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ABSTRACT 
We present in this work, a new unsupervised data 

classification technique based on a three steps system: Split, 
Clean and Merge. In this system, the classes are represented 

by a set of subclasses that we call prototypes. The prototypes 

are created in an incremental way from the initial data set. No 

prior knowledge on the classes is required. The data are 

presented to the system one by one in an arbitrary way. The 
system built on a neural network strategy ends up by acquiring 

knowledge on the data and gathers the data into a set of real 

classes which may have a non convex structure. The method 

proposed is compared to the fuzzy C-means ‘FCM’  and fuzzy 
min max clustering ‘FMMC’ methods through a number of 

simulations. The results obtained by the proposed method are 

very good. 

Keywords 
Unsupervised classification, split, clean, merge, convex and 

non convex classes, fuzzy min max clustering, fuzzy C-
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1. INTRODUCTION 
Unsupervised data classification is an important technique in 
the field of data analysis; it has played an important role in 

many scientific fields. The objective of unsupervised data 

classification is to regroup the data into classes according to a 

similarity criterion. The data are not labeled and no prior 

knowledge on the classes is available [1] [10]. 

Several methods for unsupervised data classification are 

already very common and these include [4]: hierarchical, 

partitioning, connexionist, by tree, by graph … etc. The most 

common among these are the partitioning methods. The 
algorithms used in partitioning methods include: C-means [5], 

Fuzzy C-means [6] [11], Isodata [7], competitive neural 

network [5]… etc. These algorithms optimize iteratively a 

classification criterion, in order to partition a set of 

observations into a set of classes. The drawback with these 
algorithms is to initially set arbitrarily the number of classes C 

to a certain value and the value of C is varied until optimality 

is achieved. Optimality criteria such as Xie and Beni, entropy 

and partition coefficient are commonly used [8] [11].  Another 

drawback is the initialization of centers. Starting the algorithm 
with a different initial value yield to another convergence 

point different from the first one. Authors have proposed 

evolutionary algorithms in order to get around these two 

drawbacks [5] [10]. C-means, fuzzy C-means and competitive 

neural networks are well suited to convex classes having 
spherical or elliptical structures; they are not convenient to 

non convex or complex classes. Many authors have been 

interested to such a type of problem, regarding the form of the 

classes, they have proposed a multitude of methods based on 

existing data classification methods, such as SVM [13], Fuzzy 

pattern matching FPM  [11], neural networks [12]… etc. The 

most commonly used algorithm for this problem remains 

however the one proposed in [3] which is based on a neural 

network structure and called fuzzy min max clustering 

FMMC. 

In this work, we propose a new method for unsupervised data 

classification, which prove to be valid for convex and non 

convex type of classes. The method is based on three steps: 

split, clean and merge. The split technique is based on a neural 

network with evolving architecture; the network contains two 
layers which will make it possible to divide the data into 

several prototypes in an incremental way. The prototypes 

obtained are characterizing elements of the real classes. The 

clean step discards the noisy prototypes, which are non 
representative of the real classes. Merge step is an algorithm 

based on an evolving neural network, constituted of three 

layers. The merge technique is well adapted for regrouping the 

similar prototypes into end classes by means of a merge 

procedure after that the clean operation has been performed.  

2. FUZZY CLASSIFICATION  

2.1. Descriptive elements  
Let’s consider a set of M objects {O1, O2,..,Oi, .., OM }, 

characterized by N parameters regrouped in a line initial 

vector Vinit = (a1, a2, .., an, .., aN). Let Ri = (ain)1≤n≤N be a line 

vector of RN where the nth component ain is the value taken by 
an for the object Oi. R i is called the observation associated 

with Oi. R
N is the observation space, or the parameters space. 

Let EV = {a1, a2, .., an, ..,  aN} be the set of attributes associated 

with Vinit.  

2.2. Fuzzy C-means algorithm. 
Let’s consider M observations (Ri)1≤i≤M to be associated to C 

different classes (CLs)1≤s≤C with respective centers (xs)1≤s≤C .  

Fuzzy C-means algorithm FCM associates with each 

observation Ri its membership degree μis, to the class CLs. μis 

[0, 1]. FCM method consists of determining the class centers 

which minimize the optimization criterion defined by [5] [10]: 
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||.|| is  the Euclidean distance, df is the ‘’fuzzy degree’’ often 
taken equal to 2. In order to minimize Jm, μis and xs, must be 

updated at each iteration according to [10]:       
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Despite the simplicity and the popularity of this algorithm, it 

suffers from the same drawbacks as the C-means does. These 

are: the number of classes must be known a priori, the 
initialization problem and the possibility that the convergence 

point may stack on a local rather than on a global optimum [8] 

[10] [11]. 

