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ABSTRACT 
In this paper, we introduce a new learning algorithm for 

adaptive intrusion detection using boosting and naïve Bayesian 

classifier, which considers a series of classifiers and combines 

the votes of each individual classifier for classifying an 

unknown or known example. The proposed algorithm generates 

the probability set for each round using naïve Bayesian classifier 

and updates the weights of training examples based on the 

misclassification error rate that produced by the training 

examples in each round. This algorithm addresses the problem 

of classifying the large intrusion detection dataset, which 

improves the detection rates (DR) and reduces the false positives 

(FP) at acceptable level in intrusion detection. We tested the 

performance of the proposed algorithm with existing data 

mining algorithms by employing on the KDD99 benchmark 

intrusion detection dataset, and the experimental results proved 

that the proposed algorithm achieved high detection rates and 

significantly reduced the number of false positives for different 

types of network intrusions.      

Keywords 
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1. INTRODUCTION 
Due to the large volumes of intrusion detection dataset, the 

intelligent computing society has been applied many data 

mining algorithms for detecting intrusions in the last decades 

[1]-[3]. Today’s real-world intrusion detection datasets are 

complex, dynamic, and composed of many different attributes, 

which are highly susceptible to noise, missing and inconsistent 

data due to their typically huge size. The task of data mining and 

knowledge discovery from data (KDD) based intrusion detection 

systems (IDS) is to find the interesting hidden intrusion patterns 

in large intrusion detection dataset and realizing the performance 

optimization of detection rules. Intrusion detection system (IDS) 

is the combination of both hardware and software that is used to 

detect intrusions or attacks in computer system or network, and 

then notifies intrusion prevention system (IPS) or network 

security administrator about the intrusions. However, currently 

available commercial IDS are misuse based, which can only 

detect known intrusions with very low false positives that are 

already stored in the dataset, but now-a-days intruders are very 

intelligent and they frequently change the intrusion patterns to 

attack into the network. Intruders are classified into two 

categories like inside and outside intruders. Inside intruders are 

the valid user of the network and have some authority, but seek 

to gain additional ability to take actions without legitimate 

authorization. On the other side, outside intruders do not have 

any authorized access to the network that they attack. Ideally, 

IDS should have an attack detection rate of 100% along with 

false positive rate 0%, which is really very hard to achieve.  

Today, data mining have become an indispensable tools for 

analyzing the large volumes of intrusion detection data to detect 

intrusions by finding the hidden intrusion patterns from the 

dataset [4]-[7]. The naïve Bayesian (NB) classifier is an efficient 

and well known technique for performing classification task in 

data mining, which is widely applied in many real world 

applications including intrusion detection problem [8]-[16]. The 

NB classifier provides an optimal way to predict the class of an 

unknown example whose attribute values are known, but class 

value is unknown by calculating prior and conditional 

probabilities from the training dataset. Boosting is the process of 

combining many classifiers to generate a single strong classifier 

with very low error. In this paper, we present a new learning 

algorithm based on boosting, and naïve Bayesian classifier for 

adaptive intrusion detection. The proposed algorithm first 

initializes the weight of training examples to 1/n, where n is the 

total number of examples in training dataset, and then creates a 

new dataset from training dataset using selection with 

replacement technique. After that it calculates the prior and 

conditional probabilities of new dataset, and classifies the 

training examples with these probabilities value. The weights of 

the training examples updated according to how they were 

classified. If a training example is misclassified then its weight 

is increased, or if correctly classified then its weight is 

decreased. Then the algorithm creates another new data set with 

the misclassification error produced by each training example 

from training dataset, and continues the process until all the 

training examples are correctly classified. To classify a new 

example use all the probabilities in each round (each round is 

considered as a classifier) and consider the class of new example 

with highest classifier's vote. The proposed algorithm has been 

successfully tested on the KDD99 benchmark network intrusion 

detection dataset from UCI machine learning repository, which 

achieved high detection rates with very low false positives. 

