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ABSTRACT the short operand sizes of ECC and HECC compared to other

Curve based cryptography are preferred for embedded hardware
since they require shorter operand size than RSA to attain the
same security level. So ECC and HECC are more suitable in
constrained environment such as smart cards if we can select
suitable curves and efficient scalar multiplication technique to
speed up arithmetic on the curve. With this in view, this paper
explores in details the main operations like scalar multiplication,
group operations on Jacobian, finite field operations etc which
are the prime steps for efficient implementation of ECC /
HECC. We also have compared the timings of main operations
like scalar multiplication, encryption and decryption of Elliptic
and Hyperelliptic curve cryptosystems to study the relative
performance of these cryptosystems.
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1. INTRODUCTION

Digital communication nowadays mainly based on Public-Key
Cryptosystems because they allow secure communications over
insecure channels without prior exchange of a secret key and
they also enable digital signatures. Majority of the products and
standards that employ public key cryptography for encryption
and digital signatures use RSA. But RSA is not suitable for
constrained devices because of long key length. Curve based
cryptography are attractive to designers of embedded hardware
since they require smaller fields than RSA to attain the same
security level. This fact makes curve based cryptography
namely ECC and HECC a very good choice for platforms with
limited resources. The purpose of this paper is the performance
study of ECC and HECC, which are based on curve arithmetic
and offer significant benefits over RSA when used in
constrained environment such as smart card.

Neal Koblitz [1] and Victor Miller proposed Elliptic Curves
Cryptography (ECC) based on the discrete logarithm problem on
elliptic curves over finite fields in mid-1980s. Subsequently
Hyperelliptic Curve Cryptography (HECC) was proposed by
Koblitz [2] in 1989 based on the discrete logarithm problem on
the Jacobian of hyperelliptic curves over finite fields. For HECC
(or ECC) two types of fields are being considered i.e. binary and
prime fields for practical implementations on both types of
software platforms like general purpose or embedded processors
and hardware devices, such as FPGAs.

ECC and HECC seem to be specially promising for the use in
embedded environments where memory and speed is
constrained. The suitability for constrained systems results from

public key schemes, e.g. RSA [Rivest et al. 1978] or DL based
systems. It is widely accepted that for most cryptographic
applications based on EC or HEC, the necessary group order is
of size at least ~ 2%, Thus, for HECC over F, we will need at
least g. log,q ~ 2%° where g is the genus of the curve.
Therefore, we will need a field order q ~ 2*°for genus 4,
q ~ 25* for genus 3, and q ~ 2% for genus 2 HEC. Hence, one
needs 40-bits to 80-bit long operands to compute the group
operations for these curves. In the case of ECC we have to work
with operand lengths of approximately 160 bits whereas in the
case of RSA, the operands will be approximately 1024 bits in
order to achieve the same security. ECC and HECC are
therefore more suitable for implementation in the constrained
platforms like the PDA, smartcard, handheld devices etc.

While implementing an ECC/ HECC system, several choices are
to be made. These include selection of Protocols & Standards,
choice of curves, choice of coordinates for group operations,
representation of a scalar multiplication algorithm, finite field
operations like addition, multiplication etc. Selection of the
factors can be influenced by application platform, constraints of
particular computing environment like processing speed, code
size, memory size etc and communicational constraints like
bandwidth, response time [3].

In this paper we have explored in details the main operations
like scalar multiplication, group operations on Jacobian, finite
field operations etc which are the prime steps for efficient
implementation of ECC / HECC. We have implemented ECC
(genus 1) and HECC (genus 2) on different binary fields and
also compare the scalar multiplication, encryption and
decryption timing of ECC / HECC.

The rest of the Paper is organized as follows:

In Section 2, Mathematical Background is discussed; Section 3
provides hierarchy of operations of Curve based Cryptography;
Section 4 presents Implementation Results; Finally we conclude
the paper in Section 5.

