
International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

29

An Optimistic Data Mining Approach for Handling Large
Data Set using Data Partitioning Techniques

Dipak V. Patil

Department of Computer Engineering
Sandip Institute of Technology and Research

Centre, Nasik, M.S., India.

R. S. Bichkar
Department of Computer Engineering

G.H. Raisoni College of Engineering and
Management, Pune, M.S., India.

ABSTRACT
 The use of the Internet for various purposes leads to collection

of large volume of data. The knowledge contents of large data

can be utilized to improve decision-making process of an

organization. The knowledge discovery on this high volume

data becomes very slow, as it has to be done serially on

currently available terabyte plus data sets. In some cases,

mining of large data set may become impossible due to

limitations of processor and memory. The proposed algorithm is

based on Tim Oates and Davis Jensen’s [1] findings which state

that increasing size of training data does not considerably

increase classification accuracy of a classifier. The proposed

algorithm also follows survival of the fittest principal used in

genetic algorithm. The solution provides partitioning algorithm

wherein decision trees can be learned on partitioned data that

are disjoint subsets of a complete data set. These learned

decision trees have comparable accuracies with each other and

that is equivalent to the tree learned on complete data set. The

algorithm finds a single tree with highest accuracy amongst the

learned decision trees. The selected decision tree is used for

classification of unseen data. The results on 12 benchmark data

sets from UCI data repository indicate that the final learned

decision tree have equal accuracy and in many cases, significant

improvement in classification accuracy is observed,

improvement in classification performance as compared to

decision trees learned on the entire data set. An experiment on

big data set Census-income (KDD) also supports the claim. The

most important aspect of this approach is that it is very simple

as compared to other methods with enhanced classification

performance.

Key Words: - Data partitioning, decision tree, survival of

fittest.

1. INTRODUCTION
The volume of data in databases is growing to quite large sizes,

both in the number of attributes and instances. Data mining

provides tools for discovery of relationships, patterns, and

knowledge in databases. Organizations use these databases to

inference rules to boost their businesses. Data mining on a very

large set of records from a database is quite complex task. The

number of data records may overload a computer systems

memory and processor making the learning process very slow.

Data sets used for inference may be very large, may be up to

terabytes. The solution to handle the large training data set is

the divide and conquers technique. The proposed technique

partitions given data set horizontally into number of non-

overlapping subsets, trains classifiers on data and uses, the

fittest solution amongst them for data mining task.

There are several proposed classification models over the years

like neural networks, decision trees and genetic algorithms [2]-

[4]. Among these models, decision trees are predominantly

suited for data mining [5] as they are based on simple,

powerful, analytical and expressive learning paradigm. The

visual presentation makes the decision tree easy to understand

and a decision tree represents learned functions or a set of if-

then rules to improve readability. Decision tree learning

methods are fast and accurate and are robust to errors. As a

result, the decision tree has become a very popular data mining

technique and hence here we have used decision trees for

experimentation.

1.1 Decision tree learning
Decision tree algorithms build trees by recursively partitioning

training set. A training set consists of set of attributes and a

class label. An attribute can have real, Boolean or ordinal

values. A decision node states a test to be carried on a particular

attribute value of an instance. A branch is present for each

probable output of the test. Thus, a tree is traversed from the

root to a leaf of the decision tree to identify the class of the

instance. The specified class at the leaf is the classification by

the decision tree [6], [7]. The generalized decision tree

algorithm is explained here.

The tree construction algorithms use a divide and conquer

approach to construct a decision tree. It evolves a decision tree

for a given training set T consisting of set of training instances.

An instance denotes values for a set of attributes and a class.

Let the classes be denoted by the set of classes {C1, C2, …, Cn}.

