
International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

12

Adaptive Intrusion Detection based on Boosting and
Naïve Bayesian Classifier

Dewan Md. Farid
Department of CSE

Jahangirnagar University
Dhaka-1342, Bangladesh

Mohammad Zahidur Rahman
Department of CSE

Jahangirnagar University
Dhaka-1342, Bangladesh

Chowdhury Mofizur Rahman
Department of CSE

United International University
Dhaka-1209, Bangladesh

ABSTRACT
In this paper, we introduce a new learning algorithm for

adaptive intrusion detection using boosting and naïve Bayesian

classifier, which considers a series of classifiers and combines

the votes of each individual classifier for classifying an

unknown or known example. The proposed algorithm generates

the probability set for each round using naïve Bayesian classifier

and updates the weights of training examples based on the

misclassification error rate that produced by the training

examples in each round. This algorithm addresses the problem

of classifying the large intrusion detection dataset, which

improves the detection rates (DR) and reduces the false positives

(FP) at acceptable level in intrusion detection. We tested the

performance of the proposed algorithm with existing data

mining algorithms by employing on the KDD99 benchmark

intrusion detection dataset, and the experimental results proved

that the proposed algorithm achieved high detection rates and

significantly reduced the number of false positives for different

types of network intrusions.

Keywords
Boosting, Naïve Bayesian Classifier, Intrusion Detection,

Detection Rate, False Positive.

1. INTRODUCTION
Due to the large volumes of intrusion detection dataset, the

intelligent computing society has been applied many data

mining algorithms for detecting intrusions in the last decades

[1]-[3]. Today’s real-world intrusion detection datasets are

complex, dynamic, and composed of many different attributes,

which are highly susceptible to noise, missing and inconsistent

data due to their typically huge size. The task of data mining and

knowledge discovery from data (KDD) based intrusion detection

systems (IDS) is to find the interesting hidden intrusion patterns

in large intrusion detection dataset and realizing the performance

optimization of detection rules. Intrusion detection system (IDS)

is the combination of both hardware and software that is used to

detect intrusions or attacks in computer system or network, and

then notifies intrusion prevention system (IPS) or network

security administrator about the intrusions. However, currently

available commercial IDS are misuse based, which can only

detect known intrusions with very low false positives that are

already stored in the dataset, but now-a-days intruders are very

intelligent and they frequently change the intrusion patterns to

attack into the network. Intruders are classified into two

categories like inside and outside intruders. Inside intruders are

the valid user of the network and have some authority, but seek

to gain additional ability to take actions without legitimate

authorization. On the other side, outside intruders do not have

any authorized access to the network that they attack. Ideally,

IDS should have an attack detection rate of 100% along with

false positive rate 0%, which is really very hard to achieve.

Today, data mining have become an indispensable tools for

analyzing the large volumes of intrusion detection data to detect

intrusions by finding the hidden intrusion patterns from the

dataset [4]-[7]. The naïve Bayesian (NB) classifier is an efficient

and well known technique for performing classification task in

data mining, which is widely applied in many real world

applications including intrusion detection problem [8]-[16]. The

NB classifier provides an optimal way to predict the class of an

unknown example whose attribute values are known, but class

value is unknown by calculating prior and conditional

probabilities from the training dataset. Boosting is the process of

combining many classifiers to generate a single strong classifier

with very low error. In this paper, we present a new learning

algorithm based on boosting, and naïve Bayesian classifier for

adaptive intrusion detection. The proposed algorithm first

initializes the weight of training examples to 1/n, where n is the

total number of examples in training dataset, and then creates a

new dataset from training dataset using selection with

replacement technique. After that it calculates the prior and

conditional probabilities of new dataset, and classifies the

training examples with these probabilities value. The weights of

the training examples updated according to how they were

classified. If a training example is misclassified then its weight

is increased, or if correctly classified then its weight is

decreased. Then the algorithm creates another new data set with

the misclassification error produced by each training example

from training dataset, and continues the process until all the

training examples are correctly classified. To classify a new

example use all the probabilities in each round (each round is

considered as a classifier) and consider the class of new example

with highest classifier's vote. The proposed algorithm has been

successfully tested on the KDD99 benchmark network intrusion

detection dataset from UCI machine learning repository, which

achieved high detection rates with very low false positives.

The remainder of this paper is organized as follows. In Section

2, we describe the data mining for intrusion detection overview,

and related works. In Section 3, we present the boosting, naïve

Bayesian classifier, and the proposed learning algorithm. In

Section 4, we apply the proposed algorithm to the area of

intrusion detection using KDD99 benchmark network intrusion

detection dataset, and compare the results with other related

algorithms. Finally, Section 5 contains the conclusions with

future works.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

13

2. INTRUSION DETECTION
An intrusion can be defined as any set of actions that threaten

the integrity, confidentiality, or availability of computational

resources of a computer system or network. Intrusion detection

have become a critical component of network administration as

the extensive growth of the Internet and the tools for intruding

and attacking networks are available now-a-days. An intrusion

detection system (IDS) for a large complex network can

typically generate thousands or millions of alarms per day,

representing an overwhelming task for the security analysis.

