
International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

8

Unsupervised Data Classification for Convex and
Non Convex Classes

Fairouz Lekhal

LABO LEPAS, FS, University

Mohammed I, MAROC

Mohamed El Hitmy
LABO LEPAS, FS, University

Mohammed I, MAROC

 Ouafae El Melhaoui
LABO LEPAS, FS, University

Mohammed I, MAROC

ABSTRACT
We present in this work, a new unsupervised data

classification technique based on a three steps system: Split,
Clean and Merge. In this system, the classes are represented

by a set of subclasses that we call prototypes. The prototypes

are created in an incremental way from the initial data set. No

prior knowledge on the classes is required. The data are

presented to the system one by one in an arbitrary way. The
system built on a neural network strategy ends up by acquiring

knowledge on the data and gathers the data into a set of real

classes which may have a non convex structure. The method

proposed is compared to the fuzzy C-means ‘FCM’ and fuzzy
min max clustering ‘FMMC’ methods through a number of

simulations. The results obtained by the proposed method are

very good.

Keywords
Unsupervised classification, split, clean, merge, convex and

non convex classes, fuzzy min max clustering, fuzzy C-
means.

1. INTRODUCTION
Unsupervised data classification is an important technique in
the field of data analysis; it has played an important role in

many scientific fields. The objective of unsupervised data

classification is to regroup the data into classes according to a

similarity criterion. The data are not labeled and no prior

knowledge on the classes is available [1] [10].

Several methods for unsupervised data classification are

already very common and these include [4]: hierarchical,

partitioning, connexionist, by tree, by graph … etc. The most

common among these are the partitioning methods. The
algorithms used in partitioning methods include: C-means [5],

Fuzzy C-means [6] [11], Isodata [7], competitive neural

network [5]… etc. These algorithms optimize iteratively a

classification criterion, in order to partition a set of

observations into a set of classes. The drawback with these
algorithms is to initially set arbitrarily the number of classes C

to a certain value and the value of C is varied until optimality

is achieved. Optimality criteria such as Xie and Beni, entropy

and partition coefficient are commonly used [8] [11]. Another

drawback is the initialization of centers. Starting the algorithm
with a different initial value yield to another convergence

point different from the first one. Authors have proposed

evolutionary algorithms in order to get around these two

drawbacks [5] [10]. C-means, fuzzy C-means and competitive

neural networks are well suited to convex classes having
spherical or elliptical structures; they are not convenient to

non convex or complex classes. Many authors have been

interested to such a type of problem, regarding the form of the

classes, they have proposed a multitude of methods based on

existing data classification methods, such as SVM [13], Fuzzy

pattern matching FPM [11], neural networks [12]… etc. The

most commonly used algorithm for this problem remains

however the one proposed in [3] which is based on a neural

network structure and called fuzzy min max clustering

FMMC.

In this work, we propose a new method for unsupervised data

classification, which prove to be valid for convex and non

convex type of classes. The method is based on three steps:

split, clean and merge. The split technique is based on a neural

network with evolving architecture; the network contains two
layers which will make it possible to divide the data into

several prototypes in an incremental way. The prototypes

obtained are characterizing elements of the real classes. The

clean step discards the noisy prototypes, which are non
representative of the real classes. Merge step is an algorithm

based on an evolving neural network, constituted of three

layers. The merge technique is well adapted for regrouping the

similar prototypes into end classes by means of a merge

procedure after that the clean operation has been performed.

2. FUZZY CLASSIFICATION

2.1. Descriptive elements
Let’s consider a set of M objects {O1, O2,..,Oi, .., OM },

characterized by N parameters regrouped in a line initial

vector Vinit = (a1, a2, .., an, .., aN). Let Ri = (ain)1≤n≤N be a line

vector of RN where the nth component ain is the value taken by
an for the object Oi. R i is called the observation associated

with Oi. R
N is the observation space, or the parameters space.