2.3.  Fuzzy min max clustering  
In 1993 Simpson introduces the neural algorithm known as 

fuzzy min max clustering FMMC [3]; it is a neural network 

based algorithm with evolving architecture. It is based on 

unsupervised learning rules which were initially developed by 
the same author in 1992 for supervised classification based on 

a neural fuzzy min max approach [2]. FMMC contains three 

layers, input, output and hidden layers. The number of 

neurons in the input layer is equal to the dimension of the data 

representation space; it is the space RN where N is the size of 
the attribute vector giving the features of the data. The 

numbers of neurons in the hidden and output layers increase in 

time with respect to the creating of prototypes for the hidden 

layer and creating of classes for the output layer. The synaptic 

weights associated with the connections between input and 
hidden layers are formed by two matrices V and W giving the 

characteristics of the different prototypes in the hidden layer. 

The synaptic weights associated with the connection between 

hidden and output layers are formed by a Z matrix 

characterizing the association of prototypes to the classes. The 
learning process is made in three steps, expansion overlapping 

and contraction. 

The main objective of this algorithm is to characterize the real 

classes by a set of fuzzy hyper-cube prototypes, without prior 

knowledge on the classes. Each prototype Pj is defined by a 
couple of points (Vj, Wj), where Vj = (v jn)1≤n≤N and  Wj = 

(wjn)1≤n≤N, corresponding  respectively to the prototypes 

influence zone min max. Two parameters need to be fixed 

before starting the algorithm, the sensitivity γ and the 

vigilance factor θ of the hyper-cube. FMMC algorithm steps 
are shown in figure 1: 

Network initialization 
1- Initial values for γ and θ. 

2- The first data observation O1 of to the network. 

Repeat: 

  For each new observation data Oi,  

1- Expansion of a hyper-cube: Identify the hyper-cube 
Pj for what Oi has the maximum degree of membership 

bj (Oi).  

   




N

n

injnjninij avfwaf
N

Ob

1

)]()(1[
1

)(  

             f(.) is the activation function  











00

10

11

)(













Xif

XifX

Xif

Xf  

                        

2- Expand the prototype Pj. 

3- Compute the size T of Pj by means of:  
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     If    then  

   Pj *= Pj 

  Overlap test:  Search for overlap between existing 

prototypes 
  Contraction: Remove these overlaps by contracting 

prototypes 

     Else Create a new prototype  

  End  

Until Stabilization of prototypes 
Compute Z matrix  

Compute the membership functions of the classes. 

Fig 1: FMMC algorithm.  

The FMMC algorithm suffers however from the quality of the 

adopted model [12]. The hyper cube mode is a loose 

approximation of the data distribution. Tuning with γ and θ 

parameters does not solve this problem. Big value for γ gives 
rise to an over learning while taking θ  as a small value creates 

a lot of prototypes. 

3. PROPOSED METHOD  
The proposed method is shown in figure 2: 

 

 

 

 

 

Fig 2: Proposed method. 

The objective is to characterize each class by a set of well 

representative prototypes in an unsupervised way. Each 
prototype is represented by a set of data points defining a 

cloud of loosely a spherical form. The prototype is 

characterized by the gravity center of all the data points it 

contains. Three threshold points must be set out initially in 

order to obtain the prototypes and the classes. These are SSplit, 
SClean, and SMerge, the three thresholds for the operations Split, 

Clean and Merge act as decision parameters respectively. A 
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data observation Oi is considered to belong to a prototype Pj if 

the distance between Oi and the gravity center of Pj is lower 

than SSplit. Setting SSplit to a correct value is not an easy task. It 
is an application dependant problem. We have set it here, in 

this work, to a small value in the hope to divide the data into 

subclasses (prototypes) of very similar points. This is at the 

expense of obtaining a lot of prototypes. SClean is a threshold 

for clean operation. Its task is to remove the bad prototypes.  
A prototype is considered, in this work to be bad if it contains 

a reduced number of data. In this case we considered those 

prototypes with cardinal values less than SClean as candidates 

to be removed. SMerge is a threshold parameter designated to 

merge similar prototypes. We considered the distance between 
two prototypes to be the minimum distance between all the 

data points in the two prototypes. 

d(Pi, Pj)=min({d(x, y), x Є Pi, y Є Pj}) 

Two prototypes Pi and Pj are merging into one subclass if the 

distance between P i and Pj  is lower than SMerge. We have set 

SMerge to a small value in order to only merge those prototypes 

which are very similar.  