2.1 Host vs. Network IDS
Initially IDS was developed for host-based computer systems.

The host-based IDS (HIDS) are located in the server computers

and examine the internal interfaces [17]. It detects intrusions by

analyzing application logs, system calls, file-system

modifications, and other host activities that related to the server

computers. Context Sensitive String Evaluation (CSSE) is one

of the Host-based IDS for detecting intrusions in applications

with extremely low false-positives [18]. CSSE uses an

instrumented execution environment (such as PHP or Java

Virtual Machine) and therefore has access to all necessary

contexts required to detect and more importantly prevent

attacks. The context is provided by the metadata, which

describes the fragments of the output expression that requires

checking and examining the intercepted call to the API function.

CSSE uses contextual information to check the unsafe fragments

for syntactic content. Depending on the mode of CSSE it can

raise an alert and prevent the execution of the dangerous content

(both intrusion detection and prevention). Currently CSSE is

available as research-prototype IDS for the PHP platform [19],

[20].

With the popularization of computer networks the idea of IDS

gradually shifted toward the network-based IDS. It monitors and

analyzes network packets to detect intrusions in the network

[21]. Snort is an open source network intrusion detection and

prevention system (NIDPS) capable of performing packet

logging and real-time traffic analysis of IP networks. Snort was

written by Martin Roesch and is now developed by Sourcefire

[22], [23]. Snort performs protocol analysis, content

searching/matching, and is commonly used to actively block a

variety of attacks. Most of the current attacks happen at higher

layers: transport (TCP/UDP) or application (HTTP, RPC) layers

and Snort uses so-called preprocessors which perform stream

reassembly and normalization of higher-level protocols. To

detect an attack targeting a web server the preprocessors

normalize the IP-level traffic, TCP state machine emulation and

stream reassembly, HTTP-level normalization, defragmentation,

and Unicode decoding.

2.2 Misuse vs. Anomaly IDS
Intrusion detection model is broadly classified into two

categories: misuse-based and anomaly-based intrusion detection

model.

Misuse-based IDS are also known as signature-based or pattern-

based IDS, which detect known intrusions based on the attacks

that stored in database with very low false positives. It performs

pattern matching of incoming packets and/or command

sequences to the signatures of known attacks. The detection rate

of misuse-based IDS is relatively low, because the attacker

always tries to modify the basic attack signature in such a way

that will not match the attack signature, which is already

installed in the database. It can protect the computer

system/network immediately upon installation, but it requires

frequently signature updates to keep the signature database up-

to-date. Misuse-based IDS use various techniques including

rule-based expert systems, model-based reasoning systems, state

transition analysis, genetic algorithms, and fuzzy logic.

Anomaly-based IDS can detect known or unknown intrusions by

detecting deviations from normal behaviors. It creates a profile

from normal behaviors and then any activities that deviated from

this profile are treated as a possible intrusion. Many data mining

algorithms already been used for anomaly detection such as

decision tree (DT), naïve Bayesian (NB), neural networks (NN),

support vector machines (SVM), and Principal Components

Analysis (PCA) etc. The major drawback of anomaly-based IDS

is to provide a large number of false positives.

2.3 Related Work
Intrusion detection was first introduced by James P. Anderson in

1980 by introducing a threat classification model that develops a

security monitoring surveillance system based on detecting

anomalies in user behaviors [24]. Later in 1987, Dr. Denning

proposed several models for IDS based on statistics, Markov

chains, time-series, etc [25]. In 1988, a statistical anomaly-based

IDS was proposed by Haystack [26], which used both user and

group-based anomaly detection strategies. In 2005, Fan et al.

proposed a method that injects artificial anomaly data into the

training data to detect known and unknown intrusions, which

help a baseline classifier to distinguish between normal and

anomalous data [27]. In 2006, Bouzida et al. applied decision

tree (DT) for anomaly-based intrusion detection, which assigns a

default class to the test instance that is not covered by the tree

and then the default class are examined for unknown attack

analysis [28]. In 2004, Peddabachigari et al. [29] applied

decision tree (DT) and support vector machine (SVM) for

intrusion detection, which proved that DT is better than SVM in

terms of overall accuracy. Particularly, DT much better in

detecting user to root (U2R) and remote to local (R2L) network

attacks, compared to SVM. In 2001, Barbara et al. [30] proposed

a method for detecting new attacks and reducing false positives,

which estimates the probability using Bayes estimators to

enhance the ability of ADAM based IDS [31]. In 2004, Amor et

al. performed an experimental analysis to compare the

performance between NB classifier and DT classifier by

employing KDD99 dataset, and the result proved that NB

classifier is 7 times faster than DT with respect to running time,

and DT outperforms in classifying normal, denial of service

(DoS), and remote to local (R2L) attacks, whereas NB classifier

is superior in classifying Probing and user to root (U2R) attacks

[32]. In 2007, Panda and Patra [33] proposed a method using

naïve Bayes to detect signatures of specific attacks. They used

KDD99 dataset for experiment, and the authors give a

conclusion that NB classifier performs back propagation neural

network classifier in terms of detection rates and false positives.