The algorithm works as follows, initially the class frequency is

computed for instances in training set T. If all instances belong

to same class, node K with that class is constructed. However, if

set T contains instances belonging to more than one class, the

test for selecting attribute for splitting is executed and the

attribute satisfying splitting criteria is chosen for the test at the

node. The training set T is then partitioned into k exclusive

subsets are T1, T2, …, Tk on the basis of this test and the

algorithm is recursively applied on each nonempty partition.

The algorithm for construction of a decision tree is given below.

Construct (T)

 1. Calculate freq (Ci, T).

 2. If (all instances belong to same class).

 Return leaf.

 3. For every attribute A test for splitting

 criteria.

 Attribute satisfying test is test node K.

 4. Recur Construct (Ti) on each partition Ti.

 Add those nodes as children of node K.

 5. Stop.

The C4.5 algorithm uses information gain whereas CART [8]

uses gini index as splitting criteria.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

30

A decision trees is called optimal if it correctly classifies the

data set and has minimal number of nodes. The decision tree

algorithms use local greedy search method by means of

information gain as target function to split the data set.

Construction of optimal decision tree is identified as NP-

Complete problem [9] and hence suggests use of powerful

search and optimization technique like genetic algorithms. The

genetic algorithm is used to handle combinatorial optimization

problems. It has several advantages. It works sound for global

optimization problems with the discontinuous objective

function or with several local minima. It can work without

using auxiliary information such as gradients. Different authors

have proposed use of methodologies that integrate genetic

algorithms and decision tree learning in order to evolve optimal

decision trees. Although the methods are different the goal is to

obtain optimal decision trees.

A. Papagelis and D. Kalles [10] proposed GATree, an algorithm

for genetically evolving decision trees. The genetic algorithms

use binary string as initial populations but GATree uses binary

decision trees as initial populations. A binary decision tree that

includes one decision node with two different leaves. Initially to

construct such initial trees, a random attribute is selected. If that

attribute is nominal valued one of its possible values is

randomly selected and in case of continuous attributes, an

integer value from its minimum to maximum range is randomly

selected. Thus, the size of the search space is reduced. Two

arbitrary nodes from population of sub-trees are selected and

nodes of those sub-trees are swapped to perform crossover

operation. In view of the fact that a predicted class value

depends just on leaves, the crossover operator does not affect

the decision trees consistency. An arbitrary node of a preferred

tree is selected and it substitutes the node’s test-value with a

new arbitrary chosen value to perform mutation. In case if the

arbitrary node is a leaf, it substitutes the installed class with a

new arbitrary chosen class. Validation is performed after

crossover and mutation to get final decision tree. The fitness

function for evaluation is percentage of correctly classified

instances on the test data set by the decision tree.

The paper is organized as follows. Next section describes

related work on handling large data sets in brief. Section 3

presents proposed algorithm. In Section 4 and 5 experimental

method and results are presented and finally in Section 6 we

summarize our findings.

2. RELATED WORK
The work on handling large data set is done by several

researchers. Tim Oates and David Jensen [1], [11] proved that

increasing size of training data does not considerably increase

classification accuracy of a classifier. It has been found that as

numbers of training instances are increased the complexity of

the classifier also increases without significant increase in

classification performance The hypothesis constructed with

large number of training instances of data are often

unnecessarily complex and bulky as contrary to the assurance of

better parameter estimation provided by large data sets. The

authors proposed to build classifiers on data samples.

Hall et al. [12] presented combining decision trees learned in

parallel. The proposed algorithm builds decision trees with n

disjoint data subsets of a complete data set in parallel,

constructs rule set and after that combines them into a single

rule set. The experiments on two data sets illustrate that there is

enhancement in quantity of rules generated by decision tree.

Data partitioning is used to partition data files, the reasons are;

the files are too big for single disk or because file access rate

cannot be supported by a single disk. Round robin partitioning,

Range partitioning and Hash partitioning are the some of

available horizontal data partitioning techniques [13]. Round

robin is simplest partitioning strategy that divides instances in

data partitions in round robin manner.

