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ABSTRACT 
 The use of the Internet for various purposes leads to collection 

of large volume of data. The knowledge contents of large data 

can be utilized to improve decision-making process of an 

organization. The knowledge discovery on this high volume 

data becomes very slow, as it has to be done serially on 

currently available terabyte plus data sets. In some cases, 

mining of large data set may become impossible due to 

limitations of processor and memory. The proposed algorithm is 

based on Tim Oates and Davis Jensen’s [1] findings which state 

that increasing size of training data does not considerably 

increase classification accuracy of a classifier. The proposed 

algorithm also follows survival of the fittest principal used in 

genetic algorithm. The solution provides partitioning algorithm 

wherein decision trees can be learned on partitioned data that 

are disjoint subsets of a complete data set. These learned 

decision trees have comparable accuracies with each other and 

that is equivalent to the tree learned on complete data set. The 

algorithm finds a single tree with highest accuracy amongst the 

learned decision trees. The selected decision tree is used for 

classification of unseen data. The results on 12 benchmark data 

sets from UCI data repository indicate that the final learned 

decision tree have equal accuracy and in many cases, significant 

improvement in classification accuracy is observed, 

improvement in classification performance as compared to 

decision trees learned on the entire data set. An experiment on 

big data set Census-income (KDD) also supports the claim. The 

most important aspect of this approach is that it is very simple 

as compared to other methods with enhanced classification 

performance. 

 

Key Words: - Data partitioning, decision tree, survival of 

fittest. 

 

1. INTRODUCTION 
The volume of data in databases is growing to quite large sizes, 

both in the number of attributes and instances. Data mining 

provides tools for discovery of relationships, patterns, and 

knowledge in databases.  Organizations use these databases to 

inference rules to boost their businesses. Data mining on a very 

large set of records from a database is quite complex task. The 

number of data records may overload a computer systems 

memory and processor making the learning process very slow. 

Data sets used for inference may be very large, may be up to 

terabytes. The solution to handle the large training data set is 

the divide and conquers technique. The proposed technique 

partitions given data set horizontally into number of non-

overlapping subsets, trains classifiers on data and uses, the 

fittest solution amongst them for data mining task.  

There are several proposed classification models over the years 

like neural networks, decision trees and genetic algorithms [2]-

[4]. Among these models, decision trees are predominantly 

suited for data mining [5] as they are based on simple, 

powerful, analytical and expressive learning paradigm. The 

visual presentation makes the decision tree easy to understand 

and a decision tree represents learned functions or a set of if-

then rules to improve readability. Decision tree learning 

methods are fast and accurate and are robust to errors. As a 

result, the decision tree has become a very popular data mining 

technique and hence here we have used decision trees for 

experimentation.  

1.1 Decision tree learning  
Decision tree algorithms build trees by recursively partitioning 

training set. A training set consists of set of attributes and a 

class label. An attribute can have real, Boolean or ordinal 

values. A decision node states a test to be carried on a particular 

attribute value of an instance. A branch is present for each 

probable output of the test. Thus, a tree is traversed from the 

root to a leaf of the decision tree to identify the class of the 

instance. The specified class at the leaf is the classification by 

the decision tree [6], [7]. The generalized decision tree 

algorithm is explained here. 

The tree construction algorithms use a divide and conquer 

approach to construct a decision tree. It evolves a decision tree 

for a given training set T consisting of set of training instances. 

An instance denotes values for a set of attributes and a class. 

Let the classes be denoted by the set of classes {C1, C2, …, Cn}.  

The algorithm works as follows, initially the class frequency is 

computed for instances in training set T. If all instances belong 

to same class, node K with that class is constructed. However, if 

set T contains instances belonging to more than one class, the 

test for selecting attribute for splitting is executed and the 

attribute satisfying splitting criteria is chosen for the test at the 

node. The training set T is then partitioned into k exclusive 

subsets are T1, T2, …, Tk on the basis of this test and the 

algorithm is recursively applied on each nonempty partition. 

The algorithm for construction of a decision tree is given below.  

Construct (T)  

      1. Calculate freq (Ci, T). 

      2. If (all instances belong to same class). 

          Return leaf. 

      3. For every attribute A test for splitting      

          criteria.  

          Attribute satisfying test is test node K. 