It is also reported that NB classifier produces a relatively high

false positive. Later in 2009, the same authors Panda and Patra

[34] compares NB classifier with 5 other similar classifiers, i.e.,

JRip, Ridor, NNge, Decision Table, and Hybrid Decision Table,

and experimental results shows that the NB classifier is better

than other classifiers.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

14

2.4 Data Mining for Intrusion Detection
As current intrusion detection systems (IDS) have many

limitations, the data mining for intrusion detection open a new

research area in intelligent computing. Data mining algorithms

can be used for misuse detection and anomaly detection. In

misuse detection, the training data are labeled as either “normal”

or “intrusion,” and then a classifier detect the known intrusions.

Anomaly detection builds models of normal behavior and

automatically detects significant deviations from it. Fig 1 shows

the architecture of data mining based IDS.

 F i g 1 : A r c h i t e c t u r e o f D a t a M i n i n g b a s e d I D S .

Data mining based IDS collects audit data or network logs from

computer system or network, and then applies intelligent

methods to extract hidden intrusion patterns from the data. It

first collects the audit data from the network using multiple

sensors, and stores the audit data for future reference. Training

and testing datasets are generated from the collected audit data.

Data processing and cleaning is the process of removing noise

and inconsistent data from dataset and formatted the dataset that

is suitable for mining. Intrusion detecting dataset may contain

hundreds of input attributes, and many of which may be

irrelevant to the mining task or redundant, because the

information they added is contained in other attribute. Input

attribute selection reduces the dataset size by removing

irrelevant or redundant attributes. The use of all attributes may

simply increase the overall complexity of detection model,

increase computational time, and decrease the detection

accuracy of the intrusion detection algorithms. It has been tested

that effective attributes selection improves the detection rates for

different types of network intrusions in intrusion detection. After

attribute selection the data mining algorithm is trained by the

examples from the training dataset and then classifies the

examples of testing dataset. When the rules are generated then

the model classifies the real time network data and notifies

intrusion prevention system (IPS) or security administrator

about the intrusions in the network. IPS or security administrator

carries out the prescriptions controlled by the IDS.

3. LEARNING ALGORITHMS

3.1 Boosting
Boosting is an iterative process, which adaptively changes the

distribution of training examples so that the base classifiers will

focus on examples that are hard to classify. The concept of

adaptive boosting called AdaBoost algorithm was first

introduced by Freund and Schapire in 1997 [35] that classify an

example by voting the weighted predictions of a set of base

classifiers, which are generated in a series of rounds. The major

drawback of boosting is overfitting; that is, with many rounds of

boosting, the test error increase as the final classifier becomes

overly complex. Boosting have become one of the alternative

framework for classifier design, together with the more

established classifiers, like Bayesian classifier, decision tree,

neural network, and support vector machine. Boosting assigns a

weight to each training example and adaptively changes the

weight at the end of each boosting round. A sample is drawn

according to the sampling distribution of the training examples

to obtain a new training dataset. Next, a classifier is induced

from the training dataset and used to classify all the examples in

the original dataset. The weights of the training examples are

updated at the end of each boosting round. Examples that are

misclassified will have their weights increased, while those that

are correctly classified will have their weight decreased. This

forces the classifier to focus on examples that are difficult to

classify in subsequent iterations.

3.2 Naïve Bayesian Classifier
Naïve Bayesian classifier is a simple classification scheme,

which estimates the class-conditional probability by assuming

that the attributes are conditionally independent, given the class

label c. The conditional independence assumption can be

formally stated as follows:

 ∏
=

===
n

i

i cCAPcCAP
1

)|()|((1)

Where each attribute set A = {A1,A2,….,An}consists of n attribute

values. With the conditional independence assumption, instead

of computing the class-conditional probability for every

Target Network or

Host Computer

Network logs or

Audit Data Collection

Data Processing and

Cleaning

Network or Audit

Data Storage

Input Attributes Selection

Testing Dataset

Training Dataset

Learning Data Mining

Algorithm using Training

Dataset

Classifying Test Dataset

Analyzing Real Time

Network log for Detecting

Intrusions

Intrusion Prevention

System (IPS) or Security

Administrator

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

15

combination of A, only estimate the conditional probability of

each Ai, given C. The latter approach is more practical because it

does not require a very large training set to obtain a good

estimate of the probability. To classify a test example, the naïve

Bayesian classifier computes the posterior probability for each

class C.

