
International Journal of Computer Applications (0975 – 8887) 

Volume 24– No.1, June 2011 

42 

Identification of Hammerstein Systems using 
Triangular basis Functions 

      Khaled Elleuch 
University of Sfax, National 
Engineering School of Sfax, 

Tunisia  

 

  Abdessattar Chaari 
University of Sfax, National 
Engineering School of Sfax, 

Tunisia 

 

 

ABSTRACT 

A new identification method is proposed for Hammerstein 

systems in presence of dead zone input nonlinearities. To 

describe and identify the nonlinear system, a new decomposition 

technique using the triangular basis functions is employed. Then 

a parameterized model is derived to represent the entire system. 

The approximation by  Triangular basis functions for the 

description of the static nonlinear block conducts to a linear 

regressive model, so parameter matrices characterizing the 

considered model can be estimated. After this stage, Singular 

Values Decomposition (SVD) technique has been applied to 

separate the coupled parameters of matrixes. The numerical 

simulation results illustrate that the proposed approach can be a 

promising tool for identifying Hammerstein systems with dead 

zone nonlinearities.       

General Terms 

Modeling of nonlinear systems, Hammerstein systems, 

Triangular basis functions. 

Keywords 

Identification, SVD technique, Dead-zone nonlinearity.  

1. INTRODUCTION 
Modelling and identification of nonlinear dynamic systems 

constitute an essential stage in practical control design [1]. 

Indeed, several researchers published interesting works about 

this theme and many classes of nonlinear systems have been 

studied in the literature [2, 3]. One of the studied classes is the 

block-oriented nonlinear systems having piecewise static 

nonlinearities [4, 5]. Among these models, we can cite 

particularly Hammerstein model [6, 7], Wiener model and 

Hammerstein-Wiener model [8, 9]. Hammerstein models with 

piecewise nonlinearities are frequently used in nonlinear 

systems control [10]. We find such nonlinearities in some 

actuator families such as dead zone nonlinearity, saturation 

nonlinearity, preload nonlinearity [11] etc…. In the literature, 

many methods of modelling and identification of Hammerstein 

systems have been proposed [12, 13]. These methods have often 

used the decomposition based on the principle of “key term 

separation” leading to a form of model where the parameters of 

the linear and nonlinear blocks are separated [14]. This principle 

allows obtaining a model linear in parameters and the Recursive 

Least Square algorithm (RLS) can be applied [15], but the major 

disadvantage lies in the significant increase of the number of 

estimated parameters. To surmount this problem, we propose an 

approach which consists in building Hammerstein model having 

Piecewise nonlinear characteristics, such as for example the 

dead zone nonlinearity type. To describe the nonlinear system, 

we use a decomposition technique using the triangular basis 

functions to estimate the static nonlinear block. This technique 

leads to a particular form of Hammerstein model. This model is 

then formulated in a parametric form and regression analysis is 

used for improving the relationship between input and output 

signals. By recurring to SVD and RLS algorithm, optimal 

estimates of the parameters for matrices characterizing the 

considered model, can be determined.  

2. HAMMERSTEIN MODEL WITH DEAD 

ZONE NONLINEARITY  

2.1 Description of block oriented nonlinear 

system 
We consider plants having the Hammerstein structure with ARX 

linear model shown in Fig 1. 

 

 

 

 

Fig 1: Hammerstein model  

The signals u(k), y(k) and  y1(k) are, respectively, the model 

input, noisy model output and model output without noise, and 

the function h(k) describing the nonlinear effects. The signal 

h(k) is a non available internal sequence related to the input 

only, which is defined by: 

h(k) N(u(k))                                                                                (1)                                                                               

 The transfer function T(q)  of the linear block is described by 
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Where e(k) is a bounded measurement disturbance which is 

supposed to be a zero-mean, white noise sequence. 