Hash partitioning technique selects one or more attributes from

data set as partitioning attribute and hashing function is applied

on them. The function specifies the placement of the data

instance in particular partition. Hash function has a range 0 to

n-1. If hash function returns i, the data instance is placed in ith

partition. The applications that need barely sequential and

associative access to the data are appropriate applications for

hash partitioning.

Range partitioning clubs together data instances with similar

data values. The example is, country = India and salary > 50K.

Range partitioning suffers from problem of data skew. Hashing

and Round robin are less vulnerable to the skew problems. The

Round robin partitioning method is most suitable method

proposed algorithm, as it does not suffer from data skew.

Fig. 1 Proposed data mining algorithm for three data

partitions

3. CONSTRUCTION OF DECISION

TREES ON PARTITIONED DATA
Let Tf be a full training set containing n training instances.

When data set Tf is partitioned, let {T1, …, Tn } be set of

instances. Let |T| be a cardinality of the training data set. Let the

data set be partitioned in n subsets of data where

T = T1 T2 … Tn and

|Tf | = |T1 | + |T2 |… + | Tn|.

Let the decision tree hypothesis build on Tf be Hf and the

hypothesis built on subset Ti be Hi and the classification

accuracy on Hf be X(Tf) and on Hi be X(Ti).

In the proposed approach, the algorithm horizontally partitions

a large data set into n disjoint sub-sets using round robin

method. Round robin partition minimizes the data skew. The

training data can be partitioned in several partitions and each

partitioned fragment is used to train the decision tree. A

decision tree is learned on each of n partitions. The decision

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

31

trees are trained on the each partition of data by the various

decision tree learning algorithms like J48, CART, GATree etc.

Applying principal of survival of fittest, the decision tree with

highest classification accuracy is selected for classification. The

objective is to have a single decision tree after learning is done

on n disjoint sub-sets of data. The selection algorithm selects

suitable decision tree having highest classification accuracy of

decision tree as a function to select decision trees for

classification. The resulting hypothesis can be used to classify

unseen examples.

The proposed partitioning based optimistic data mining

algorithm illustrated in Fig. 1.

3.1 Optimistic data mining Algorithm

Optimistic data mining algorithm considers that nothing will go

wrong and unseen instances will be classified with selected

fittest classifier.

1. Partition the data horizontally using round robin

partitioning.

2. Each partition is trained with data mining algorithm.

3. Use classification accuracy as a fitness function to

select fittest decision trees for classification.

4. The fittest system can be used to classify unseen

examples.

5. Calculate classification accuracy for unseen data on

the same.

4. EXPERIMENTAL METHOD
Experiments were performed on 12 data sets from UCI,

repository [14]. In test method, the first step is data partitioning.

The data-partitioning tool partitions data into equal non-

overlapping n sub-sets using round robin partitioning method.

The experiments were performed to obtain tree classification

accuracy of the trees on three disjoints subsets of data. We have

used three decision tree classifiers namely, GATree [9], J48 and

CART [15]. The classification accuracy was obtained using five

fold cross validation method. Experiments were also performed

with complete non-partitioned data set Tf to calculate 5 fold

cross-validated classification accuracy. The default parameter

settings were used for J48. In case of GATree, the parameters

were set as follows: crossover rate = 0.99, mutation rate = 0.01,

stopping criterion = 100 generations.