3.1. Split algorithm  
The Split phase is accomplished through a neural network 

with evolving architecture, figure 3. The network contains two 

layers. An input layer with N neurons representing the 
realization of the object Oi, Ri=(ai1,…, ain,…, aiN)  where ain 

are the attribute elements. An output layer having a number of 

neurons defining the exiting prototypes in a giving instant of 

time. Each prototype Pj is characterized by a neuron in the 

output layer. The size of this layer is not fixed initially, it 
increases with time as long as new prototypes are created 

when new observation data points is applied to the network. 

The output layer is fully connected to the input layer. The 

synaptic weight associated with the connections W 
corresponds to the gravity centers of the existing S prototypes.  

 

                                       W 

 

 
 

 

 

 

Fig 3: Split neural network architecture. 

Mode of operation of the Split process. 

Initially at t=0, observation O1 is applied to the network. 

Output layer contains one neuron and the matrix of synaptic 

weights M w is:  

MW = W1= [w11 w12…. w1n ….. w1N] 

  = [R1] = [a11 a12 …a1n… a1N] 

R1 is the realization of the data point O1, figure 4. P1 is formed 
by O1. 

                               w11 

                        w12      

                               w1n                       

 
                         

                              w1N 

 

Fig 4: Configuration of the network associated with Split 

phase at t=0 

At iterative t=1, the distance between R2 and W1 is computed, 

R2 is the realization of O2, O2 is the second data point.  

 If d(R2,W1) ≤SSplit , then O2 is attributed to P1 and the 

synaptic weight vector W1 becomes : 
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 If d(R2,W1) >SSplit,  then O2 is not in P1, A new prototype 

P2 and a new neuron are created (figure 5). The new 

prototype is characterized by the attribute vector 

associated with O2 and the synaptic weights matrix 

becomes  
 

 

 

 

 
 

Where:  the weight matrix at t=0. 
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Fig 5: Creation of a new prototype  

Proceeding with the algorithm, we consider that at iteration 

t=k-1, we obtain S prototypes associated to S neurons in the 

network output layer. We pass on to  iteration t=k, object Ok is 

applied to the network’s input layer through its realization Rk, 

the distance between Rk and the various Wj are computed, for 
j=1 to S, let Wr be the closest to Rk,                         

                         )),((min),( 1 jk
S
jrk WRdWRd   

 If d(Rk,Wr) ≤ SSplit then Ok is attributed to Pr and the 
synaptic weight vector associated to neuron Pr becomes:  
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The synaptic weights associated with the other neurons j≠r, 

remain unaffected.                .  

 If d(Rk,Wr) > SSplit,  then Ok is far away from all the 
existing prototype at t=k-1. In this case a new prototype 

PS+1 and a new neuron are created in the network’s output 

layer. PS+1 is characterized by Rk and the weight matrix is: 

 

 
 

 

 

 

3.2. The clean operation 
Finishing off the Split phase, many prototypes sometimes by 
hundreds are produced. Among the obtained prototypes in the 

split phase, many of them are non representatives of the real 

classes and must simply be removed without causing any 

harm to the initially pointed out objective. Indeed the presence 
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of these non representative prototypes does not improve the 

discrimination between the classes and the information they 

add for representing the classes is negligible if compared to 
the noise they generate.  

In order to avoid this problem, we opted for a clean operation 

where we delete the non representative prototypes. In this 

work, the cardinality of the prototype is used as a criterion for 

removing or keeping the prototype. If the cardinal of a 
prototype is less than SClean then the prototype is considered be 

non representative and is removed. SClean is a threshold 

parameter which is set out initially and is taken as a small 

value after an error and trial procedure.    

3.3. The Merge algorithm 
The split procedure described previously obtains a high 

number of prototypes. The main reason for this is that the split 

algorithm divides the observations in an arbitrary way. The 
solution is to merge similar prototypes into one. The similarity 

between prototypes is defined by a similarity criterion based 

on a distance measure [11]. Merge algorithm is a neural 

network with evolving architecture figure 6. The network is 

formed by three layers.  
 