The remainder of this paper is organized as follows. In Section 

2, we describe the data mining for intrusion detection overview, 

and related works. In Section 3, we present the boosting, naïve 

Bayesian classifier, and the proposed learning algorithm. In 

Section 4, we apply the proposed algorithm to the area of 

intrusion detection using KDD99 benchmark network intrusion 

detection dataset, and compare the results with other related 

algorithms. Finally, Section 5 contains the conclusions with 

future works.  
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2. INTRUSION DETECTION 
An intrusion can be defined as any set of actions that threaten 

the integrity, confidentiality, or availability of computational 

resources of a computer system or network. Intrusion detection 

have become a critical component of network administration as 

the extensive growth of the Internet and the tools for intruding 

and attacking networks are available now-a-days. An intrusion 

detection system (IDS) for a large complex network can 

typically generate thousands or millions of alarms per day, 

representing an overwhelming task for the security analysis. 

2.1 Host vs. Network IDS 
Initially IDS was developed for host-based computer systems. 

The host-based IDS (HIDS) are located in the server computers 

and examine the internal interfaces [17]. It detects intrusions by 

analyzing application logs, system calls, file-system 

modifications, and other host activities that related to the server 

computers. Context Sensitive String Evaluation (CSSE) is one 

of the Host-based IDS for detecting intrusions in applications 

with extremely low false-positives [18]. CSSE uses an 

instrumented execution environment (such as PHP or Java 

Virtual Machine) and therefore has access to all necessary 

contexts required to detect and more importantly prevent 

attacks. The context is provided by the metadata, which 

describes the fragments of the output expression that requires 

checking and examining the intercepted call to the API function. 

CSSE uses contextual information to check the unsafe fragments 

for syntactic content. Depending on the mode of CSSE it can 

raise an alert and prevent the execution of the dangerous content 

(both intrusion detection and prevention). Currently CSSE is 

available as research-prototype IDS for the PHP platform [19], 

[20]. 

With the popularization of computer networks the idea of IDS 

gradually shifted toward the network-based IDS. It monitors and 

analyzes network packets to detect intrusions in the network 

[21]. Snort is an open source network intrusion detection and 

prevention system (NIDPS) capable of performing packet 

logging and real-time traffic analysis of IP networks. Snort was 

written by Martin Roesch and is now developed by Sourcefire 

[22], [23]. Snort performs protocol analysis, content 

searching/matching, and is commonly used to actively block a 

variety of attacks. Most of the current attacks happen at higher 

layers: transport (TCP/UDP) or application (HTTP, RPC) layers 

and Snort uses so-called preprocessors which perform stream 

reassembly and normalization of higher-level protocols. To 

detect an attack targeting a web server the preprocessors 

normalize the IP-level traffic, TCP state machine emulation and 

stream reassembly, HTTP-level normalization, defragmentation, 

and Unicode decoding. 

2.2 Misuse vs. Anomaly IDS 
Intrusion detection model is broadly classified into two 

categories: misuse-based and anomaly-based intrusion detection 

model.  

Misuse-based IDS are also known as signature-based or pattern-

based IDS, which detect known intrusions based on the attacks 

that stored in database with very low false positives. It performs 

pattern matching of incoming packets and/or command 

sequences to the signatures of known attacks. The detection rate 

of misuse-based IDS is relatively low, because the attacker 

always tries to modify the basic attack signature in such a way 

that will not match the attack signature, which is already 

installed in the database. It can protect the computer 

system/network immediately upon installation, but it requires 

frequently signature updates to keep the signature database up-

to-date. Misuse-based IDS use various techniques including 

rule-based expert systems, model-based reasoning systems, state 

transition analysis, genetic algorithms, and fuzzy logic. 

Anomaly-based IDS can detect known or unknown intrusions by 

detecting deviations from normal behaviors. It creates a profile 

from normal behaviors and then any activities that deviated from 

this profile are treated as a possible intrusion. Many data mining 

algorithms already been used for anomaly detection such as 

decision tree (DT), naïve Bayesian (NB), neural networks (NN), 

support vector machines (SVM), and Principal Components 

Analysis (PCA) etc. The major drawback of anomaly-based IDS 

is to provide a large number of false positives.  