Let EV = {a1, a2, .., an, .., aN} be the set of attributes associated

with Vinit.

2.2. Fuzzy C-means algorithm.
Let’s consider M observations (Ri)1≤i≤M to be associated to C

different classes (CLs)1≤s≤C with respective centers (xs)1≤s≤C .

Fuzzy C-means algorithm FCM associates with each

observation Ri its membership degree μis, to the class CLs. μis

[0, 1]. FCM method consists of determining the class centers

which minimize the optimization criterion defined by [5] [10]:

 2

1 1

si

dfM

i

C

s

ism xRJ

Under the constraints:

C

s

is

1

1 for i=1 to M and 0 <

M

i
is

1

 < M for s=1 to C

||.|| is the Euclidean distance, df is the ‘’fuzzy degree’’ often
taken equal to 2. In order to minimize Jm, μis and xs, must be

updated at each iteration according to [10]:

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

9

C

k

df
ki

df
si

is

xR

xR

1

1

1

2

1

1

2

 and

M

i

df
is

i

M

i

df
is

s

R

x

1

1

Despite the simplicity and the popularity of this algorithm, it

suffers from the same drawbacks as the C-means does. These

are: the number of classes must be known a priori, the
initialization problem and the possibility that the convergence

point may stack on a local rather than on a global optimum [8]

[10] [11].

2.3. Fuzzy min max clustering
In 1993 Simpson introduces the neural algorithm known as

fuzzy min max clustering FMMC [3]; it is a neural network

based algorithm with evolving architecture. It is based on

unsupervised learning rules which were initially developed by
the same author in 1992 for supervised classification based on

a neural fuzzy min max approach [2]. FMMC contains three

layers, input, output and hidden layers. The number of

neurons in the input layer is equal to the dimension of the data

representation space; it is the space RN where N is the size of
the attribute vector giving the features of the data. The

numbers of neurons in the hidden and output layers increase in

time with respect to the creating of prototypes for the hidden

layer and creating of classes for the output layer. The synaptic

weights associated with the connections between input and
hidden layers are formed by two matrices V and W giving the

characteristics of the different prototypes in the hidden layer.

The synaptic weights associated with the connection between

hidden and output layers are formed by a Z matrix

characterizing the association of prototypes to the classes. The
learning process is made in three steps, expansion overlapping

and contraction.

The main objective of this algorithm is to characterize the real

classes by a set of fuzzy hyper-cube prototypes, without prior

knowledge on the classes. Each prototype Pj is defined by a
couple of points (Vj, Wj), where Vj = (v jn)1≤n≤N and Wj =

(wjn)1≤n≤N, corresponding respectively to the prototypes

influence zone min max. Two parameters need to be fixed

before starting the algorithm, the sensitivity γ and the

vigilance factor θ of the hyper-cube. FMMC algorithm steps
are shown in figure 1:

Network initialization
1- Initial values for γ and θ.

2- The first data observation O1 of to the network.

Repeat:

 For each new observation data Oi,

1- Expansion of a hyper-cube: Identify the hyper-cube
Pj for what Oi has the maximum degree of membership

bj (Oi).

N

n

injnjninij avfwaf
N

Ob

1

)]()(1[
1

)(

 f(.) is the activation function

00

10

11

)(

Xif

XifX

Xif

Xf

2- Expand the prototype Pj.

3- Compute the size T of Pj by means of:

),max(

),min(

*

*

injnjn

injnjn

aww

avv

 If then

 Pj *= Pj

 Overlap test: Search for overlap between existing

prototypes
 Contraction: Remove these overlaps by contracting

prototypes

 Else Create a new prototype

 End

Until Stabilization of prototypes
Compute Z matrix

Compute the membership functions of the classes.

Fig 1: FMMC algorithm.

The FMMC algorithm suffers however from the quality of the

adopted model [12]. The hyper cube mode is a loose

approximation of the data distribution. Tuning with γ and θ

parameters does not solve this problem. Big value for γ gives
rise to an over learning while taking θ as a small value creates

a lot of prototypes.