                             U                          V 
 

 

 

 

 
 

 

Fig 6: Merge neural network architecture. 
The input layer is made of H neurons, where H is the number 

of prototypes found after the clean operation. The hidden layer 
is also formed by H neurons corresponding to the H 

prototypes, the input and hidden layers are fully connected by 

means of a binary matrix U=(ui j )(1≤i≤H,1≤j≤H), where uij define 

the connexity between  the prototypes Pi and Pj. The distance 

between two prototypes Pi and Pj is defined by [4]:   

d(Pi, Pj)=min({d(x, y), x Є Pi, y Є Pj}) 

 If J(Pi,  Pj)≤ SMerge then Pi is considered to be similar to Pj 
and  uij =1. 

 If J(Pi, Pj)>SMerge the two prototypes are considered to be 

not similar and uij =0. 

 

The output layer contains a number of neurons defining the 

real existing classes. Each class Ck is characterized by a 

neuron on the output layer. The number of neurons on the 

output is not fixed initially, the algorithm starts with one 

neuron, and the number of neurons increases with time in 
correspondence with the creation of classes where similar 

prototypes are regrouped. Hidden and output layers are fully 

connected by means of a binary matrix V=(v jk)(1≤j≤H,1≤k≤K),. 

The prototype Pj is considered to be a member of the class Ck 

if v jk=1, if not, v jk =0. v jk=1 in two cases, the first case is when 
the algorithm chooses to open a new class Ck because P j is not 

connex to any of the previous k-1 classes, the second case is 

when Ck is already existing and P j is connex to one of the 

elements of Ck. 

Mode of operation of the Merge process. 

At iteration t=0, the architecture of the merge network is that 
of figure 7, one neuron at the output layer corresponding to a 

real class C1. C1 contains P1 and all the prototypes which are 

directly or indirectly connex to P1. Two prototypes Pa and Pb 

are indirectly connex if there exists a chain of prototypes 

related by a connexity relationship where the two prototypes 
Pa and Pb are present. For example, consider the chain:  

                          P1           P2                P3           P4  

P1 is directly connex to P2 but it is indirectly connex to P3 and 

P4.   

                             U                          V 
 

 

 

 

 
 

Fig 7: Configuration of the network associated with Merge 

phase at t=0 

At iteration t=k-1, the output layer contains k-1 neurons 

corresponding to k-1 real classes.  

 

At iteration t=k, the algorithm looks for the first prototype not 
yet classified, the search is looked at in an increasing way 

from P1, upwards until Pj where Pj does not belong to neither 

of the k-1 already set classes. This means that (v jc)(1≤c≤k-1) are 

all equal to zero.  A k th neuron is then added to the output 

layer characterizing the class Ck and containing Pj and those 
prototypes which are not yet classified and which are directly 

or indirectly connex with Pj. This process is carried out until 

all the prototypes are attributed to their specific classes. 

 

4. EXPERIMENTAL RESULTS   
Two experiments are carried out in this section, one considers 

classes of convex type and the classes are non convex for the 
second one. The data for both experiments are represented in a 

two dimensional space.  

4.1 First experiment: Classes of convex 

form. 
In this experiment, two types of simulation are carried out. For 

both simulations the classes have convex form, we have three 
classes in each case, and the data have been generated by a 

Gaussian distribution routine through Matlab. The difference 

between the two simulations can be seen in the number of 

data, the level of overlapping between the classes and the 

noisy data introduced in the second simulation. For both 
simulations we set SSplit=0.8, SClean=10 and SMerge=0.2 

4.1.1 Simulation 1 
The data to be classified for this simulation are shown in 

figure 8. The overlapping between the classes in this case is 

null, the noisy data are not there, each class contains 150 data.                                                                                                                                                           
 

 

 

 

 

 

 

Fig 8: Repartition of the classes in the observation space. 

The Split phase runes quickly and obtains 14 prototypes. In 

the clean process three prototypes are removed. The 11 
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remaining and most representative prototypes are gathered in 

the set ES = {P1, P2,  P3, P4, P5,  P6, P7 , P8, P9, P10,  P11}. Table 

1 and figure 9 show the results obtained. 