2.3 Related Work 
Intrusion detection was first introduced by James P. Anderson in 

1980 by introducing a threat classification model that develops a 

security monitoring surveillance system based on detecting 

anomalies in user behaviors [24]. Later in 1987, Dr. Denning 

proposed several models for IDS based on statistics, Markov 

chains, time-series, etc [25]. In 1988, a statistical anomaly-based 

IDS was proposed by Haystack [26], which used both user and 

group-based anomaly detection strategies. In 2005, Fan et al. 

proposed a method that injects artificial anomaly data into the 

training data to detect known and unknown intrusions, which 

help a baseline classifier to distinguish between normal and 

anomalous data [27]. In 2006, Bouzida et al. applied decision 

tree (DT) for anomaly-based intrusion detection, which assigns a 

default class to the test instance that is not covered by the tree 

and then the default class are examined for unknown attack 

analysis [28]. In 2004, Peddabachigari et al. [29] applied 

decision tree (DT) and support vector machine (SVM) for 

intrusion detection, which proved that DT is better than SVM in 

terms of overall accuracy. Particularly, DT much better in 

detecting user to root (U2R) and remote to local (R2L) network 

attacks, compared to SVM. In 2001, Barbara et al. [30] proposed 

a method for detecting new attacks and reducing false positives, 

which estimates the probability using Bayes estimators to 

enhance the ability of ADAM based IDS [31]. In 2004, Amor et 

al. performed an experimental analysis to compare the 

performance between NB classifier and DT classifier by 

employing KDD99 dataset, and the result proved that NB 

classifier is 7 times faster than DT with respect to running time, 

and DT outperforms in classifying normal, denial of service 

(DoS), and remote to local (R2L) attacks, whereas NB classifier 

is superior in classifying Probing and user to root (U2R) attacks 

[32]. In 2007, Panda and Patra [33] proposed a method using 

naïve Bayes to detect signatures of specific attacks. They used 

KDD99 dataset for experiment, and the authors give a 

conclusion that NB classifier performs back propagation neural 

network classifier in terms of detection rates and false positives. 

It is also reported that NB classifier produces a relatively high 

false positive. Later in 2009, the same authors Panda and Patra 

[34] compares NB classifier with 5 other similar classifiers, i.e., 

JRip, Ridor, NNge, Decision Table, and Hybrid Decision Table, 

and experimental results shows that the NB classifier is better 

than other classifiers. 
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2.4 Data Mining for Intrusion Detection 
As current intrusion detection systems (IDS) have many 

limitations, the data mining for intrusion detection open a new 

research area in intelligent computing. Data mining algorithms 

can be used for misuse detection and anomaly detection. In 

misuse detection, the training data are labeled as either “normal” 

or “intrusion,” and then a classifier detect the known intrusions. 

Anomaly detection builds models of normal behavior and 

automatically detects significant deviations from it. Fig 1 shows 

the architecture of data mining based IDS.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 F i g 1 : A r c h i t e c t u r e o f D a t a M i n i n g b a s e d I D S .
 

Data mining based IDS collects audit data or network logs from 

computer system or network, and then applies intelligent 

methods to extract hidden intrusion patterns from the data. It 

first collects the audit data from the network using multiple 

sensors, and stores the audit data for future reference. Training 

and testing datasets are generated from the collected audit data. 

Data processing and cleaning is the process of removing noise 

and inconsistent data from dataset and formatted the dataset that 

is suitable for mining. Intrusion detecting dataset may contain 

hundreds of input attributes, and many of which may be 

irrelevant to the mining task or redundant, because the 

information they added is contained in other attribute. Input 

attribute selection reduces the dataset size by removing 

irrelevant or redundant attributes. The use of all attributes may 

simply increase the overall complexity of detection model, 

increase computational time, and decrease the detection 

accuracy of the intrusion detection algorithms. It has been tested 

that effective attributes selection improves the detection rates for 

different types of network intrusions in intrusion detection. After 

attribute selection the data mining algorithm is trained by the 

examples from the training dataset and then classifies the 

examples of testing dataset. When the rules are generated then 

the model classifies the real time network data and notifies 

intrusion prevention system (IPS) or security administrator 

about the intrusions in the network. IPS or security administrator 

carries out the prescriptions controlled by the IDS. 