)(

)|()(

)|(1

AP

CAPCP

ACP

n

i

i∏
==

 (2)

Since P(A) is fixed for every A, it is sufficient to choose the

class that maximizes the numerator term,

 ∏
=

n

i

i CAPCP
1

)|()((3)

The naïve Bayesian classifier has several advantages. It is easy

to use, and unlike other classification approaches, only one scan

of the training data is required. The naïve Bayesian classifier can

easily handle missing attribute values by simply omitting the

probability when calculating the likelihoods of membership in

each class. The NB classifier is straightforward to use, where

there are simple relationships, it often does yield good results.

3.3 Proposed Leaning Algorithm
Given a training data D = {t1,…,tn}, where ti = {ti1,…,tih} and the

attributes {A1, A2,…,An}. Each attribute Ai contains the following

attribute values {Ai1, Ai2,…,Aih}. The training data D also

contains a set of classes C = {C1, C2,…,Cm}. Each training

example has a particular class Cj. The algorithm first initializes

the weights of training examples to an equal value of wi=1/n,

where n is the total number of training examples in D. Then the

algorithm generates a new dataset Di with equal number of

examples from training data D using selection with replacement

technique and calculates the prior P(Cj) and class conditional

P(Aij|Cj) probabilities for new dataset Di.

The prior probability P(Cj) for each class is estimated by

counting how often each class occurs in the dataset Di. For each

attribute Ai the number of occurrences of each attribute value Aij

can be counted to determine P(Ai). Similarly, the class

conditional probability P(Aij|Cj) for each attribute values Aij can

be estimated by counting how often each attribute value occurs

in the class in the dataset Di. Then the algorithm classifies all the

training examples in training data D with these prior P(Cj) and

class conditional P(Aij|Cj) probabilities from dataset Di. For

classifying the examples, the prior and conditional probabilities

are used to make the prediction. This is done by combining the

effects of the different attribute values from that example.

Suppose the example ei has independent attribute values {Ai1,

Ai2,…,Aip}, we know P(Aik | Cj), for each class Cj and attribute

Aik. We then estimate P(ei | Cj) by

 P(ei | Cj) = P(Cj) ∏k=1→p P(Aij | Cj) (4)

To classify the example, the probability that ei is in a class is the

product of the conditional probabilities for each attribute value

with prior probability for that class. The posterior probability

P(Cj | ei) is then found for each class and the example classifies

with the highest posterior probability value for that example.

The algorithm classifies each example ti P D with maximum

posterior probability. After that the weights of the training

examples ti in training data D are adjusted/ updated according to

how they were classified. If an example was misclassified then

its weight is increased, or if an example was correctly classified

then its weight is decreased.

To updates the weights of training data D, the algorithm

computes the misclassification rate, the sum of the weights of

each of the training example ti P D that were misclassified. That

is,

 error(Mi) = ∑
d

i

iw * err(ti); (5)

Where err (ti) is the misclassification error of example ti.. If the

example ti was misclassified, then is err (ti) 1. Otherwise, it is

0. The misclassification rate affects how the weights of the

training examples are updated. If a training example was

correctly classified, its weight is multiplied by error (Mi)/(1-

error(Mi)). Once the weights of all of the correctly classified

examples are updated, the weights for all examples including the

misclassified examples are normalized so that their sum remains

the same as it was before. To normalize a weight, the algorithm

multiplies the weight by the sum of the old weights, divided by

the sum of the new weights. As a result, the weights of

misclassified examples are increased and the weights of

correctly classified examples are decreased. Now the algorithm

generates another new data set Di from training data D with

maximum weight values and continues the process until all the

training examples are correctly classified. Or, we can set the

number of rounds that the algorithm will iterate the process. To

classify a new or unseen example use all the probabilities of

each round (each round is considered as a classifier) and

consider the class of new example with highest classifier's vote.

The main procedure of proposed algorithm is described as

follows:

Algorithm: An ensemble of classifiers using boosting and naïve

Bayesian classifier.

Input: D, Training data D of labeled examples ti.

Output: A classification model.

Procedure:

1. Initialize the weight wi=1/n of each example ti P D, where n

is the total number of training examples.

2. Generate a new dataset Di with equal number of examples

from D using selection with replacement technique.