Table 1. Obtained results 
Prototypes Gravity center Cardinal 

P1 4.7749    4.0530 49 

P2 4.5089    4.8449 68 

P3 3.9775    4.1385 30 

P4 8.1658    8.1620 72 

P5 8.4336    8.9454 23 

P6 8.9692    8.2134 26 

P7 7.3966    8.4909 15 

P8 8.0904    7.5075 14 

P9 2.4272    8.8034 53 

P10 1.7079    8.9593 60 

P11 1.9110    8.0437 33 
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Fig 9: Prototypes with corresponding centers obtained by 

the proposed method. 

The set Es is applied to the M erge algorithm.  The synaptic 

weights between the hidden and output layers obtained at 

convergence are  
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Convergence is achieved when the output layer contains three 

neurons. Each neuron represents a real class which is formed 
by several prototypes. The number of classes obtained is then 

3 which coincides with the true one. The repartition of 

prototypes in the classes is:  

 CL1= {P1, P2, P3} 

 CL2= {P4, P5, P6, P7, P8}  

 CL3= {P9, P10, P11} 

 

4.1.2 Simulation 2 
The second simulation is illustrated by figure 10. There is 
some overlapping between the classes and many noisy data in 

each class are there. Each class are there contains 250 

observations.  
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Fig 10: Repartition of the classes in the observation space. 

The split process runs quickly and obtains 70 prototypes. The 

clean operation removes 38 prototypes and 32 prototypes 

remain as the most representatives of the real classes.  

The final stage is the merge process which obtains at 

convergence a synaptic weight matrix between hidden and 

output layers given by:  
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The algorithm obtains 3 neurons for the output layer; we then 

obtain three real classes which coincide with the true number 
of classes. The repartition of prototypes between the classes 

is: 

 CL1= {P1, P2, P3, P4, P5, P6, P7, P8, P9,P 10, P11}  

 CL2= {P12, P13, P25, P26, P27, P28, P29, P30, P31, P32}  

 CL3= {P14, P15, P16, P17, P18, P19, P20, P21, P22, P23, P24}  

Figure 11 shows graphically the obtained results for data 

classification. 
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Fig 11: Prototypes and their corresponding centers 

obtained by the proposed method. 

4.1.2.1 Comparison with the FCM 
The aim is to compare the proposed method with the FCM. 

The comparison is conducted through simulation 2 case study. 

Unsupervised FCM classification does not know what is the 
number of classes initially. Several criteria have been 

proposed in the literature for optimally selecting this number. 

We have chosen the Xie and Beni criterion which make use of 

compacity and separability notions [10]. The FCM algorithm 

is run for several values of C (number of classes) and the Xie 
and Beni criterion value FXB is computed for each value 

chosen for C.  figure 12 shows the evolution of FXB with 

respect to the number of classes. 
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Fig 12: Evolution of FXB with respect to the number of 

classes. 

The figure shows that the optimal number is Copt=9, which 
does not coincide with the real number which is 3, this shows 

that when the degree of overlapping between the classes is 

high the Xie and Beni criterion may not obtain the correct 

number of classes. Our proposed method without initially 
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knowing the number of classes has converged to the optimal 

solution.  

We take C=3 for FCM and carry out a comparison between 
the two methods. The results obtained are summarized in table 

2.    

Table 2: Classification results 

 number of 

misclassified 

observations 

Classifcation 

rate 

FCM (C=3) 24 96.8% 

Proposed method  18 97.6% 

A higher classification rate is obtained by the proposed 

method. 18 observations were misclassified by the proposed 

method from among the initial 750 ones, and a classification 

rate of 97.6%, the CMF has obtained 24 observations 

misclassified and a classification rate of 96.8%. 

4.1.2.2 Comparison with fuzzy Min Max clustering 
FMMC 
We have compared the proposed method with FMMC through 

simulation 2. Figure 13 shows the classification results 

obtained for FMMC method. Table 3 shows the performances 

of the two methods. 
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Fig 13: Prototypes obtained by the FMMC method. 

The number of classes obtained by FMMC does not coincide 

with the true one; this is due to the high overlapping between 

the classes where prototypes are created in the overlapping 
zone which mix all the classes to one. For the proposed 

method the clean operation has acted in such a way that the 

classes have remained separated. We also noticed that the 

running time of FMMC  method is largely greater than that for 

the proposed method.  