2. MATHEMATICAL BACKGROUND
2.1  Arithmetic of  Elliptic  Curve
Cryptography
All elliptic curves can be written in Weierstrass form [4] as
follows:

E:y?+ aixy +azy = x3+ a,x? +ax + ag
Where the coefficients a,, a,, as, a,,ase K and 4 # 0, where
A the discriminant of E.
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Let F, denote a finite field of characteristic p, i.e. ¢ = pd with
p prime. It is possible to define the notion of an elliptic curve
over any field by giving a general equation.
Case-l. If p =2 then an elliptic curve E defined over E, is
given by an equation

y2+ xy = x5+ ax?+ b,
where a,b e K and b # 0. For every field K containing F, (so
in particular for K = ;) one considers the set
E(K):= {(x,y)eK X K|y? +xy = x3+ax? + b} U {x}.
This curve is non supersingular curve and discriminant of E is
A =h.
Case-1l. If p > 2 then an elliptic curve E defined over F is
given by an equation y? = x3 + ax + b, where a,b €K and
4a3 + 27b? # 0. For every field K containing F, one now
considers the set

EK) = {(x,y)eK x K |y? = x3+ax + b} U {c0}.
Here with this definition, we consider the elliptic curves where
discriminant of E is 4 = —16(4a®+ 27b%). We have
considered this curve equation for our implementation.
The set E(K) of rational points on E defined over a field K is an
abelian group, where the operation (generally denoted
additively) is defined by the well-known law of chord and
tangent, and the identity element is the special point o, called
the point at infinity.
2.2 Arithmetic of Hyperelliptic Curve
Cryptography
We can define hyperelliptic curves as an algebraic curve Let F
be a finite field, and let F be the algebraic closure of F [5]. A
hyperelliptic curve C of genus g > 1over F is the set of
solutions (u, v) € FXF to the equation C: v?> + h(w)v = f(u).
The polynomial h(u) e F[u] is of degree at most g and f(u) €
F[u] is a monic polynomial of degree 2g + 1. For odd
characteristic it suffices to let h(u) = 0 and to have f(u) square
free. If no point on the curve over the algebraic closure F of F

satisfies both partial ~derivatives 2v + h(u) = 0 and
h'(w)v - f'(w) = 0, then the curve is said to be non-singular.
A divisor D = Xm;P;,m;e Z, is a finite formal sum of F

points. Its degree is the sum of the coefficients >'m;. The set of
all divisors form an Abelian group denoted by D(C). The set of
degree zero divisors D° forms a subgroup of D(C).

Every rational function consisting of the formal sum of the poles

and zeros of the function on the curve C gives rise to a divisor of
degree zero. Such divisors are called principal and the set of all
principal divisors is denoted by P. If D;, D, e D° then we write
D, ~D, if D, — D, € P; D; and D, are said to be equivalent
divisors. Now, we can define the Jacobian of C as the quotient
group D°/P [6].

If we want to define the Jacobian over F, denoted by J.(F), we
say that a divisor D = Ym,P; is defined over F if D = Ym;P{

is equal to D for all automorphisms o of F over F . Cantor

shows that each element of the Jacobian can be represented in
the form
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D =3I, P;- r.oc such that for all i #j, P; and P; are not
symmetric points. Such a divisor is called a semi-reduced
divisor. Each element of the Jacobian can be represented
uniquely by such a divisor, subject to r <g. Such divisors are
referred to as reduced divisors. We use the reduced divisor in
addition of Jc.

3. HIERARCHY OF OPERATIONS OF

CURVE BASED CRYPTOGRAPHY

The hierarchy of operations for ECC and HECC, can be divided
in three levels as shown in Figure 1. The highest level shows the
main operation in any curve-based primitive that is the scalar
multiplication. At the next level are the point/divisor group
operations in different co-ordinates. The lowest level consists of
finite field operations such as addition, subtraction,
multiplication and inversion required to perform the group
operations. The main difference between ECC and HECC is in
group operation because these consist of different sequences of
operations. Unlike elliptic curves, the points on the hyperelliptic
curve do not form a group. The additive group on which the
cryptographic primitives are implemented is the divisor class
group. Each element of this group is a reduced divisor. HECC
are a bit more complex when compared with the ECC point
operation, but they use shorter operands.

3.1 Scalar Multiplication of curves

Fast scalar multiplication is crucial in some environments such
as in hand-held devices with low computational power.
Different efficient scalar multiplication methods in elliptic
curves like Windows-NAF, Fixed-Base comb, Montgomery
point multiplication etc are available. Efficient techniques for
High Speed scalar multiplication is found in [7]. Some efficient
and innovative methodology for accelerating the elliptic curve
point formulae over prime fields are proposed in [8] [9]. We
proposed a secure access of smart cards using elliptic curve
cryptography in [10]. In cases of HECC the main operations
such as key agreement and signing/verifying involve scalar
multiplication using a large integer. Any algorithm for scalar
multiplication requires an efficient method of performing
arithmetic in the Jacobian. This arithmetic essentially consists of
two operations - addition and doubling of divisors. There has
been extensive research to obtain cost effective ‘explicit
formula’ for performing addition and doubling on a HEC over
F,".For elliptic/ hyperelliptic curves, most useful method for
scalar multiplication is using Montgomery’s ladder as it can
resist side channel attacks.
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Scalar Multiplication on Curves