3. Calculate the prior probability P(Cj) for each class Cj in

dataset Di: P(Cj) =

∑

∑

=

→

n

i

i

Ci

t

t
j

1

;

4. Calculate the class conditional probabilities P(Aij|Cj) for
each attribute values in dataset Di:

 P(Aij|Cj) =

∑

∑

→

=

→

j

j

Ci

n

i

Ci

t

A
1 ;

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

16

5. Classify each training example ti in training data D with
maximum posterior probabilities.

P(ei | Cj) = P(Cj) ∏k=1→p P(Aij | Cj)

6. Updates the weights of each training examples ti P D,
according to how they were classified. If an example was
misclassified then its weight is increased, or if an example
was correctly classified then its weight is decreased. To
updates the weights of training examples the
misclassification rate is calculated, the sum of the weights of
each of the training example ti P D that were misclassified:

error (Mi) = ∑
d

i

iw * err(ti);

Where err (ti) is the misclassification error of example ti. If
the example ti was misclassified, then is err (ti) 1.
Otherwise, it is 0. If a training example was correctly
classified, its weight is multiplied by error (Mi)/(1-
error(Mi)). Once the weights of all of the correctly classified
examples are updated, the weights for all examples
including the misclassified examples are normalized so that
their sum remains the same as it was before. To normalize a
weight, the algorithm multiplies the weight by the sum of
the old weights, divided by the sum of the new weights. As
a result, the weights of misclassified examples are increased
and the weights of correctly classified examples are
decreased.

7. Repeat steps 2 to 6 until all the training examples ti P D are

correctly classified.

8. To classify a new/unseen example use all the probability set

in each round (each round is considered as a classifier) and

considers the class of new example with highest classifier's

vote.

4. EXPERIMENTAL ANALYSIS
The performance of intrusion detection systems (IDS) are

estimated by detection rates (DR) and false positives (FP). DR is

defined as the number of intrusion instances detected by the

system divided by the total number of intrusion instances

present in the dataset.

 DR = 100*
_

det

attacksTotal

attacksectedTotal (6)

FP is defined as the total number of normal instances.

 FP = 100*
__

__

processnormalTotal

processiedmisclassifTotal (7)

4.1 KDD99 Intrusion Detection Dataset
The access of intrusion detection dataset is strictly limited and

cannot be shared in public domain, because the network data

generated by IDS contain information about network topology,

hosts and other confidential information’s. The KDD 1999 cup

benchmark intrusion detection dataset was used in the 3rd

International Knowledge Discovery and Data Mining Tools

Competition to evaluate the performance of various intrusion

detection methods [36]. In 1998, DARPA intrusion detection

evaluation program, a simulated environment was set up to

acquire raw TCP/IP dump data for a local-area network (LAN)

by the MIT Lincoln Lab. It was operated like a real

environment, but being blasted with multiple intrusion attacks

and received much attention in the research community of

adaptive intrusion detection. The KDD99 dataset contest uses a

version of DARPA98 dataset. In KDD99 dataset, each example

represents attribute values of a class in the network data flow,

and each class is labeled either normal or attack.

The classes in KDD99 dataset can be categorized into five main

classes: one normal class and four attack classes: probe, DOS,

U2R, and R2L. Normal connections are the daily normal user

behaviors. Denial of Service (DoS) attack causes the computing

power or memory of a victim machine too busy or too full to

handle legitimate requests. Remote to User (R2L) is an attack

that a remote user gains access of a local user by sending

packets to a machine over a network communication. User to

Root (U2R) is an attack that an intruder begins with the access

of a normal user account and then becomes a root-user by

exploiting various vulnerabilities of the system. Probing (Probe)

is an attack that scans a network to gather information or find

known vulnerabilities. These four attacks are divided into 22

different attacks.

There are total 41 attributes in KDD99 dataset for each network

connection that have either discrete or continuous values and

divided into three groups. The first group of attributes is the

basic features of network connection, which include the

duration, prototype, service, number of bytes from source IP

addresses or from destination IP addresses, and some flags in

TCP connections. The second group of attributes in KDD99 is

composed of the content features of network connections and

the third group is composed of the statistical features that are

computed either by a time window or a window of certain kind

of connections. Table 1 show the number of examples in 10%

training and testing data of KDD99 dataset.

Table 1. Number of examples in KDD99 dataset

Attack Types Training Examples Testing Examples

Normal 97277 60592

Denial of Service 391458 237594

Remote to User 1126 8606

User to Root 52 70

Probing 4107 4166

Total Examples 494020 311028

4.2 Experimental Results
The experiments were performed by using an Intel Core 2 Duo

Processor 2.0 GHz processor (2 MB Cache, 800 MHz FSB) with

1 GB of RAM. We tested the intrusion detection performance of

the proposed learning algorithm with k-Nearest-Neighbor

classifier (kNN), Decision Tree classifier (C4.5), Support Vector

Machines (SVM), Neural Network (NN), and Genetic

Algorithm (GA) by employing on the KDD99 benchmark

intrusion detection dataset that is tabulated in Table 2 [37]-[40].