4.1.2.3 Case with noisy data 
We are interested to study the behaviors of the proposed 

method when there one a lot of noisy data embedded in the set 

of initial data to be classified, and when the degree of 

overlapping between the classes is high. We have used the 
data of simulation 2 to which we have added 150 noisy 

observations. Figure 14 and table 4 show the results obtained 

by the proposed and FCM methods.   
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Fig 14: (a) Prototypes obtained by the proposed method.      

(b) Prototypes obtained by FCM. 

Table 4: Results of data classification 

 number of 

misclassified 

observations  

Classifcation 

rate 

FCM (C=3) 30 96% 

Proposed method  18 97.6% 

The classification for FCM  has slightly decreased due to the 

noisy data effect, while it remains the same as in 4.1.2.1 for 

the proposed method.  

4.2 Second experiment: Classes of non 

convex or complex form. 
We have envisaged for this experimentation two simulations, 

each of them considers two classes of non convex form. The 

form in simulation 3 is rectangular while it is circular for 

simulation 4. The observation space for the two simulations is 

of dimension 2. The data have been synthesized by authors 
and this has made use of the rand routine in Matlab. For both 

simulations we set SSplit=0.6, SClean=10 and SMerge=0.2 

4.2.1 Simulation 3 
Simulation 3 uses 1200 observations distributed into two 

classes of rectangular non convex form as shown in figure 15. 
Each class contains 600 observations.  
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Fig 15: Distribution of data in the observation space. 

Split algorithm runs quickly and obtains 22 prototypes. The 

clean operation removes one of them. The 21 remaining 

Table 3. Comparison between the two methods. 

 Number 

of classes 

Learning 
time 

Number of 

prototypes 

FMMC 1 22,6 s 278 

Proposed 
method 

3 1,2 s 32 
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prototypes are applied to the merge algorithm and the V 

matrix obtained is: 











001111111111100000000

110000000000011111111
V  

The merge algorithm obtains two neurons in its output layer 

and the repartition of the prototypes obtained for each neuron 

is:  

 CL1= {P1, P2, P3, P4, P5, P6, P7, P8, P20, P21}  

 CL2= {P9, P10, P11, P12, P13, P14, P15, P16, P17, P18 , P19}  

Figure 16 shows the obtained results. 
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Fig 16: Prototypes and their corresponding centers 

obtained by the proposed method. 

The results obtained by the proposed method are compared to 

those obtained by FCM and FMMC, figure 17 and table 6.  
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Fig 17: (a) Prototypes obtained by the FCM. (b) 

Prototypes obtained by FMMC. 

Table 6 : Classification results 

 Number 
of 

classes 

Learning 
time (s) 

Number of 
prototypes 

Classification 
rate 

FCM (C=2) 2 3,34 2 98.5% 

FMMC 2 23,6  229 100% 

Proposed 

method  

2 1,07  21 100% 

Both FMMC and the proposed method have obtained better 

results than FCM, but the running time for FCM and FMMC  
are much bigger than that required by the proposed method.  

 

4.2.2 Simulation 4 
In this simulation, we have used 1050 observations distributed 

into 2 classes of circular non convex form (figure 18). The 

first class contains 100 observations and the second one 

contains 950 remaining observations. 
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Fig 18: Distribution of data in the observation space. 

Split algorithm runs quickly and obtains 17 prototypes. The 
clean operation does not remove any of the prototypes and the 

V matrix obtained is: 











11000000000000000

00111111111111111
V  

The merge algorithm obtains two neurons in its output layer 

and the repartition of the prototypes obtained for each neuron 

is:  

 CL1= {P1, P2, P3, P4, P5, P6, P7, P8, P9,  P10, P11, P12, P13, 

P14, P15} 

 CL2= {P16, P17} 

Figure 19 shows the obtained results. 
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Fig 19: Prototypes and their corresponding centers 

obtained by the proposed method. 

The results obtained by the proposed method are compared to 

those obtained by FCM and FMMC, figure 20 and table 7. 
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Fig 20: (a) Prototypes obtained by the FCM. (b) 
Prototypes obtained by FMMC. 

Table 7 : Classification results 

 Number 
of 

classes  

Learning 
time (s) 

Number of 
prototypes 

Classification 
rate 

FCM 2 2 ,77 2 40.7% 

FMMC 2 17,66 209 100% 

Proposed 

method  

2 0,73  17 100% 

FCM has failed in this case because the center of classes 

obtained by FCM is not good. FMMC and proposed method 
have both converged to the true solution but the running time 

of the FMMC is largely high than that required for the 

proposed method. 