Binary Curves GF(2"m)

Prime curves GF(p)

Coordinates Coordinates

Binary Addition Subtraction Windows Comb Montogomery’s
method method method method method
Point / Divisor group operations
Addition Doubling
Affine Projective Jacobians

Coordinates

Finite Field operations

Multiplication Addition

Inversion

Fig 1: Hierarchy of operations of curve based cryptosystems

We have explored the scalar multiplication cost found in [11] for
different co-ordinate systems which are given in Table 1. From
Table 1, we can say that Affine Coordinate is preferable for
general Addition and Doubling operation.

The first explicit formula for genus 2 proposed by Harley have
been followed by work of Lange [12], [13]. After extensive
research on explicit formula for performing addition and
doubling, Avanzi [14] proposes a software implementation of
genus 2 and 3 hyperelliptic curves over large prime fields. Pelzl
and Wollinger [6],[15],[16] propose a cost effective explicit
formula for genus 2 and 3 curves and give first implementation
of a HEC cryptosystem on an embedded processor. We have
discussed Evolution of Hyperelliptic Curve Cryptosystems in
[17].

3.2 Group operations on a Jacobian

Cantor’s algorithm [18] is used for doing arithmetic in general
hyperelliptic curve which applies to any genus and
characteristic. This transfer the group laws in a sequence of
Composition and Reduction using only polynomial arithmetic.

Group operations on a Jacobian are performed in two steps:
addition of generic divisors and doubling of generic divisors.
Addition of divisor classes means multiplication of ideal classes,
which consists in a composition of the ideals and a first
reduction to a basis of two polynomials. The output of this

algorithm is in semi-reduced form. Then the second algorithm
(reduction) is used to find the unique representative in the class.

Algorithm 1 (Composition)
Input: Dy = [uy,v4], Do = [up,v]. C:¥* + h(x)y = f(x)
Output: D~D; + D, where D = [u,v]
1. Compute d; = gcd(uq, uy) = equq + exuy;
2. Compute d:ng(dl, V1 + v, + h.) = Cldl + Cz(vl + U, + h),
3. Let S1 = (161,52 = (C1€3,53 = Co,
4u = wu,/d?
v = {s;u4Vy + Spuyv; + s3(vv, + f)}/d modu

Algorithm 2 (Reduction)
Input: D = [u, v] semi reduced
Output: D' = [u',v'] reduced with D~ D’
Lletu' = (f —vh—v¥)/u,v = (~h—v)modu';
2.ifdegu’' >gputu=u',v =17
goto step 1;
3. make u" monic.

Harley’s algorithm for genus 2 Curve: Cantor’s algorithm is
slow due to Polynomial arithmetic. The solution is to transform
polynomial operations into field operations (explicit formula) by
considering most frequent cases (occur with probability ~1- O
(2/q)). It was done by Harley in 2000 [19] by using reduced
divisors represented by Mumford’s representation for input and
output divisor classes on genus 2 curves.

20



International Journal of Computer Applications (0975 — 8887)

Volume 24— No.5, June 2011

Table 1: Cost of Addition and Doubling operations in Elliptic and Hyperelliptic Curves

Curves Elliptic Curves Hyperelliptic Curves Hyperelliptic Curves
(defined over Fp) in odd characteristic in even characteristic
Coordinate Addition Doubling Addition Doubling Addition Doubling
System
Affine (A) 1+2M+S 1+2M+2S 1+22M+3S 1+22M+5S 1+22M+3S 1+20M+6S
Projective (P) 12M+2S TM+5S 47M+4S 38M+6S 49M+4S 38M+7S
New co-ordinates 12M+4S 4AM+6S 47TM+7S 34M+7S 48M+4S 37M+6S
(N) (Jacobian (Jacobian
coordinates) coordinates)

3.3 Finite Field operations on curves

Field addition, multiplication, squaring and inversion are the
basis for the group operations on elliptic and hyperelliptic
curves. Adding elements in F," is accomplished by a bitwise
XOR of the components. A field multiplication of a, b € F," can
be accomplished by first multiplying a and b as integers and then
reducing the result modulo p. In the polynomial multiplication
divide and conquer method of Karatsuba- Ofman is adapted [4].
For reducing a binary polynomial obtained by multiplying two
binary polynomials of degree <m — 1, or by squaring a binary
polynomial of degree <m — 1, Barrett’s method for reduction is
one of the popular method for polynomial reduction.
Montgomery’s algorithms for multiplication & reduction is also
found in literature as it is efficient in restricted devices [11]. The
Extended Euclidean Algorithm is applied to calculate inverses
efficiently in F,".