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

17

Table 2. Comparison of the results for the intrusion

detection problem (Detection Rate %)

Method Normal Probe DoS U2R R2L

Proposed

Algorithm
 100 99.95 99.92 99.55 99.60

kNN 99.60 75.00 97.30 35.00 0.60

C4.5 98.49 94.82 97.51 49.25 91.26

SVM 99.40 89.2 94.7 71.40 87.20

NN 99.60 92.7 97.50 48.00 98.00

GA 99.30 98.46 99.57 99.22 98.54

It has been successfully tested that effective attributes selection

improves the detection rates for different types of network

intrusions in intrusion detection. The performance of proposed

algorithm on 12 attributes in KDD99 dataset is listed in Table 3.

 Table 3. Result on reduce KDD99 dataset

Attack Types DR (%) FP (%)

Normal 100 0.03

Probing 99.95 0.36

Dos 100 0.03

U2R 99.67 0.10

R2L 99.58 6.71

5. CONCLUSIONS & FUTURE WORKS
In this paper, we introduce a new algorithm for adaptive

intrusion detection based on boosting and naïve Bayesian

classifier, which is an ensemble approach of boosting for

improving the detection rates with low false positives in

intrusion detection. The main propose of this paper is to improve

the performance of naïve Bayesian classifier in intrusion

detection. The naïve Bayesian classifier is popular data mining

algorithm for classification problem that has several advantages

such as it is easy to use and only one scan of training data is

required. It can also easily handle the missing values by simply

omitting the probability when calculating the likelihoods of

membership in each class. We tested the performance of

proposed algorithm with existing data mining algorithms and the

experimental results manifest that the proposed algorithm

achieved high detection rates and reduced the percentage of

false positives for different types of network intrusions. The

future works focus on applying other mining algorithms with

this boosting approach for improving the detection rates in

intrusion detection and also apply this algorithm in real world

problem domain of intrusion detection.

6. ACKNOWLEDGMENTS
Support for this research received from Department of Computer

Science and Engineering, Jahangirnagar University, Bangladesh,

and Department of Computer Science and Engineering, United

International University, Bangladesh.

7. REFERENCES
[1] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez,

and E. Vazquez, “Anomaly-based network intrusion

detection: Techniques, systems and challenges,” Computer

& Security, Vol. 28, 2009, pp. 18-28.

[2] Animesh Patcha, and Jugn-Min Park, “An overview of
anomaly detection techniques: Existing solutions and latest

technological trends,” Computer Networks, Vol. 51, 2007,

pp. 3448-3470.

[3] Dan Zhu, G. Premkumar, Xiaoning Zhang, Chao-Hsien
Chu, “Data Mining for Network Intrusion Detection: A

Comparison of Alternative Methods,” Decision Sciences,

Vol. 32, No. 4, Fall 2001, pp. 635-660.

[4] Su-Yun Wu, and Ester Yen, “Data mining-based intrusion

detectors,” Expert Systems with Application`s, Vol. 36,

Issue 3, Part 1, April 2009, pp. 5605-5612.

[5] Barbara, Daniel, Couto, Julia, Jajodia, Sushil, Popyack,
Leonard, Wu, and Ningning, “ADAM: Detecting intrusion

by data mining,” IEEE Workshop on Information

Assurance and Security, West Point, New York, June 5-6,

2001.

[6] Lee W., “A data mining and CIDF based approach for

detecting novel and distributed intrusions,” Recent

Advances in Intrusion Detection, 3rd International

Workshop, RAID 2000, Toulouse, France, October 2-4,

2000, Proc. Lecture Notes in Computer Science 1907

Springer, 2000, pp. 49-65.

[7] Lee W., Stolfo S., and Mok K., “Adaptive Intrusion

Detection: A Data Mining Approach,” Artificial

Intelligence Review, 14(6), December 2000, pp. 533-567.

[8] Dewan Md. Farid, Nouria Harbi, and Mohammad Zahidur
Rahman, “Combining Naïve Bayes and Decision Tree for

Adaptive Intrusion Detection,” International Journal of

Network Security & Its Applications, Vol. 2, No. 2, April

2010, pp. 12-25.

[9] Dewan Md. Farid, Jerome Darmont, and Mohammad
Zahidur Rahman, “Attribute Weighting with Adaptive

NBTree for Reducing False Positives in Intrusion

Detection,” International Journal of Computer Science and

Information Security, Vol. 8, No. 1, April 2010, pp. 19-26.

[10] Dewan Md. Farid, and Mohammad Zahidur Rahman,
“Anomaly Network Intrusion Detection Based on Improved

Self Adaptive Bayesian Algorithm,” Journal of Computers,

Academy Publisher, Vol. 5, No. 1, January 2010, pp. 23-

31.