Table1. Accuracy on GATree

Data set X(Tf) X(T1) X(T2) X(T3)

Australian 85.36 86.52 85.22 82.61

Breast-w 95.80 92.17 96.53 97.40

Credit 85.21 82.61 86.52 85.78

Diabetes 73.73 73.73 73.51 73.73

Heart 75.56 76.66 75.56 81.11

Kr-Vs- Kp 92.51 90.58 91.46 87.04

Lymph 77.24 68.00 66.66 77.55

Monks 42.50 65 57.5 75.00

Mushroom 95.82 97.19 82.51 89.13

Vote 95.63 93.80 96.56 93.10

Waveform 65.32 63.60 66.55 65.28

WDBC 90.97 92.11 87.37 90.27

Table 2. Accuracy on Census-income (KDD) data

Accuracy Classifier

GATree J48

X(Tf) 93.70 95.39

X(T1) 94.08 95.35

X(T2) 94.16 95.35

X(T3) 94.20 95.31

Table 3. Comparison accuracy

Sr. No. Data set

GATree J48 CART

Xf XO X Xf XO X Xf XO X

1 Australian 85.36 86.52 1.16 85.51 85.22 -0.29 84.35 86.09 1.74

2 Breast-w 95.80 97.40 1.60 95.28 96.57 1.29 94.42 97.42 3.00

3 Credit 85.21 86.52 1.31 85.94 87.34 1.40 85.07 85.59 0.52

4 Diabetes 73.73 73.73 0.00 74.09 77.73 3.64 73.56 73.44 -0.12

5 Heart 75.56 81.11 5.55 77.78 76.49 -1.29 77.41 83.33 5.92

6 Kr-Vs-Kp 92.51 91.46 -1.05 99.53 98.50 -1.03 99.34 98.22 -1.12

7 Lymph 77.24 77.55 0.31 77.03 80.00 2.97 79.73 78.90 -0.83

8 Monks 42.50 75.00 32.50 44.35 75.61 31.26 53.22 75.61 22.39

9 Mushroom 95.82 97.19 1.37 100.00 100.00 0.00 99.94 99.78 -0.16

10 Vote 95.63 96.56 0.93 96.78 95.86 -0.92 95.63 97.24 1.61

11 Waveform 65.32 66.55 1.23 75.52 75.99 0.47 76.82 76.81 -0.01

12 WDBC 90.97 92.11 1.14 93.85 99.47 5.62 92.79 93.12 0.33

 Average 81.30 85.14 3.84 83.81 87.40 3.59 84.36 87.13 2.77

Table 4. Comparison accuracy on census-income (KDD) data

Sr. No. GATree J48

Xf XO X Xf XO X

1 93.70 93.91 0.21 95.39 95.35 -0.04

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

32

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

Data set

%
A

c
c
u

ra
c
y

Complete data set Partitioned data set

Fig. 2 Comparison accuracy GATree

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

Data set

%
A

c
c
u

ra
c
y

Complete data set Partitioned data set

Fig. 3 Comparison accuracy J48 WEKA

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

Data set

%
A

c
c
u

ra
c
y

Complete data set Partitioned data set

Fig. 4 Comparison accuracy CART WEKA

5. RESULTS
Table 1 presents classification accuracy of decision trees

obtained on partitioned data and on complete data set using

classifier GATree. The decision trees learned on partitioned

data are as accurate as on the complete data set. Using these

results, we can select the most accurate classifier for each data

set. For example, for Australian data set, decision tree

obtained on partition 1 is selected as it provides higher

accuracy (i.e. 86.52%). Similar results were obtained using

two other decision tree algorithms namely J48 and CART.

Tables 3 and 4 presents summary of results where Xf is

accuracy with complete data set Tf, Xo is accuracy with

optimistic data mining algorithm and X is improvement in

accuracy Xo with respect to Xf.

In Table 3 the average accuracy obtained by proposed

algorithm, using GATree it is 85.14% as compared to average

accuracy of 81.30% on complete data set by conventional

method. Similarly, tests on J48 provide average accuracy of

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

33

87.40% as compared to 83.81% using complete data set and

tests on CART provide average accuracy 87.13 % as

compared 84.36%. Thus the average improvements in

accuracy are 3.84%, 3.59% and 2.77% on GATree, J48 and

CART respectively.