2.2 Parameterization of static nonlinearity 

block  
The function N(.), describing the static nonlinear block, is 

supposed to be reminiscence within some given finite interval 

[umin, umax ]. The signal h(k) is a non available internal sequence 

related to the input only. Then a decomposition of the nonlinear 

function can be used such as: 

p
T

j j
j 1

N(u) (u) (u)                                                         (6)                                                                              

Where min maxu u u , 
T

1 p[ ... ]  is a parameter vector, 

T
1 p(u) [ (u)... (u)]   and, j(.)  j = 1,… p, represents the jth 

basis function j(.) . The basis functions are defined as follows 

j j j(u) ( (u ))                                                                       (7)                                                                                    

where j  and j  denote the dilation and translation 

parameters, respectively, and  (.)  represents a generator 

function which belongs to a great family of functions containing 

Gaussian functions, generalized orthonormal basis functions 

[16], triangular functions, trigonometric functions etc … 

3. IDENTIFICATION ALGORITHM 
The output of the nonlinear system y(k) can be formulated as: 

1 1y(k) (1 A(q ))y(k) B(q )h(k) e(k)                        (8)                                               

Using (1), (3) and (4), the output can be given by the following 

equation: 

A A

B B

1 n n 1

n n

y(k) a y(k 1) ... a y(k n ) b N(u(k 1))

... b N(u(k n ) e(k)                                   
     (9) 

In a matrix form, we can write the system output equation as 

follows 

Ty(k) (k) e(k)                                                        (10)

                                                                                      

Where  is the parameter vector given by 
T

b[a ]   ,  

A

T
1 na [a ...a ] , 

B

T
1 nb [b ...b ] , 

T
1 p[ ... ]  and 

T
b vec( b )  with vec(.) is an operator which stacks the 

columns of a matrix into a vector. The observation vector (k)  

is described by: 

T
y(k) (k)   (k)                                                          (11)                                                                                           

Where 
T

y A(k) [y(k 1)...y(k n )]   

and 
T

B(k) [ (u(k 1))... (u(k n ))]  

The estimated value of the parameter vector  can be obtained 

by minimizing the following criterion 

2
ˆ argmin Y                                                                    (12)                                                                                      

Where T
AY [y(n )...y(r)]  and T T T

A[ (n )... (r)]  in the 

couples of input-output measurements [u(k); y(k)], k = l,…,r 

where r >nA. 

The Recursive Least Square can be formulated by: 

T

T

T

ˆ ˆ(k) (k 1) P(k) (k) (k)

P(k 1) (k) (k)P(k 1)
P(k) P(k 1)

1 (k)P(k 1) (k)

ˆ(k) y(k) (k 1) (k)

                (13) 

where (k)  is the prediction error, and P(k)  designates the 

adaptation matrix. 

The separation of coupled parameters can be obtained by 

computing the Singular Value Decomposition (SVD) of 

1
b

ˆvec ( ) and obtain u1, v1 and 
1

max b
ˆ(vec ( )) , then we can 

write  

T 1 T
max b 1 1

ˆ ˆˆb (vec ( ))u v                                                (14)                                                                           

Where max (.) , u1 and v1 are respectively the maximum 

singular value, u1 the first left eigenvector of 1vec and v1 the 

first right eigenvector of 1vec . Using (12), the expressions of 

ˆ  and b̂  can be respectively expressed, by: 

1
max b 1

ˆˆ (vec ( ))u                                                             (15)                                                                                    

1
1

b̂ v                                                                                           (16)                                                                                                           

Where  is a non null parameter that can be arbitrary chosen.  