3. PROPOSED METHOD
The proposed method is shown in figure 2:

Fig 2: Proposed method.

The objective is to characterize each class by a set of well

representative prototypes in an unsupervised way. Each
prototype is represented by a set of data points defining a

cloud of loosely a spherical form. The prototype is

characterized by the gravity center of all the data points it

contains. Three threshold points must be set out initially in

order to obtain the prototypes and the classes. These are SSplit,
SClean, and SMerge, the three thresholds for the operations Split,

Clean and Merge act as decision parameters respectively. A

Merge

Clean

H (H≤S) the most

representatives

prototypes

Real K

classes

Observation

set

Split S prototypes

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

10

data observation Oi is considered to belong to a prototype Pj if

the distance between Oi and the gravity center of Pj is lower

than SSplit. Setting SSplit to a correct value is not an easy task. It
is an application dependant problem. We have set it here, in

this work, to a small value in the hope to divide the data into

subclasses (prototypes) of very similar points. This is at the

expense of obtaining a lot of prototypes. SClean is a threshold

for clean operation. Its task is to remove the bad prototypes.
A prototype is considered, in this work to be bad if it contains

a reduced number of data. In this case we considered those

prototypes with cardinal values less than SClean as candidates

to be removed. SMerge is a threshold parameter designated to

merge similar prototypes. We considered the distance between
two prototypes to be the minimum distance between all the

data points in the two prototypes.

d(Pi, Pj)=min({d(x, y), x Є Pi, y Є Pj})

Two prototypes Pi and Pj are merging into one subclass if the

distance between P i and Pj is lower than SMerge. We have set

SMerge to a small value in order to only merge those prototypes

which are very similar.

3.1. Split algorithm
The Split phase is accomplished through a neural network

with evolving architecture, figure 3. The network contains two

layers. An input layer with N neurons representing the
realization of the object Oi, Ri=(ai1,…, ain,…, aiN) where ain

are the attribute elements. An output layer having a number of

neurons defining the exiting prototypes in a giving instant of

time. Each prototype Pj is characterized by a neuron in the

output layer. The size of this layer is not fixed initially, it
increases with time as long as new prototypes are created

when new observation data points is applied to the network.

The output layer is fully connected to the input layer. The

synaptic weight associated with the connections W
corresponds to the gravity centers of the existing S prototypes.

 W

Fig 3: Split neural network architecture.

Mode of operation of the Split process.

Initially at t=0, observation O1 is applied to the network.

Output layer contains one neuron and the matrix of synaptic

weights M w is:

MW = W1= [w11 w12…. w1n ….. w1N]

 = [R1] = [a11 a12 …a1n… a1N]

R1 is the realization of the data point O1, figure 4. P1 is formed
by O1.

 w11

 w12

 w1n

 w1N

Fig 4: Configuration of the network associated with Split

phase at t=0

At iterative t=1, the distance between R2 and W1 is computed,

R2 is the realization of O2, O2 is the second data point.

 If d(R2,W1) ≤SSplit , then O2 is attributed to P1 and the

synaptic weight vector W1 becomes :

2)(

21

1
1

1 RR

Pcard

R

W
PR

i

i

 If d(R2,W1) >SSplit, then O2 is not in P1, A new prototype

P2 and a new neuron are created (figure 5). The new

prototype is characterized by the attribute vector

associated with O2 and the synaptic weights matrix

becomes

Where: the weight matrix at t=0.

 W

Fig 5: Creation of a new prototype

Proceeding with the algorithm, we consider that at iteration

t=k-1, we obtain S prototypes associated to S neurons in the

network output layer. We pass on to iteration t=k, object Ok is

applied to the network’s input layer through its realization Rk,

the distance between Rk and the various Wj are computed, for
j=1 to S, let Wr be the closest to Rk,

)),((min),(1 jk
S
jrk WRdWRd

 If d(Rk,Wr) ≤ SSplit then Ok is attributed to Pr and the
synaptic weight vector associated to neuron Pr becomes:

)(r

PR

i

r
Pcard

R

W ri

The synaptic weights associated with the other neurons j≠r,

remain unaffected. .