The maximum improvement in accuracy is obtained in case of

Monks- problem data set, the improvement in accuracies are

32.5%, 31.26% and 22.39% on GATree, J48 and CART

respectively. However, in some data sets (Heart-Statlog data

set and Kr-Vs-Kp data set) there is slight loss of accuracy of

around 1%.

The validation of proposed method for large set is done with

Census–income data set having 299285 instances.

The results are presented in Table 2 and 4. The classification

accuracy on both the classifiers is equivalent and slight

enhancement is observed in case of GATree classifier,

whereas we could not get results on CART due to memory

limitation. Despite of 3.5 GB JM memory provided to CART,

it displayed out of memory error.

6. CONCLUSIONS
The proposed algorithm enables handling of large data set by

overcoming limitations of memory and processor capacity.

The classification performance of proposed method is

equivalent to the performance on complete data set.

Horizontal decomposing the data sets into, disjoint subsets

avoids the problem of running out of memory particularly

with large data set. The data sets can be partitioned into a size

that can be efficiently managed on available memory and

processor. It is expected that classification accuracy on

complete data set should be higher than that obtained on

partioned data set; contrary to it the proposed method presents

enhanced classification performance in several cases. The

enhancement in classification of performance is probably due

to reduction in outliers in data sets because of data

partitioning. The algorithm is very simple to implement and is

better than the previous approaches proposed to handle large

data sets [1], [12].

7. REFERENCES
[1] Tim Oates, David Jensen (1997). “The Effect of Training

Set Size On Decision Tree Complexity”, Proc. 14th

International Conference on Machine Learning.1997.pp.

254-262.

[2] Tim Mitchell, (1997). Machine Learning, The McGraw-

Hill Companies, Inc.

[3] S. Rajasekaran, G.A. Vijayalakshmi Pai (2004). Neural

Networks, Fuzzy Logic and Genetic Algorithms

Synthesis and Applications. Prentice-Hall of India.

[4] D. E. Goldberg, (1999). Genetic Algorithms in Search,

Optimization, and Machine Learning, Addison-Wesley.

[5] M. Mehta, R. Agrawal and J. Rissanen (1996). SLIQ: A

fast scalable classifier for data mining. Proc. of the Fifth

International Conference on Extending Database

Technology, Avignon, France. pp. 18-32.

[6] J. R. Quinlan, (1993). C4.5: Programming for Machine

Learning. San Francisco, CA: Morgan Kaufman.

[7] S. Ruggieri (2002). Efficient C4.5. IEEE Transaction On

Knowledge and Data Engineering, Vol. 14, No. 2, pp.

438-444.

[8] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.

Stone (1984). Classification and Regression Trees.

Wadsworth International Group, Belmont, CA.

[9] Murthy S. K (1998). Automatic construction of decision

trees from data: A multidisciplinary survey. Data Mining

and Knowledge Discovery, Vol. 2, No. 4, pp. 345-389.

[10] A. Papagelis and D. Kalles (2000). GATree: Genetically

evolved decision trees. Proc. 12th International

Conference On Tools With Artificial Intelligence, pp.

203-206.

[11] Tim Oates and David Jensen (1998). Large Datasets

Lead to Overly Complex Models: An Explanation and a

Solution., Proceedings of the Fourth International

Conference on Knowledge Discovery and Data Mining.

August 1998.

[12] L. O. Hall, N. Chawla and K. Bowyer (1998).

Combining decision trees learned in parallel. Distributed

Data Mining Workshop at International Conference of

Knowledge Discovery and Data Mining. pp. 77-83.

[13] Chhanda Ray (2009). Distributed database systems,

Pearson Education India pp. 26-29.

[14] Frank, A. and Asuncion, A. (2010). UCI Machine

Learning Repository Irvine, CA.

[http://archive.ics.uci.edu/ml]. University of California,

School of Information and Computer Science.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.

Reutemann, I. H. Witten (2009); The WEKA Data

Mining Software: An Update; SIGKDD Explorations,

Volume 11, Issue 1.