      4. Recur Construct (Ti) on each partition Ti. 

          Add those nodes as children of node K. 

      5. Stop. 

 

The C4.5 algorithm uses information gain whereas CART [8] 

uses gini index as splitting criteria.  
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A decision trees is called optimal if it correctly classifies the 

data set and has minimal number of nodes. The decision tree 

algorithms use local greedy search method by means of 

information gain as target function to split the data set. 

Construction of optimal decision tree is identified as NP-

Complete problem [9] and hence suggests use of powerful 

search and optimization technique like genetic algorithms. The 

genetic algorithm is used to handle combinatorial optimization 

problems. It has several advantages. It works sound for global 

optimization problems with the discontinuous objective 

function or with several local minima. It can work without 

using auxiliary information such as gradients. Different authors 

have proposed use of methodologies that integrate genetic 

algorithms and decision tree learning in order to evolve optimal 

decision trees. Although the methods are different the goal is to 

obtain optimal decision trees.  

A. Papagelis and D. Kalles [10] proposed GATree, an algorithm 

for genetically evolving decision trees. The genetic algorithms 

use binary string as initial populations but GATree uses binary 

decision trees as initial populations. A binary decision tree that 

includes one decision node with two different leaves. Initially to 

construct such initial trees, a random attribute is selected. If that 

attribute is nominal valued one of its possible values is 

randomly selected and in case of continuous attributes, an 

integer value from its minimum to maximum range is randomly 

selected. Thus, the size of the search space is reduced. Two 

arbitrary nodes from population of sub-trees are selected and 

nodes of those sub-trees are swapped to perform crossover 

operation. In view of the fact that a predicted class value 

depends just on leaves, the crossover operator does not affect 

the decision trees consistency. An arbitrary node of a preferred 

tree is selected and it substitutes the node’s test-value with a 

new arbitrary chosen value to perform mutation. In case if the 

arbitrary node is a leaf, it substitutes the installed class with a 

new arbitrary chosen class. Validation is performed after 

crossover and mutation to get final decision tree. The fitness 

function for evaluation is percentage of correctly classified 

instances on the test data set by the decision tree. 

The paper is organized as follows. Next section describes 

related work on handling large data sets in brief. Section 3 

presents proposed algorithm. In Section 4 and 5 experimental 

method and results are presented and finally in Section 6 we 

summarize our findings. 

2. RELATED WORK  
The work on handling large data set is done by several 

researchers. Tim Oates and David Jensen [1], [11] proved that 

increasing size of training data does not considerably increase 

classification accuracy of a classifier. It has been found that as 

numbers of training instances are increased the complexity of 

the classifier also increases without significant increase in 

classification performance The hypothesis constructed with 

large number of training instances of data are often 

unnecessarily complex and bulky as contrary to the assurance of 

better parameter estimation provided by large data sets. The 

authors proposed to build classifiers on data samples.  

Hall et al. [12] presented combining decision trees learned in 

parallel. The proposed algorithm builds decision trees with n 

disjoint data subsets of a complete data set in parallel, 

constructs rule set and after that combines them into a single 

rule set. The experiments on two data sets illustrate that there is 

enhancement in quantity of rules generated by decision tree. 

Data partitioning is used to partition data files, the reasons are; 

the files are too big for single disk or because file access rate 

cannot be supported by a single disk. Round robin partitioning, 

Range partitioning and Hash partitioning are the some of 

available horizontal data partitioning techniques [13]. Round 

robin is simplest partitioning strategy that divides instances in 

data partitions in round robin manner. 

Hash partitioning technique selects one or more attributes from 

data set as partitioning attribute and hashing function is applied 

on them. The function specifies the placement of the data 

instance in particular partition. Hash function has a range 0 to 

n-1. If hash function returns i, the data instance is placed in ith 

partition. The applications that need barely sequential and 

associative access to the data are appropriate applications for 

hash partitioning. 

Range partitioning clubs together data instances with similar 

data values. The example is, country = India and salary > 50K. 

Range partitioning suffers from problem of data skew. Hashing 

and Round robin are less vulnerable to the skew problems. The 

Round robin partitioning method is most suitable method 

proposed algorithm, as it does not suffer from data skew. 