 If d(Rk,Wr) > SSplit, then Ok is far away from all the
existing prototype at t=k-1. In this case a new prototype

PS+1 and a new neuron are created in the network’s output

layer. PS+1 is characterized by Rk and the weight matrix is:

3.2. The clean operation
Finishing off the Split phase, many prototypes sometimes by
hundreds are produced. Among the obtained prototypes in the

split phase, many of them are non representatives of the real

classes and must simply be removed without causing any

harm to the initially pointed out objective. Indeed the presence

2

1

2

0

R

W

W

M
M

t

W

W

k

S

S

kt

W

W

R

W

W

W

M
M

1

1

1

a1

a2

an

aN

P1

P2

Pj

PS

a21

a22

a2n

a2N

P1

P2

a11

a12

a1n

a1N

P1

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

11

P1

P2

Pj

PH

P1

P2

Pj

PH

of these non representative prototypes does not improve the

discrimination between the classes and the information they

add for representing the classes is negligible if compared to
the noise they generate.

In order to avoid this problem, we opted for a clean operation

where we delete the non representative prototypes. In this

work, the cardinality of the prototype is used as a criterion for

removing or keeping the prototype. If the cardinal of a
prototype is less than SClean then the prototype is considered be

non representative and is removed. SClean is a threshold

parameter which is set out initially and is taken as a small

value after an error and trial procedure.

3.3. The Merge algorithm
The split procedure described previously obtains a high

number of prototypes. The main reason for this is that the split

algorithm divides the observations in an arbitrary way. The
solution is to merge similar prototypes into one. The similarity

between prototypes is defined by a similarity criterion based

on a distance measure [11]. Merge algorithm is a neural

network with evolving architecture figure 6. The network is

formed by three layers.

 U V

Fig 6: Merge neural network architecture.
The input layer is made of H neurons, where H is the number

of prototypes found after the clean operation. The hidden layer
is also formed by H neurons corresponding to the H

prototypes, the input and hidden layers are fully connected by

means of a binary matrix U=(ui j)(1≤i≤H,1≤j≤H), where uij define

the connexity between the prototypes Pi and Pj. The distance

between two prototypes Pi and Pj is defined by [4]:

d(Pi, Pj)=min({d(x, y), x Є Pi, y Є Pj})

 If J(Pi, Pj)≤ SMerge then Pi is considered to be similar to Pj
and uij =1.

 If J(Pi, Pj)>SMerge the two prototypes are considered to be

not similar and uij =0.

The output layer contains a number of neurons defining the

real existing classes. Each class Ck is characterized by a

neuron on the output layer. The number of neurons on the

output is not fixed initially, the algorithm starts with one

neuron, and the number of neurons increases with time in
correspondence with the creation of classes where similar

prototypes are regrouped. Hidden and output layers are fully

connected by means of a binary matrix V=(v jk)(1≤j≤H,1≤k≤K),.

The prototype Pj is considered to be a member of the class Ck

if v jk=1, if not, v jk =0. v jk=1 in two cases, the first case is when
the algorithm chooses to open a new class Ck because P j is not

connex to any of the previous k-1 classes, the second case is

when Ck is already existing and P j is connex to one of the

elements of Ck.

Mode of operation of the Merge process.

At iteration t=0, the architecture of the merge network is that
of figure 7, one neuron at the output layer corresponding to a

real class C1. C1 contains P1 and all the prototypes which are

directly or indirectly connex to P1. Two prototypes Pa and Pb

are indirectly connex if there exists a chain of prototypes

related by a connexity relationship where the two prototypes
Pa and Pb are present. For example, consider the chain:

 P1 P2 P3 P4

P1 is directly connex to P2 but it is indirectly connex to P3 and

P4.