3. LEARNING ALGORITHMS 

3.1 Boosting  
Boosting is an iterative process, which adaptively changes the 

distribution of training examples so that the base classifiers will 

focus on examples that are hard to classify. The concept of 

adaptive boosting called AdaBoost algorithm was first 

introduced by Freund and Schapire in 1997 [35] that classify an 

example by voting the weighted predictions of a set of base 

classifiers, which are generated in a series of rounds. The major 

drawback of boosting is overfitting; that is, with many rounds of 

boosting, the test error increase as the final classifier becomes 

overly complex. Boosting have become one of the alternative 

framework for classifier design, together with the more 

established classifiers, like Bayesian classifier, decision tree, 

neural network, and support vector machine. Boosting assigns a 

weight to each training example and adaptively changes the 

weight at the end of each boosting round. A sample is drawn 

according to the sampling distribution of the training examples 

to obtain a new training dataset. Next, a classifier is induced 

from the training dataset and used to classify all the examples in 

the original dataset. The weights of the training examples are 

updated at the end of each boosting round. Examples that are 

misclassified will have their weights increased, while those that 

are correctly classified will have their weight decreased. This 

forces the classifier to focus on examples that are difficult to 

classify in subsequent iterations. 

3.2 Naïve Bayesian Classifier 
Naïve Bayesian classifier is a simple classification scheme, 

which estimates the class-conditional probability by assuming 

that the attributes are conditionally independent, given the class 

label c. The conditional independence assumption can be 

formally stated as follows:  

              ∏
=
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n

i
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Where each attribute set A = {A1,A2,….,An}consists of n attribute 
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combination of A, only estimate the conditional probability of 

each Ai, given C. The latter approach is more practical because it 

does not require a very large training set to obtain a good 

estimate of the probability. To classify a test example, the naïve 

Bayesian classifier computes the posterior probability for each 

class C.    
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Since P(A) is fixed for every A, it is sufficient to choose the 

class that maximizes the numerator term,  
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The naïve Bayesian classifier has several advantages. It is easy 

to use, and unlike other classification approaches, only one scan 

of the training data is required. The naïve Bayesian classifier can 

easily handle missing attribute values by simply omitting the 

probability when calculating the likelihoods of membership in 

each class. The NB classifier is straightforward to use, where 

there are simple relationships, it often does yield good results. 

3.3 Proposed Leaning Algorithm 
Given a training data D = {t1,…,tn}, where ti = {ti1,…,tih} and the 

attributes {A1, A2,…,An}. Each attribute Ai contains the following 

attribute values {Ai1, Ai2,…,Aih}. The training data D also 

contains a set of classes C = {C1, C2,…,Cm}. Each training 

example has a particular class Cj. The algorithm first initializes 

the weights of training examples to an equal value of wi=1/n, 

where n is the total number of training examples in D. Then the 

algorithm generates a new dataset Di with equal number of 

examples from training data D using selection with replacement 

technique and calculates the prior P(Cj) and class conditional 

P(Aij|Cj) probabilities for new dataset Di.  

The prior probability P(Cj) for each class is estimated by 

counting how often each class occurs in the dataset Di. For each 

attribute Ai the number of occurrences of each attribute value Aij 

can be counted to determine P(Ai). Similarly, the class 

conditional probability P(Aij|Cj) for each attribute values Aij can 

be estimated by counting how often each attribute value occurs 

in the class in the dataset Di. Then the algorithm classifies all the 

training examples in training data D with these prior P(Cj) and 

class conditional P(Aij|Cj) probabilities from dataset Di. For 

classifying the examples, the prior and conditional probabilities 

are used to make the prediction. This is done by combining the 

effects of the different attribute values from that example. 

Suppose the example ei has independent attribute values {Ai1, 

Ai2,…,Aip}, we know P(Aik | Cj), for each class Cj and attribute 

Aik. We then estimate P(ei | Cj) by     

              P(ei | Cj) = P(Cj) ∏k=1→p P(Aij | Cj)    (4)  

To classify the example, the probability that ei is in a class is the 

product of the conditional probabilities for each attribute value 

with prior probability for that class. The posterior probability 

P(Cj | ei) is then found for each class and the example classifies 

with the highest posterior probability value for that example. 

The algorithm classifies each example ti P D with maximum 

posterior probability. After that the weights of the training 

examples ti in training data D are adjusted/ updated according to 

how they were classified. If an example was misclassified then 

its weight is increased, or if an example was correctly classified 

then its weight is decreased. 