 

 
Fig. 1 Proposed data mining algorithm for three data 

partitions 

 

3. CONSTRUCTION OF DECISION 

TREES ON PARTITIONED DATA 
Let Tf  be a full training set containing n training instances. 

When data set Tf is partitioned, let      {T1, …, Tn } be set of 

instances. Let |T| be a cardinality of the training data set. Let the 

data set be partitioned in n subsets of data where  

 

T = T1   T2  …  Tn    and  

|Tf | = |T1 | + |T2 |… + | Tn|. 

 

Let the decision tree hypothesis build on Tf be Hf and the 

hypothesis built on subset Ti be Hi and the classification 

accuracy on Hf   be X(Tf) and  on Hi be X(Ti). 

 

In the proposed approach, the algorithm horizontally partitions 

a large data set into n disjoint sub-sets using round robin 

method. Round robin partition minimizes the data skew. The 

training data can be partitioned in several partitions and each 

partitioned fragment is used to train the decision tree. A 

decision tree is learned on each of n partitions. The decision 
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trees are trained on the each partition of data by the various 

decision tree learning algorithms like J48, CART, GATree etc. 

Applying principal of survival of fittest, the decision tree with 

highest classification accuracy is selected for classification. The 

objective is to have a single decision tree after learning is done 

on n disjoint sub-sets of data. The selection algorithm selects 

suitable decision tree having highest classification accuracy of 

decision tree as a function to select decision trees for 

classification. The resulting hypothesis can be used to classify 

unseen examples.  

 

The proposed partitioning based optimistic data mining 

algorithm illustrated in Fig. 1.  

 

3.1 Optimistic data mining Algorithm 

Optimistic data mining algorithm considers that nothing will go 

wrong and unseen instances will be classified with selected 

fittest classifier.  

1. Partition the data horizontally using round robin 

partitioning. 

2. Each partition is trained with data mining algorithm. 

3. Use classification accuracy as a fitness function to 

select fittest decision trees for classification.  

4. The fittest system can be used to classify unseen 

examples. 

5. Calculate classification accuracy for unseen data on 

the same.  

4. EXPERIMENTAL METHOD   
Experiments were performed on 12 data sets from UCI, 

repository [14]. In test method, the first step is data partitioning. 

The data-partitioning tool partitions data  into equal non-

overlapping n sub-sets using round robin partitioning method. 

The experiments were performed to obtain tree classification 

accuracy of the trees on three disjoints subsets of data. We have 

used three decision tree classifiers namely, GATree [9], J48 and 

CART [15]. The classification accuracy was obtained using five 

fold cross validation method. Experiments were also performed 

with complete non-partitioned data set Tf to calculate 5 fold 

cross-validated classification accuracy. The default parameter 

settings were used for J48. In case of GATree, the parameters 

were set as follows: crossover rate = 0.99, mutation rate = 0.01, 

stopping criterion = 100 generations. 

 
Table1. Accuracy on GATree 

Data set X(Tf) X(T1) X(T2) X(T3) 

Australian 85.36 86.52 85.22 82.61 

Breast-w 95.80 92.17 96.53 97.40 

Credit 85.21 82.61 86.52 85.78 

Diabetes 73.73 73.73 73.51 73.73 

Heart 75.56 76.66 75.56 81.11 

Kr-Vs- Kp 92.51 90.58 91.46 87.04 

Lymph 77.24 68.00 66.66 77.55 

Monks 42.50 65 57.5 75.00 

Mushroom 95.82 97.19 82.51 89.13 

Vote 95.63 93.80 96.56 93.10 

Waveform 65.32 63.60 66.55 65.28 

WDBC 90.97 92.11 87.37 90.27 

 

Table 2. Accuracy on Census-income (KDD) data 

Accuracy Classifier 

GATree J48 

X(Tf) 93.70 95.39 

X(T1) 94.08 95.35  

X(T2) 94.16 95.35 

X(T3) 94.20 95.31 

 

 

 

 

 

Table 3. Comparison accuracy 

Sr. No. Data set 

 