4. IMPLEMENTATION RESULTS

Alfred J.Menezes proposed an elementary introduction of genus
2 HECC and improved the Cantor’s algorithm for adding
Jacobian of hyperelliptic curve in [5]. According to his
proposition, we find a semi reduced divisor D = div(a, b) with
a,b € K[u], such that D~D; + D, where D; = div(a4, b;),

D, = div(a,,b;). A semi reduced divisor D = div(a,b)
defined over a finite field K is taken as input to find out the
(unique) reduced divisor D' = div(a’,b") such that D'~D. We
have considered the hyperelliptic curve C:v? + (u? + u)v =
u® + u3+ 1 of genus 2 over the finite field F,°. The semi-
reduced divisor D will be computed by computing D, + D,.

We have examined the performance of HECC on a PC with Intel
Core 2DUO CPU T6400@2.00GHz with 4GB RAM and
windows vista operating system using jdk1.6. We have
performed scalar multiplication technique (Montgomery’s
algorithms) for Hyperelliptic genus 2 curves (binary fields) in
affine co-ordinates when group orders are
27162,27166,27176, 27182. ECC scalar multiplication (using
binary method) timings are also shown in Table 2 with
hyperelliptic curves timing. EC scalar multiplication have been
done on NIST recommended elliptic curves over F," where
n=163, 233 and 283.

Our result shows that HECC scalar multiplication takes less time
than ECC scalar multiplication and the variation is shown in

Table 2.

Table 2. Timing of scalar multiplication operations in
Elliptic and Hyperelliptic Curves

Curves Field Group Scalar
order | Multiplication (ms)
Hyperelliptic FB 2162 2.12
Curves R 2166 2.40
(genus 2) F,% 2178 2.51
Fzgl o182 2.86
Elliptic I, 218 4.24
Curves F,28 228 8.61
(genus 1) 7,258 228 12.72

Comparison of Scalar Multiplication time of ECC and HECC
are shown in Figure 2.

14

12

10

Bscal-mul

ECC 163 ECC233 ECC283 HECC81HECC83 HECCS8

Fig-2 — Comparison of Scalar Multiplication time of ECC

and HECC

21


mailto:T6400@2.00GHz

International Journal of Computer Applications (0975 — 8887)
Volume 24— No.5, June 2011

Table 3: Comparison of ECC and HECC for equivalent key sizes

Operations (ms) ECC (genus 1) HECC (genus 2)
Field Field Field Field Field Field Field
(Binary field) order order order order order order order
2" 163 27233 2" 283 2781 2783 2788 2791
Encryption 797 882 928 668 893 928 965
Decryption 281 385 400 191 224 257 325

Next we have done experiment for encryption and decryption of
a Text File (File size :899 Bytes) using elliptic and hyperelliptic
curve cryptography to compare the timings. The results are
enlisted in Table 3.

Comparison of Encryption and Decryption time of ECC and
HECC are shown in Figure 3.
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@Decryption

300 1
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ECC-
233

ECC- HECC- HECC- HECC- HECC-
283 81 83 88 91

Fig-3 — Comparison of Encryption and Decryption time of
ECC and HECC

Our results show that

e Both ECC and HECC take more time in encryption process
compared to decryption process.

e Both ECC and HECC encryption and decryption time
increases in higher field orders compared to lower field
orders.

e HECC decryption time is relatively less compared to ECC
decryption time for same security level.

5. CONCLUSION

Curve based Cryptosystem like ECC and HECC are extensively
used for all kinds of embedded processor architectures, where
resources such as storage, time or power are constrained. This
paper explores in details main operations like scalar
multiplication, group operations etc which are the prime steps
for efficient implementation of ECC/ HECC. We have
implemented ECC (genus 1) and HECC (genus 2) on different
binary fields. We observe that genus 2 HECC is faster than ECC
in the experiment to study the relative performance of elliptic

curve and hyperelliptic curves cryptosystem. In our view, genus
2 HECC has the advantage over ECC in constrained
environment due to its short operand size and it takes less
processing time for basic operations like encryption, decryption.
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