To updates the weights of training data D, the algorithm 

computes the misclassification rate, the sum of the weights of 

each of the training example ti P D that were misclassified. That 

is, 

                   error(Mi) =  ∑
d

i

iw  * err( ti );                           (5) 

Where err ( ti ) is the misclassification error of example ti.. If the 

example ti was misclassified, then is err ( ti ) 1. Otherwise, it is 

0. The misclassification rate affects how the weights of the 

training examples are updated. If a training example was 

correctly classified, its weight is multiplied by error (Mi)/(1-

error(Mi)). Once the weights of all of the correctly classified 

examples are updated, the weights for all examples including the 

misclassified examples are normalized so that their sum remains 

the same as it was before. To normalize a weight, the algorithm 

multiplies the weight by the sum of the old weights, divided by 

the sum of the new weights. As a result, the weights of 

misclassified examples are increased and the weights of 

correctly classified examples are decreased. Now the algorithm 

generates another new data set Di from training data D with 

maximum weight values and continues the process until all the 

training examples are correctly classified. Or, we can set the 

number of rounds that the algorithm will iterate the process. To 

classify a new or unseen example use all the probabilities of 

each round (each round is considered as a classifier) and 

consider the class of new example with highest classifier's vote. 

The main procedure of proposed algorithm is described as 

follows:      

Algorithm: An ensemble of classifiers using boosting and naïve 

Bayesian classifier. 

Input: D, Training data D of labeled examples ti. 

Output: A classification model. 

Procedure:  

1. Initialize the weight wi=1/n of each example ti P D, where n 

is the total number of training examples. 

2. Generate a new dataset Di with equal number of examples 

from D using selection with replacement technique.  

3. Calculate the prior probability P(Cj) for each class Cj in 

dataset Di: P(Cj) = 

∑

∑

=

→

n

i

i

Ci

t

t
j

1

; 

4. Calculate the class conditional probabilities P(Aij|Cj) for 
each attribute values in dataset Di:    
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5. Classify each training example ti in training data D with 
maximum posterior probabilities.   

P(ei | Cj) = P(Cj) ∏k=1→p P(Aij | Cj) 

6. Updates the weights of each training examples ti P D, 
according to how they were classified. If an example was 
misclassified then its weight is increased, or if an example 
was correctly classified then its weight is decreased. To 
updates the weights of training examples the 
misclassification rate is calculated, the sum of the weights of 
each of the training example ti P D that were misclassified: 

error (Mi) =  ∑
d

i

iw  * err( ti );  

Where err ( ti ) is the misclassification error of example ti. If 
the example ti was misclassified, then is err ( ti ) 1. 
Otherwise, it is 0. If a training example was correctly 
classified, its weight is multiplied by error (Mi)/(1-
error(Mi)). Once the weights of all of the correctly classified 
examples are updated, the weights for all examples 
including the misclassified examples are normalized so that 
their sum remains the same as it was before. To normalize a 
weight, the algorithm multiplies the weight by the sum of 
the old weights, divided by the sum of the new weights. As 
a result, the weights of misclassified examples are increased 
and the weights of correctly classified examples are 
decreased. 

7. Repeat steps 2 to 6 until all the training examples ti P D are 

correctly classified. 

8. To classify a new/unseen example use all the probability set 

in each round (each round is considered as a classifier) and 

considers the class of new example with highest classifier's 

vote. 

4. EXPERIMENTAL ANALYSIS 
The performance of intrusion detection systems (IDS) are 

estimated by detection rates (DR) and false positives (FP). DR is 

defined as the number of intrusion instances detected by the 

system divided by the total number of intrusion instances 

present in the dataset. 

              DR = 100*
_

_det_

attacksTotal

attacksectedTotal                (6) 

FP is defined as the total number of normal instances. 

             FP = 100*
__

__

processnormalTotal

processiedmisclassifTotal         (7) 

4.1 KDD99 Intrusion Detection Dataset 
The access of intrusion detection dataset is strictly limited and 

cannot be shared in public domain, because the network data 

generated by IDS contain information about network topology, 

hosts and other confidential information’s. The KDD 1999 cup 

benchmark intrusion detection dataset was used in the 3rd 

International Knowledge Discovery and Data Mining Tools 

Competition to evaluate the performance of various intrusion 

detection methods [36]. In 1998, DARPA intrusion detection 

evaluation program, a simulated environment was set up to 

acquire raw TCP/IP dump data for a local-area network (LAN) 

by the MIT Lincoln Lab. It was operated like a real 

environment, but being blasted with multiple intrusion attacks 

and received much attention in the research community of 

adaptive intrusion detection. The KDD99 dataset contest uses a 

version of DARPA98 dataset. In KDD99 dataset, each example 

represents attribute values of a class in the network data flow, 

and each class is labeled either normal or attack.  