 U V

Fig 7: Configuration of the network associated with Merge

phase at t=0

At iteration t=k-1, the output layer contains k-1 neurons

corresponding to k-1 real classes.

At iteration t=k, the algorithm looks for the first prototype not
yet classified, the search is looked at in an increasing way

from P1, upwards until Pj where Pj does not belong to neither

of the k-1 already set classes. This means that (v jc)(1≤c≤k-1) are

all equal to zero. A k th neuron is then added to the output

layer characterizing the class Ck and containing Pj and those
prototypes which are not yet classified and which are directly

or indirectly connex with Pj. This process is carried out until

all the prototypes are attributed to their specific classes.

4. EXPERIMENTAL RESULTS
Two experiments are carried out in this section, one considers

classes of convex type and the classes are non convex for the
second one. The data for both experiments are represented in a

two dimensional space.

4.1 First experiment: Classes of convex

form.
In this experiment, two types of simulation are carried out. For

both simulations the classes have convex form, we have three
classes in each case, and the data have been generated by a

Gaussian distribution routine through Matlab. The difference

between the two simulations can be seen in the number of

data, the level of overlapping between the classes and the

noisy data introduced in the second simulation. For both
simulations we set SSplit=0.8, SClean=10 and SMerge=0.2

4.1.1 Simulation 1
The data to be classified for this simulation are shown in

figure 8. The overlapping between the classes in this case is

null, the noisy data are not there, each class contains 150 data.

Fig 8: Repartition of the classes in the observation space.

The Split phase runes quickly and obtains 14 prototypes. In

the clean process three prototypes are removed. The 11

0 1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

11

a1

a
2

Classe CL1

Classe CL2

Classe CL3

P1

P2

Pj

PH

C1

Ck

CK

P1

P2

Pj

PH

C1

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

12

remaining and most representative prototypes are gathered in

the set ES = {P1, P2, P3, P4, P5, P6, P7 , P8, P9, P10, P11}. Table

1 and figure 9 show the results obtained.

Table 1. Obtained results
Prototypes Gravity center Cardinal

P1 4.7749 4.0530 49

P2 4.5089 4.8449 68

P3 3.9775 4.1385 30

P4 8.1658 8.1620 72

P5 8.4336 8.9454 23

P6 8.9692 8.2134 26

P7 7.3966 8.4909 15

P8 8.0904 7.5075 14

P9 2.4272 8.8034 53

P10 1.7079 8.9593 60

P11 1.9110 8.0437 33

0 1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

11

a1

a
2

Classe CL1

Classe CL2

Classe CL3

Centre

Fig 9: Prototypes with corresponding centers obtained by

the proposed method.

The set Es is applied to the M erge algorithm. The synaptic

weights between the hidden and output layers obtained at

convergence are

11100000000

00011111000

00000000111

V

Convergence is achieved when the output layer contains three

neurons. Each neuron represents a real class which is formed
by several prototypes. The number of classes obtained is then

3 which coincides with the true one. The repartition of

prototypes in the classes is:

 CL1= {P1, P2, P3}

 CL2= {P4, P5, P6, P7, P8}

 CL3= {P9, P10, P11}

4.1.2 Simulation 2
The second simulation is illustrated by figure 10. There is
some overlapping between the classes and many noisy data in

each class are there. Each class are there contains 250

observations.

-2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

a1

a
2

CL1

CL2

CL3

Fig 10: Repartition of the classes in the observation space.

The split process runs quickly and obtains 70 prototypes. The

clean operation removes 38 prototypes and 32 prototypes

remain as the most representatives of the real classes.