   

5. CONCLUSION  
In this work, we have proposed a new method of unsupervised 

data classification based on a cascade system containing three 

blocks: split, clean and merge processes. The split process 

divides the initial set of data into several subclasses; it is 

based on a neural network containing two layers which builds 

the subclasses in a progressive way. The clean operation 

removes the non representative subclasses which contain 

noisy data; the cardinal value of these subclasses is small. 

Merge process regroups similar subclasses into a real class 

according to a chosen similarity criterion. The proposed 

method have been validated through many examples studied 

by simulations, the form of the classes chosen for these 

simulations is convex for some of them and non convex for 

the others. The results obtained are good; the method has 

always converged to the optimal solution in a reduced running 

time. The simulation results have shown that although the 

degree of overlapping between the classes is high and 

although the noisy data are present in the initial set of data the 

method proposed still converge to the expected result. The 

method does not infer any initial knowledge on the classes 

especially the number of classes is not initially set by the 

method. This number is obtained after that the method 

converges. The simulation results have also shown a net 

improvement obtained by the proposed method when it is 

compared to the FCM and FMMC methods of classification.  

6. REFERENCES  
[1] P. Jiang, F. Ren and N. Zheng. 2009. A new approach 

to data clustering using a computational visual 

attention model. International Journal of Innovative 

Computing, Information and Control Volume 5, 

Number 12(A). (December 2009) 

[2] P.K. Simpson. 1992. Fuzzy min-max neural networks. 

Part 1: classification. IEEE Transactions on Neural 

Networks, vol. 3, pp: 776-786. 

[3] P.K. Simpson. 1993. Fuzzy min-max neural networks. 

Part 2: clustering. IEEE Transactions on Fuzzy 

Systems, vol. 1(1), pp: 32-45. 

[4] M. Boubou. 2007. Contribution aux méthodes de 

classification non supervisée via des approches 
prétopologiques et d’agrégation d’opinions. Thése de 

Doctorat, Université Claude Bernard – Lyon I.  

[5] H. Ouariachi. 2001. Classification non supervisée de 

données par réseaux de neurones et une approche 

évolutionniste: application à la classification d’images. 
Thèse de doctorat, Université Mohamed 1, Maroc 

[6] M. Nasri, M. El Hitmy, H. Ouariachi and M. 

Barboucha. 2003. Optimization of a fuzzy 

classification by evolutionary strategies’’. In 

proceedings of SPIE Conf., 6th international 
Conference on Quality Control by Artificial Vision, 

Vol. 5132, pp. 220-230, USA, 2003. Repulished as an 

SME Technical paper by the Society of manufacturing 

engineers (SME), Paper number MV03-233, ID 

TP03PUB135, Dearborn, Michigan, USA, pp. 1-11, 
(24 June 2003). 

[7] L. Khodja. 1998. Contribution à la classification floue 

non supervisée. Thése de doctorat, université de 

savoie. 

[8] K. R. Zalik and B. Zalik. 2010. Validity index for 
clusters of different sizes and densities. Pattern 

Recognition Letters, 221-234, (18 September 2010). 

[9] C. Duo, L. Xue and C. Du-Wu. 2007. An Adaptive 

Cluster Validity Index For The Fuzzy C-means. 

IJCSNS International Journal of Computer Science and 
Network Security, VOL.7 No.2, ( February 2007). 

[10] M. Nasri. 2004. Contribution à la classification des  

données par approches evolutionnistes : simulation et 

application aux images de textures. Thèse de Doctorat, 

Université Mohammed premier,  Faculté des sciences  
Oujda, Maroc. 

[11] M. S. Bouguelid. 2007. Contribution à l'application de 

la reconnaissance des formes et la théorie des  

possibilités au diagnostic adaptatif et prédictif des 

systèmes dynamiques. Thése de doctorat, Université de 
Reins Champagne- Ardenne. 

[12] H. A. Boubacar. 2006. Classification dynamique de 

données non-stationnaires apprentissage et suivi de 

classes evolutives. Thése de doctorat, université des 

sciences et technologies de lille. 

[13] O. Aya, M. Saued-Mouchaweh et P. Billaudel. 2010. 

Sélection dynamique des classifieurs pour 

l’amélioration du taux de classification dans les zones 

d’ambiguïtés ’’. 6éme conférences internationale 

Francophone d'Automatique (CIFA 2010). 

 

 