[11] Dewan Md. Farid, Nouria Harbi, Suman Ahmmed,
Mohammad Zahidur Rahman, and Chowdhury Mofizur

Rahman, “Mining Network Data for Intrusion Detection

through Naïve Bayesian with Clustering,” In Proc. of the

International Conference on Computer, Electrical, System

Science, and Engineering (ICCESSE 2010), June 28-30,

2010, Paris, France, pp. 836-840.

[12] Dewan Md. Farid, Nguyen Huu Hoa, Jerome Darmont,
Nouria Harbi, and Mohammad Zahidur Rahman, “Scaling

up Detection Rates and Reducing False Positives in

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

18

Intrusion Detection using NBTree,” In Proc. of the

International Conference on Data Mining and Knowledge

Engineering (ICDMKE 2010), April 28-30, 2010, Rome,

Italy, pp. 186-190.

[13] Dewan Md. Farid, Nouria Harbi, Emna Bahri, Mohammad
Zahidur Rahman and Chowdhury Mofizur Rahman,

“Attacks Classification in Adaptive Intrusion Detection

using Decision Tree,” In Proc. of the International

Conference on Computer Science (ICCS 2010), 29-31

March, 2010, Rio De Janeiro, Brazil, pp. 86-90.

[14] Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen
Huu Hoa, and Mohammad Zahidur Rahman, “Adaptive

Network Intrusion Detection Learning: Attribute Selection

and Classification,” In Proc. of the International

Conference on Computer Systems Engineering (ICCSE

2009), December 25-27, 2009, Bangkok, Thailand, pp. 82-

86.

[15] Dewan Md. Farid, and Mohammad Zahidur Rahman,
“Anomaly Detection Model for Network Intrusion

Detection using Conditional Probabilities,” In Proc. of the

6th International Conference on Information Technology in

Asia 2009 (CITA’09), 6th – 9th July 2009, Kuching,

Sarawak, Malaysia, pp. 104-110.

[16] Dewan Md. Farid, and Mohammad Zahidur Rahman,
“Learning Intrusion Detection Based on Adaptive Bayesian

Algorithm,” In Proc. of the 11th International Conference

on Computer and Information Technology (ICCIT 2008),

25-27 December 2008, Khulna, Bangladesh, pp. 652-656,

and IEEE Xplore Digital Archive.

[17] D.Y. Yeung, and Y.X. Ding, “Host-based intrusion
detection using dynamic and static behavioral model”,

Pattern Recognition, 36, 2003, pp. 229-243.

[18] T. Pietraszek, and C. V. Berghe, “Defending against
injection attacks through context-sensitive string

evaluation,” In Recent Advances in Intrusion Detection

(RAID2005), Seattle, WA, Springer-Verlag, vol. 3858 of

Lecture Notes in Computer Science, 2005, pp. 124–145.

[19] “The php group, php hypertext preprocessor,” 2001-2004,
web page at http://www.php.net

[20] “The phpbb group, phpbb.com,” 2001-2004, web page at
http://www.phpbb,com

[21] X. Xu, and X.N. Wang, “Adaptive network intrusion

detection method based on PCA and support vector

machines,” Lecture Notes in Artificial Intelligence (ADMA

2005), LNAI 3584, 2005, pp. 696-703.

[22] Martin Roesch, “SNORT: The open source network
intrusion system,” Official web page of Snort at

http://www.snort.org/

[23] L. C. Wuu, C. H. Hung, and S. F. Chen, “Building intrusion

pattern miner for sonrt network intrusion detection system,”

Journal of Systems and Software, vol. 80, Issue 10, 2007,

pp. 1699-1715.

[24] James P. Anderson, “Computer security threat monitoring
and surveillance,” Technical Report 98-17, James P.

Anderson Co., Fort Washington, Pennsylvania, USA, April

1980.

[25] Dorothy E. Denning, “An intrusion detection model,” IEEE
Transaction on Software Engineering, SE-13(2), 1987, pp.

222-232.

[26] S.E. Smaha, and Haystack, “An intrusion detection
system,” in Proc. of the IEEE Fourth Aerospace Computer

Security Applications Conference, Orlando, FL, 1988, pp.

37-44.

[27] W. Fan, W. Lee, M. Miller, S. J. Stolfo, and P. K. Chan,

“Using artificial anomalies to detect unknown and known

network intrusions,” Knowledge and Information Systems,

2005, pp. 507-527.

[28] Y. Bouzida, and F. Cuppens, “Detecting known and novel
network intrusions,” Security and Privacy in Dynamic

Environments, 2006, pp. 258-270.

[29] S. Peddabachigari, A. Abraham, and J. Thomas, “Intrusion
detection systems using decision tress and support vector

machines,” International Journal of Applied Science and

Computations, 2004.

[30] D. Barbara, N. Wu, and Suchil Jajodia, “Detecting novel

network intrusions using Bayes estimators,” In Proc. of the

1st SIAM Conference on Data Mining, April 2001.