The final stage is the merge process which obtains at

convergence a synaptic weight matrix between hidden and

output layers given by:

00000000111111111110000000000000

11111111000000000001100000000000

00000000000000000000011111111111

V

The algorithm obtains 3 neurons for the output layer; we then

obtain three real classes which coincide with the true number
of classes. The repartition of prototypes between the classes

is:

 CL1= {P1, P2, P3, P4, P5, P6, P7, P8, P9,P 10, P11}

 CL2= {P12, P13, P25, P26, P27, P28, P29, P30, P31, P32}

 CL3= {P14, P15, P16, P17, P18, P19, P20, P21, P22, P23, P24}

Figure 11 shows graphically the obtained results for data

classification.

-2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

a1

a
2

CL1

CL2

CL3

Centre

Fig 11: Prototypes and their corresponding centers

obtained by the proposed method.

4.1.2.1 Comparison with the FCM
The aim is to compare the proposed method with the FCM.

The comparison is conducted through simulation 2 case study.

Unsupervised FCM classification does not know what is the
number of classes initially. Several criteria have been

proposed in the literature for optimally selecting this number.

We have chosen the Xie and Beni criterion which make use of

compacity and separability notions [10]. The FCM algorithm

is run for several values of C (number of classes) and the Xie
and Beni criterion value FXB is computed for each value

chosen for C. figure 12 shows the evolution of FXB with

respect to the number of classes.

2 3 4 5 6 7 8 9
200

300

400

500

600

700

800

900

Le nombre C

F
x
b

Fig 12: Evolution of FXB with respect to the number of

classes.

The figure shows that the optimal number is Copt=9, which
does not coincide with the real number which is 3, this shows

that when the degree of overlapping between the classes is

high the Xie and Beni criterion may not obtain the correct

number of classes. Our proposed method without initially

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

13

knowing the number of classes has converged to the optimal

solution.

We take C=3 for FCM and carry out a comparison between
the two methods. The results obtained are summarized in table

2.

Table 2: Classification results

 number of

misclassified

observations

Classifcation

rate

FCM (C=3) 24 96.8%

Proposed method 18 97.6%

A higher classification rate is obtained by the proposed

method. 18 observations were misclassified by the proposed

method from among the initial 750 ones, and a classification

rate of 97.6%, the CMF has obtained 24 observations

misclassified and a classification rate of 96.8%.

4.1.2.2 Comparison with fuzzy Min Max clustering
FMMC
We have compared the proposed method with FMMC through

simulation 2. Figure 13 shows the classification results

obtained for FMMC method. Table 3 shows the performances

of the two methods.

-2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

a1

a
2

Fig 13: Prototypes obtained by the FMMC method.

The number of classes obtained by FMMC does not coincide

with the true one; this is due to the high overlapping between

the classes where prototypes are created in the overlapping
zone which mix all the classes to one. For the proposed

method the clean operation has acted in such a way that the

classes have remained separated. We also noticed that the

running time of FMMC method is largely greater than that for

the proposed method.

4.1.2.3 Case with noisy data
We are interested to study the behaviors of the proposed

method when there one a lot of noisy data embedded in the set

of initial data to be classified, and when the degree of

overlapping between the classes is high. We have used the
data of simulation 2 to which we have added 150 noisy

observations. Figure 14 and table 4 show the results obtained

by the proposed and FCM methods.

-4 -2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

a1

a
2

CL1

CL2

CL3

Noisy data

Center

(a)

-4 -2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

a1

a
2

CL1

CL2

CL3

Noisy data

Center

(b)

Fig 14: (a) Prototypes obtained by the proposed method.

(b) Prototypes obtained by FCM.

Table 4: Results of data classification

 number of

misclassified

observations

Classifcation

rate

FCM (C=3) 30 96%

Proposed method 18 97.6%

The classification for FCM has slightly decreased due to the

noisy data effect, while it remains the same as in 4.1.2.1 for

the proposed method.