The classes in KDD99 dataset can be categorized into five main 

classes: one normal class and four attack classes: probe, DOS, 

U2R, and R2L. Normal connections are the daily normal user 

behaviors. Denial of Service (DoS) attack causes the computing 

power or memory of a victim machine too busy or too full to 

handle legitimate requests. Remote to User (R2L) is an attack 

that a remote user gains access of a local user by sending 

packets to a machine over a network communication. User to 

Root (U2R) is an attack that an intruder begins with the access 

of a normal user account and then becomes a root-user by 

exploiting various vulnerabilities of the system. Probing (Probe) 

is an attack that scans a network to gather information or find 

known vulnerabilities. These four attacks are divided into 22 

different attacks.  

There are total 41 attributes in KDD99 dataset for each network 

connection that have either discrete or continuous values and 

divided into three groups. The first group of attributes is the 

basic features of network connection, which include the 

duration, prototype, service, number of bytes from source IP 

addresses or from destination IP addresses, and some flags in 

TCP connections. The second group of attributes in KDD99 is 

composed of the content features of network connections and 

the third group is composed of the statistical features that are 

computed either by a time window or a window of certain kind 

of connections. Table 1 show the number of examples in 10% 

training and testing data of KDD99 dataset. 

Table 1. Number of examples in KDD99 dataset 

Attack Types Training Examples Testing Examples 

Normal 97277 60592 

Denial of Service 391458 237594 

Remote to User 1126 8606 

User to Root 52 70 

Probing 4107 4166 

Total Examples 494020 311028 

4.2 Experimental Results 
The experiments were performed by using an Intel Core 2 Duo 

Processor 2.0 GHz processor (2 MB Cache, 800 MHz FSB) with 

1 GB of RAM. We tested the intrusion detection performance of 

the proposed learning algorithm with k-Nearest-Neighbor 

classifier (kNN), Decision Tree classifier (C4.5), Support Vector 

Machines (SVM), Neural Network (NN), and Genetic 

Algorithm (GA) by employing on the KDD99 benchmark 

intrusion detection dataset that is tabulated in Table 2 [37]-[40].  
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Table 2. Comparison of the results for the intrusion 

detection problem (Detection Rate %) 

 

Method Normal Probe DoS U2R R2L 

Proposed 

Algorithm 
 100  99.95 99.92  99.55 99.60 

kNN  99.60  75.00 97.30  35.00 0.60 

C4.5 98.49 94.82 97.51 49.25 91.26 

SVM 99.40 89.2 94.7 71.40 87.20 

NN 99.60 92.7 97.50 48.00 98.00 

GA 99.30 98.46 99.57 99.22 98.54 

It has been successfully tested that effective attributes selection 

improves the detection rates for different types of network 

intrusions in intrusion detection. The performance of proposed 

algorithm on 12 attributes in KDD99 dataset is listed in Table 3. 

 Table 3. Result on reduce KDD99 dataset 

Attack Types DR (%) FP (%) 

Normal 100 0.03 

Probing 99.95 0.36 

Dos 100 0.03 

U2R 99.67 0.10 

R2L 99.58 6.71 

 

5. CONCLUSIONS & FUTURE WORKS 
In this paper, we introduce a new algorithm for adaptive 

intrusion detection based on boosting and naïve Bayesian 

classifier, which is an ensemble approach of boosting for 

improving the detection rates with low false positives in 

intrusion detection. The main propose of this paper is to improve 

the performance of naïve Bayesian classifier in intrusion 

detection. The naïve Bayesian classifier is popular data mining 

algorithm for classification problem that has several advantages 

such as it is easy to use and only one scan of training data is 

required. It can also easily handle the missing values by simply 

omitting the probability when calculating the likelihoods of 

membership in each class. We tested the performance of 

proposed algorithm with existing data mining algorithms and the 

experimental results manifest that the proposed algorithm 

achieved high detection rates and reduced the percentage of 

false positives for different types of network intrusions. The 

future works focus on applying other mining algorithms with 

this boosting approach for improving the detection rates in 

intrusion detection and also apply this algorithm in real world 

problem domain of intrusion detection.   
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