[31] D. Barbara, J. Couto, S. Jajodia, and N. Wu, “ADAM: A

tested for exploring the use of data mining in intrusion

detection,” Special Interest Group on Management of Data

(SIGMOD), Vol. 30 (4), 2001.

[32] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naïve Bayes
vs. decision trees in intrusion detection systems,” In Proc.

of the 2004 ACM Symposium on Applied Computing, New

York, 2004, pp. 420-424.

[33] M. Panda, and M. R. Patra, “Network intrusion deteciton
using naïve Bayes,” International Journal of Computer

Science and Network Security (IJCSNS), Vol. 7, No. 12,

December 2007, pp. 258-263.

[34] M. Panda, and M. R. Patra, “Semi-naïve Bayesian method
for network intrusion detection system,” In Proc. of the 16th

International Conference on Neural Information

Processing, December 2009.

[35] Y. Freund, and R. E. Schapire, “A decision-theoretic
generalization of on-line learning and an application to

boosting,” Journal of Computer and System Sciences, Vol.

55, 1997, pp. 119-139.

[36] The KDD Archive. KDD99 cup dataset, 1999.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[37] Mukkamala S, Sung AH, and Abraham A, “Intrusion
detection using an ensemble of intelligent paradigms,”

Journal of Network and Computer Applications, 2005, Vol.

2, No. 8, pp. 167-182.

[38] Chebrolu S, Abraham A, and Thomas JP, “Feature
deduction and ensemble design of intrusion detection

systems.” Computer & Security, 2004, Vol. 24, No. 4, pp.

295-307.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.3, June 2011

19

[39] C. Elkan, 2007, Result of the KDD’99 Knowledge
Discovery Contest [Online], Available: http://www-

cse.ucsd.edu/users/elkan/clresults.html

[40] A. D. Joshi, “Applying the wrapper approach for auto
discovery of under-sampling and over-sampling

percentages on skewed datasets,” M.Sc. Thesis, University

South Florida, Tampa, 2004, pp. 1-77 [Online], Available:

http://etd.fcla.edu/SF/SFE0000491/Thesis-AjayJoshi.pdf

8. AUTHORS PROFILE

Dewan Md. Farid is a doctoral candidate in the Department of
Computer Science and Engineering, Jahangirnagar University,
Bangladesh. He obtained B.Sc. Engineering in Computer
Science and Engineering from Asian University of Bangladesh
in 2003 and Master of Science in Computer Science and
Engineering from United International University, Bangladesh
in 2004. He is a part-time faculty member in the Department of
Computer Science and Engineering, United International
University, Bangladesh. He is a member of IEEE and IEEE
Computer Society. He has published 4 international journals and
9 international conference papers in the field of data mining,
machine learning, and intrusion detection. He has participated
and presented his papers in international conferences at France,
Italy, Portugal, and Malaysia. He worked as a visiting researcher
at ERIC Laboratory, University Lumière Lyon 2 – France from
01-09-2009 to 30-06-2010.

Mohammad Zahidur Rahma is currently a Professor at
Department of Computer Science and Engineering,
Jahangirnager University, Banglasesh. He obtained his B.Sc.
Engineering in Electrical and Electronics from Bangladesh
University of Engineering and Technology in 1986 and his
M.Sc. Engineering in Computer Science and Engineering from
the same institute in 1989. He obtained his Ph.D. degree in
Computer Science and Information Technology from University
of Malaya in 2001. He is a co-author of a book on E-commerce
published from Malaysia. His current research includes the
development of a secure distributed computing environment and
e-commerce.

Professor Dr. Chowdhury Mofizur Rahman had his B.Sc.
(EEE) and M.Sc. (CSE) from Bangladesh University of
Engineering and Technology (BUET) in 1989 and 1992
respectively. He earned his Ph.D from Tokyo Institute of
Technology in 1996 under the auspices of Japanese Government
scholarship. Prof Chowdhury is presently working as the Pro
Vice Chancellor and acting treasurer of United International
University (UIU), Dhaka, Bangladesh. He is also one of the
founder trustees of UIU. Before joining UIU he worked as the
head of Computer Science & Engineering department of
Bangladesh University of Engineering & Technology which is
the number one technical public university in Bangladesh. His
research area covers Data Mining, Machine Learning, AI and
Pattern Recognition. He is active in research activities and
published around 100 technical papers in international journals
and conferences. He was the Editor of IEB journal and worked
as the moderator of NCC accredited centers in Bangladesh. He
worked as the organizing chair and program committee member
of a number of international conferences held in Bangladesh and
abroad. At present he is acting as the coordinator from
Bangladesh for EU sponsored eLINK project. Prof Chowdhury
has been working as the external expert member for Computer
Science departments of a number of renowned public and
private universities in Bangladesh. He is actively contributing
towards the national goal of converting the country towards
Digital Bangladesh.