4.2 Second experiment: Classes of non

convex or complex form.
We have envisaged for this experimentation two simulations,

each of them considers two classes of non convex form. The

form in simulation 3 is rectangular while it is circular for

simulation 4. The observation space for the two simulations is

of dimension 2. The data have been synthesized by authors
and this has made use of the rand routine in Matlab. For both

simulations we set SSplit=0.6, SClean=10 and SMerge=0.2

4.2.1 Simulation 3
Simulation 3 uses 1200 observations distributed into two

classes of rectangular non convex form as shown in figure 15.
Each class contains 600 observations.

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

a1

a2

CL1

CL2

Fig 15: Distribution of data in the observation space.

Split algorithm runs quickly and obtains 22 prototypes. The

clean operation removes one of them. The 21 remaining

Table 3. Comparison between the two methods.

 Number

of classes

Learning
time

Number of

prototypes

FMMC 1 22,6 s 278

Proposed
method

3 1,2 s 32

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

14

prototypes are applied to the merge algorithm and the V

matrix obtained is:

001111111111100000000

110000000000011111111
V

The merge algorithm obtains two neurons in its output layer

and the repartition of the prototypes obtained for each neuron

is:

 CL1= {P1, P2, P3, P4, P5, P6, P7, P8, P20, P21}

 CL2= {P9, P10, P11, P12, P13, P14, P15, P16, P17, P18 , P19}

Figure 16 shows the obtained results.

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

a1

a2

CL1

CL2

Centre

Fig 16: Prototypes and their corresponding centers

obtained by the proposed method.

The results obtained by the proposed method are compared to

those obtained by FCM and FMMC, figure 17 and table 6.

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

a1

a2

CL1

CL2

Centre par CMF

(a)

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

a1

a
2

 (b)

Fig 17: (a) Prototypes obtained by the FCM. (b)

Prototypes obtained by FMMC.

Table 6 : Classification results

 Number
of

classes

Learning
time (s)

Number of
prototypes

Classification
rate

FCM (C=2) 2 3,34 2 98.5%

FMMC 2 23,6 229 100%

Proposed

method

2 1,07 21 100%

Both FMMC and the proposed method have obtained better

results than FCM, but the running time for FCM and FMMC
are much bigger than that required by the proposed method.

4.2.2 Simulation 4
In this simulation, we have used 1050 observations distributed

into 2 classes of circular non convex form (figure 18). The

first class contains 100 observations and the second one

contains 950 remaining observations.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

a1

a
2

CL1

CL2

Fig 18: Distribution of data in the observation space.

Split algorithm runs quickly and obtains 17 prototypes. The
clean operation does not remove any of the prototypes and the

V matrix obtained is:

11000000000000000

00111111111111111
V

The merge algorithm obtains two neurons in its output layer

and the repartition of the prototypes obtained for each neuron

is:

 CL1= {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13,

P14, P15}

 CL2= {P16, P17}

Figure 19 shows the obtained results.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

a1

a2

CL1

CL2

Centre

Fig 19: Prototypes and their corresponding centers

obtained by the proposed method.

The results obtained by the proposed method are compared to

those obtained by FCM and FMMC, figure 20 and table 7.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

a1

a2

CL1

CL2

Centre par CMF

(a)

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.1, June 2011

15

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

a1

a
2

(b)

Fig 20: (a) Prototypes obtained by the FCM. (b)
Prototypes obtained by FMMC.

Table 7 : Classification results

 Number
of

classes

Learning
time (s)

Number of
prototypes

Classification
rate

FCM 2 2 ,77 2 40.7%

FMMC 2 17,66 209 100%

Proposed

method

2 0,73 17 100%

FCM has failed in this case because the center of classes

obtained by FCM is not good. FMMC and proposed method
have both converged to the true solution but the running time

of the FMMC is largely high than that required for the

proposed method.

5. CONCLUSION
In this work, we have proposed a new method of unsupervised

data classification based on a cascade system containing three

blocks: split, clean and merge processes. The split process

divides the initial set of data into several subclasses; it is

based on a neural network containing two layers which builds

the subclasses in a progressive way. The clean operation

removes the non representative subclasses which contain

noisy data; the cardinal value of these subclasses is small.