GATree J48 CART 

Xf XO X Xf XO X Xf XO X 

1 Australian 85.36 86.52 1.16 85.51 85.22 -0.29 84.35 86.09 1.74 

2 Breast-w 95.80 97.40 1.60 95.28 96.57 1.29 94.42 97.42 3.00 

3 Credit 85.21 86.52 1.31 85.94 87.34 1.40 85.07 85.59 0.52 

4 Diabetes 73.73 73.73 0.00 74.09 77.73 3.64 73.56 73.44 -0.12 

5 Heart 75.56 81.11 5.55 77.78 76.49 -1.29 77.41 83.33 5.92 

6 Kr-Vs-Kp 92.51 91.46 -1.05 99.53 98.50 -1.03 99.34 98.22 -1.12 

7 Lymph 77.24 77.55 0.31 77.03 80.00 2.97 79.73 78.90 -0.83 

8 Monks 42.50 75.00 32.50 44.35 75.61 31.26 53.22 75.61 22.39 

9 Mushroom 95.82 97.19 1.37 100.00 100.00 0.00 99.94 99.78 -0.16 

10 Vote 95.63 96.56 0.93 96.78 95.86 -0.92 95.63 97.24 1.61 

11 Waveform 65.32 66.55 1.23 75.52 75.99 0.47 76.82 76.81 -0.01 

12 WDBC 90.97 92.11 1.14 93.85 99.47 5.62 92.79 93.12 0.33 

 Average 81.30 85.14 3.84 83.81 87.40 3.59 84.36 87.13 2.77 

 

 

Table 4. Comparison accuracy on census-income (KDD) data 

Sr. No. GATree J48 

Xf XO X Xf XO X 

1 93.70 93.91 0.21 95.39 95.35 -0.04 
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Fig. 2 Comparison accuracy GATree 
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Fig. 3 Comparison accuracy J48 WEKA 
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Fig. 4 Comparison accuracy CART WEKA 

5. RESULTS 
Table 1 presents classification accuracy of decision trees 

obtained on partitioned data and on complete data set using 

classifier GATree. The decision trees learned on partitioned 

data are as accurate as on the complete data set. Using these 

results, we can select the most accurate classifier for each data 

set. For example, for Australian data set, decision tree 

obtained on partition 1 is selected as it provides higher 

accuracy (i.e. 86.52%). Similar results were obtained using 

two other decision tree algorithms namely J48 and CART. 

Tables 3 and 4 presents summary of results where Xf is 

accuracy with complete data set Tf, Xo is accuracy with 

optimistic data mining algorithm and X is improvement in 

accuracy Xo with respect to Xf. 

In Table 3 the average accuracy obtained by proposed 

algorithm, using GATree it is 85.14% as compared to average 

accuracy of 81.30% on complete data set by conventional 

method. Similarly, tests on J48 provide average accuracy of 
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87.40% as compared to 83.81% using complete data set and 

tests on CART provide average accuracy 87.13 % as 

compared 84.36%. Thus the average improvements in 

accuracy are 3.84%, 3.59% and 2.77% on GATree, J48 and 

CART respectively. 

The maximum improvement in accuracy is obtained in case of 

Monks- problem data set, the improvement in accuracies are 

32.5%, 31.26% and 22.39% on GATree, J48 and CART 

respectively. However, in some data sets (Heart-Statlog data 

set and Kr-Vs-Kp data set) there is slight loss of accuracy of 

around 1%. 

The validation of proposed method for large set  is done with 

Census–income data set having 299285 instances.  

The results are presented in Table 2 and 4. The classification 

accuracy on both the classifiers is equivalent and slight 

enhancement is observed in case of GATree classifier, 

whereas we could not get results on CART due to memory 

limitation. Despite of 3.5 GB JM memory provided to CART, 

it displayed out of memory error. 

6. CONCLUSIONS 
The proposed algorithm enables handling of large data set by 

overcoming limitations of memory and processor capacity. 

The classification performance of proposed method is 

equivalent to the performance on complete data set. 

Horizontal decomposing the data sets into, disjoint subsets 

avoids the problem of running out of memory particularly 

with large data set. The data sets can be partitioned into a size 

that can be efficiently managed on available memory and 

processor. It is expected that classification accuracy on 

complete data set should be higher than that obtained on 

partioned data set; contrary to it the proposed method presents 

enhanced classification performance in several cases. The 

enhancement in classification of performance is probably due 

to reduction in outliers in data sets because of data 

partitioning. The algorithm is very simple to implement and is 

better than the previous approaches proposed to handle large 

data sets [1], [12]. 
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