330

On, applying the algorithm developed by Kumar et al [7] we get

the optimal assignment as well as Processing Time,

Communication Time and Optimal Time. The graphical

representation of the optimal assignment is shown by the figure

3.

t6

t4

p2

t10

t9

p4

t7 t5

t1

p1

t8 t3

t2

p3

Figure 3: Optimal Assignment Graph

Table 1

Processor Task
Execution

Time

Communication

Time

Optimal

Time

p1 t1*t5*t7 12

18 53
p2 t4*t6 14

p3 t2*t3*t8 5

p4 t9*t10 4

6. CONCLUSION
Here we have taken the problem, in which the number of the

tasks is more than the number of processors of the distributed

system. The model mentioned in this problem is based on the

consideration of processing time of the tasks to various

processors. The method is presented in pseudo code and

implemented on the several sets of input data to test the

performance and effectiveness of the pseudo code. It is the

common requirement for any assignment problem that the tasks

have to be processed with minimum time. The optimal result of

the example that is considered to test the algorithm and it is

mentioned in the implementation section of the problem are as

given below.

10987654321

0

50

610

1230

45760

294380

2243640

25343210

216143280

2764213230

t

t

t

t

t

t

t

t

t

t

) , CTM(

10

9

8

7

6

5

4

3

2

1

tttttttttt

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

4

Table 2. Optimal result

Processor Task
Execution

Time

Communication

Time

Optimal

Time

p1 t1*t5*t7

35 18 53
p2 t4*t6

p3 t2*t3*t8

p4 t9*t10

The processorwise execution time is shown by the figure 4.

0

2

4

6

8

10

12

14

16

t1*t5*t7 t4*t6 t2*t3*t8 t9*t10

p1 p2 p3 p4

Execution Time

Figure 4: Processorwise Execution Time Graph

As we know that, the analysis of an algorithm is mainly focuses

on its complexity. The complexity is a function of input size ‟n‟.

It is referred to as the amount of time required by an algorithm

to run to completion. The time complexity of the above

mentioned algorithm is O(mn2). Table 3 shows the time

complexity of the present algorithm.

Table 3. Complexity of Time Complexity

Processors

n

Tasks

m

Time

Complexity of

algorithm [9]

O(nm)

Time

Complexity of
present

algorithm

O(mn2)

3 4 81 36

3 5 243 45

3 6 729 54

3 7 2187 63

3 8 6561 72

4 5 1024 80

4 6 4096 96

4 7 16384 112

4 8 65536 128

4 9 262144 144

5 6 15625 150

5 7 78125 175

5 8 390625 200

5 9 1953125 225

5 10 9765625 250

From the table 3 it is clear that present algorithm is much better

for optimal allocation of tasks that upgrade the performance of

distributed network. For the different values of n = 3, 4 and 5 the

complexity comparison with present algorithm to Richard et. al.

[9] is shown through graph 5, 6, and 7. These three graphs are

also indicates that our suggested algorithm is much faster then

that of suggested by Richard et. al. [9].

1

10

100

1000

10000

1 2 3 4 5
m

C
o

m
p

le
x
it

y

Algorithm [9] Present Algorithm

Figure 5: Comparison Graph for n=3

1

10

100

1000

10000

100000

1000000

1 2 3 4 5
m

C
o

m
p

le
x

it
y

Algorithm [9] Present Algorithm

Figure 6: Comparison Graph for n=4

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 5
m

C
o

m
p

le
x

it
y

Algorithm [9] Present Algorithm

Figure 7: Comparison Graph for n=5

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.8, June 2011

5

7. REFERENCES
[1] Andrey G. Bronevich, Wolfgang Meyer 2008. Load

balancing algorithms based on gradient methods and

their analysis through algebraic graph theory. Journal

of Parallel and Distributed Computing, Volume 68,

Issue 2, (February 2008), 209-220.

[2] Bruce Hendrickson, Karen Devine 2000. Dynamic

load balancing in computational mechanics. Computer
Methods in Applied Mechanics and Engineering,

Volume 184, Issues 2-4, (April 2000), 485-500.

[3] Dorta, C. Leon, C. Rodríguez 2010. Performance

analysis of Branch-and-Bound skeletons.Mathematical

and Computer Modelling, Volume 51, Issues 3-4,

February 2010, Pages 300-308

[4] Gamal Attiya, Yskandar Hamam 2006. Task

allocation for maximizing reliability of distributed
systems: A simulated annealing approach. Journal of

Parallel and Distributed Computing, Volume 66, Issue

10, (October 2006), 1259-1266.

[5] Jeffery L. Kennington, Eli V. Olinick, Gheorghe

Spiride 2007. Basic mathematical programming

models for capacity allocation in mesh-based

survivable networks. Omega, Volume 35, Issue 6,

(December 2007), 629-644.

[6] Kuban Altınel, Necati Aras, Evren Güney, Cem Ersoy

2008. Binary integer programming formulation and

heuristics for differentiated coverage in heterogeneous

sensor networks. Computer Networks, Volume 52,

Issue 12, (August 2008), 2419-2431.

[7] A. Kumar, M. P. Singh, and P. K. Yadav, A Fast

Algorithm for Allocating Tasks in Distributed

Processing System, Proceedings of the „30th Annual

Convention of CSI, Hyderabad, (1995), 347-358.

[8] Maria Joao Alves, Joao Clímaco 2007. A review of

interactive methods for multiobjective integer and

mixed-integer programming. European Journal of

Operational Research, Volume 180, Issue 1, (July

2007), 99-115.

[9] Richard R.Y., Lee, E.Y.S. and Tsuchiya, M. 1982. A

Task Allocation Model for Distributed Computer

System, IEEE Transactions on Computer, 31, 41-47.

[10] G. Sagar and A. K. Sarje, Task Allocation Model for
Distributed System, International Journal of System

Science, Vol. 22(1991), 1671-1678.

[11] Bo Yang, Huajun Hu, Suchang Guo 2009. Cost-

oriented task allocation and hardware redundancy

policies in heterogeneous distributed computing

systems considering software reliability. Computers &
Industrial Engineering, Volume 56, Issue 4, (May

2009), 1687-1696.