Merge process regroups similar subclasses into a real class

according to a chosen similarity criterion. The proposed

method have been validated through many examples studied

by simulations, the form of the classes chosen for these

simulations is convex for some of them and non convex for

the others. The results obtained are good; the method has

always converged to the optimal solution in a reduced running

time. The simulation results have shown that although the

degree of overlapping between the classes is high and

although the noisy data are present in the initial set of data the

method proposed still converge to the expected result. The

method does not infer any initial knowledge on the classes

especially the number of classes is not initially set by the

method. This number is obtained after that the method

converges. The simulation results have also shown a net

improvement obtained by the proposed method when it is

compared to the FCM and FMMC methods of classification.

6. REFERENCES
[1] P. Jiang, F. Ren and N. Zheng. 2009. A new approach

to data clustering using a computational visual

attention model. International Journal of Innovative

Computing, Information and Control Volume 5,

Number 12(A). (December 2009)

[2] P.K. Simpson. 1992. Fuzzy min-max neural networks.

Part 1: classification. IEEE Transactions on Neural

Networks, vol. 3, pp: 776-786.

[3] P.K. Simpson. 1993. Fuzzy min-max neural networks.

Part 2: clustering. IEEE Transactions on Fuzzy

Systems, vol. 1(1), pp: 32-45.

[4] M. Boubou. 2007. Contribution aux méthodes de

classification non supervisée via des approches
prétopologiques et d’agrégation d’opinions. Thése de

Doctorat, Université Claude Bernard – Lyon I.

[5] H. Ouariachi. 2001. Classification non supervisée de

données par réseaux de neurones et une approche

évolutionniste: application à la classification d’images.
Thèse de doctorat, Université Mohamed 1, Maroc

[6] M. Nasri, M. El Hitmy, H. Ouariachi and M.

Barboucha. 2003. Optimization of a fuzzy

classification by evolutionary strategies’’. In

proceedings of SPIE Conf., 6th international
Conference on Quality Control by Artificial Vision,

Vol. 5132, pp. 220-230, USA, 2003. Repulished as an

SME Technical paper by the Society of manufacturing

engineers (SME), Paper number MV03-233, ID

TP03PUB135, Dearborn, Michigan, USA, pp. 1-11,
(24 June 2003).

[7] L. Khodja. 1998. Contribution à la classification floue

non supervisée. Thése de doctorat, université de

savoie.

[8] K. R. Zalik and B. Zalik. 2010. Validity index for
clusters of different sizes and densities. Pattern

Recognition Letters, 221-234, (18 September 2010).

[9] C. Duo, L. Xue and C. Du-Wu. 2007. An Adaptive

Cluster Validity Index For The Fuzzy C-means.

IJCSNS International Journal of Computer Science and
Network Security, VOL.7 No.2, (February 2007).

[10] M. Nasri. 2004. Contribution à la classification des

données par approches evolutionnistes : simulation et

application aux images de textures. Thèse de Doctorat,

Université Mohammed premier, Faculté des sciences
Oujda, Maroc.

[11] M. S. Bouguelid. 2007. Contribution à l'application de

la reconnaissance des formes et la théorie des

possibilités au diagnostic adaptatif et prédictif des

systèmes dynamiques. Thése de doctorat, Université de
Reins Champagne- Ardenne.

[12] H. A. Boubacar. 2006. Classification dynamique de

données non-stationnaires apprentissage et suivi de

classes evolutives. Thése de doctorat, université des

sciences et technologies de lille.

[13] O. Aya, M. Saued-Mouchaweh et P. Billaudel. 2010.

Sélection dynamique des classifieurs pour

l’amélioration du taux de classification dans les zones

d’ambiguïtés ’’. 6éme conférences internationale

Francophone d'Automatique (CIFA 2010).