The nonlinear function N(.) can be improved from the estimate 

b
ˆN̂(u(k)) (k)                                                                       (17)                                                                                         

To conduct the nonlinear function N(.) to a linear regressed 

form, we use the triangular basis functions. In the goal of an 

easy computation, the input interval [umin, umax] is repeatedly 

divided into p partitions separated by a placement of points 

{u1…up}, such that umin <uj<umax , umin=u1 and up=umax with 

j j 1u u . The unit triangular generator function (.)  is 

defined as: 

1 z if 1 z 0

(z) 1 z if 0 z 1

0 if z 1 and z 1

               

                  

              

                                    (18)                                                                       

The dilation and translation parameters can be written 

respectively by: j 1u j  and j
1  and j 1u j  
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4. SIMULATION RESULTS 
To illustrate the feasibility of the proposed method, a nonlinear 

dynamic system with discontinuous nonlinearities using the 

Hammerstein model was implemented and tested by means of 

MATLAB packages. Hammerstein system is simulated and the 

estimation of the parameters are carried out on the basis of input 

output records. The estimation of the model parameters were 

carried out on the basis of input and output records. The 

following example shows the parameters estimation process for 

the linear dynamic part, which is given by the subsequent 

recursive equation: 

y(k) 1.6961y(k 1) 0.8651y(k 2)

0.5895h(k 1) 0.4701h(k 2)                           
           (19) 

The static discontinuous nonlinearity is described by the 

following equation: 

u 0.28 u 0.28

N(u) 0 0.28 u 0.28

u 0.28 u 0.28

             

            

                  

                                (20)                                                      

We choose input signal as a zero-mean, white noise sequence 

uniformly distributed between -1 and 1. The Signal to Noise 

Ratio SNR (the square root of the ratio of output and noise 

variances) was chosen as: SNR =25 and SNR=50.                                                                                

To test the estimation quality of the model, the mean square 

error (MSE) is computed. Indeed, the MSE values for the 

nonlinear identification method were calculated for two values 

of SNR, and the results are tabulated in table 2. The MSE is 

defined as 

N
2

k 1

1
ˆMSE (y(k) y(k))

N
                                            (21)                                                                           

Where ŷ(k) the predicted output and N is is the number of 

samples used in the identification process. 

The evolution curves, for the output, the estimate values and the 

static nonlinearity (for SNR equal to 25) are given, respectively, 

in Figure 3, Figure 4 and Figure 5. 

5. DISCUSSION 
The previous curves of estimates parameters, (Fig. 3), show a 

good convergence of the algorithm. Indeed, the estimate value 

converges to the true value quickly. The statistical average, for 

the estimate of parameters of the last twenty samples with 

various values of SNR (25 and 50), is given in Table1. We note 

that, for the increase of the SNR values, the estimates converge 

quickly, towards the true values. The estimation results, for this 

kind of model, have proved the efficiency of this method for an 

acceptable value of SNR. In fact, for the value of SNR equal to 

50, the proposed model can approximate well the dead zone 

nonlinearity (Fig. 5) and the global system (Fig. 4). The 

computed value of Mean Square Error, given in Table 2, shows 

that the quality of estimation becomes better if the value of SNR 

increases. 

 

 

 

Fig 4: Real system response (blue) and identified model 

response (red). 

 

 

Fig 5: Static nonlinearity function: actual N(u) (blue) and 

estimated N(u) (red). 
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Table 1. Estimate values of parameters 

 

 

Table 2. Mean square error 

 

 

 

 

6. CONCLUSION 
In this paper, we have developed an identification algorithm for 

Hammerstein systems with dead zone input nonlinearities. The 

static nonlinearity block is approximated by triangular basis 

functions leading to a new description of Hammerstein model 

where a united parametric model can be built to describe the 

entire system. This method has permitted to obtain a linear 

regressed form; and therefore the least square techniques have 

been successfully used to estimate an oversized parameter 

matrix. The optimal estimates of the parameter matrix can be 

determined using SVD decomposition. It has been shown that 

the proposed model can approximate well the system and the 

estimation of the dead-zone curve converges to the true 

characteristic. The presented method can be easily extended to 

Hammerstein systems with other types of nonlinearities, e.g., 

preload nonlinearity, saturation nonlinearity, etc… 
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SNR 1â  2â  
1b̂  2b̂  

25 -1.6864 0.8561 0.5924 0.4773 

50 -1.6959 0.8649 0.5893 0.4703 

SNR MSE 

25 0.0101 

50 0.0091 


