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ABSTRACT 

Curve based cryptography are preferred for embedded hardware 

since they require shorter operand size than RSA to attain the 

same security level. So ECC and HECC are more suitable in 

constrained environment such as smart cards if we can select 

suitable curves and efficient scalar multiplication technique to 

speed up arithmetic on the curve. With this in view, this paper 

explores in details the main operations like scalar multiplication, 

group operations on Jacobian, finite field operations etc which 

are the prime steps for efficient implementation of ECC / 

HECC. We also have compared the timings of main operations 

like scalar multiplication, encryption and decryption of Elliptic 

and Hyperelliptic curve cryptosystems to study the relative 

performance of these cryptosystems. 
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1. INTRODUCTION 
Digital communication nowadays mainly based on Public-Key 

Cryptosystems because they allow secure communications over 

insecure channels without prior exchange of a secret key and 

they also enable digital signatures. Majority of the products and 

standards that employ public key cryptography for encryption 

and digital signatures use RSA. But RSA is not suitable for 

constrained devices because of long key length. Curve based 

cryptography are attractive to designers of embedded hardware 

since they require smaller fields than RSA to attain the same 

security level.  This fact makes curve based cryptography 

namely ECC and HECC a very good choice for platforms with 

limited resources. The purpose of this paper is the performance 

study of ECC and HECC, which are based on curve arithmetic 

and offer significant benefits over RSA when used in 

constrained environment such as smart card.  

Neal Koblitz [1] and Victor Miller proposed Elliptic Curves 

Cryptography (ECC) based on the discrete logarithm problem on 

elliptic curves over finite fields in mid-1980s. Subsequently 

Hyperelliptic Curve Cryptography (HECC) was proposed by 

Koblitz [2] in 1989 based on the discrete logarithm problem on 

the Jacobian of hyperelliptic curves over finite fields. For HECC 

(or ECC) two types of fields are being considered i.e. binary and 

prime fields for practical implementations on both types of 

software platforms like general purpose or embedded processors 

and hardware devices, such as FPGAs. 

ECC and HECC seem to be specially promising for the use in 

embedded environments where memory and speed is 

constrained. The suitability for constrained systems results from 

the short operand sizes of ECC and HECC compared to other 

public key schemes, e.g. RSA [Rivest et al. 1978] or DL based 

systems. It is widely accepted that for most cryptographic 

applications based on EC or HEC, the necessary group order is 

of size at least . Thus, for HECC over Fq we will need at 

least g. log2q ≈ 2160, where g is the genus of the curve. 

Therefore, we will need a field order for genus 4,       

 for genus 3, and q ≈ 280 for genus 2 HEC. Hence, one 

needs 40-bits to 80-bit long operands to compute the group 

operations for these curves. In the case of ECC we have to work 

with operand lengths of approximately 160 bits whereas in the 

case of RSA, the operands will be approximately 1024 bits in 

order to achieve the same security. ECC and HECC are 

therefore more suitable for implementation in the constrained 

platforms like the PDA, smartcard, handheld devices etc. 

While implementing an ECC/ HECC system, several choices are 

to be made. These include selection of Protocols  & Standards, 

choice of curves, choice of coordinates for group operations, 

representation of a scalar multiplication algorithm, finite field 

operations like addition, multiplication etc. Selection of the 

factors can be influenced by application platform, constraints of 

particular computing environment like processing speed, code 

size, memory size etc and communicational constraints like 

bandwidth, response time [3].  

In this paper we have explored in details the main operations 

like scalar multiplication, group operations on Jacobian, finite 

field operations etc which are the prime steps for efficient 

implementation of ECC / HECC. We have implemented  ECC 

(genus 1) and   HECC (genus 2) on  different binary fields and 

also compare the scalar multiplication, encryption and 

decryption timing of ECC / HECC. 

The rest of the Paper is organized as follows: 

 In Section 2, Mathematical Background is discussed; Section 3 

provides hierarchy of operations of Curve based Cryptography; 

Section 4 presents Implementation Results; Finally we conclude 

the paper in Section 5. 

2. MATHEMATICAL BACKGROUND 
2.1 Arithmetic of Elliptic Curve 

Cryptography 
All elliptic curves can be written in Weierstrass form [4] as 

follows:  

  

Where the coefficients  and , where 

 the discriminant of .  
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Let q denote a finite field of characteristic p, i.e.  with 

prime. It is possible to define the notion of an elliptic curve 

over any field by giving a general equation.   

Case-I.  If  then an elliptic curve E defined over q is 

given by an equation 

 ,  

where  and  For every field K containing q (so 

in particular for  q) one considers the set  

.  

This curve is non supersingular curve and discriminant of  is 

.  

Case-II.  If  then an elliptic curve  defined over  q is 

given by an equation , where  and 

 For every field  containing q one now 

considers the set 

    

Here with this definition, we consider the elliptic curves where 

discriminant of E is . We have 

considered this curve equation for our implementation.  

The set  of rational points on  defined over a field  is an 

abelian group, where the operation (generally denoted 

additively) is defined by the well-known law of chord and 

tangent, and the identity element is the special point ∞, called 

the point at infinity. 

2.2 Arithmetic of Hyperelliptic Curve 

Cryptography 
We can define hyperelliptic curves as an algebraic curve Let  

be a finite field, and let  be the algebraic closure of  [5]. A 

hyperelliptic curve  of genus over  is the set of 

solutions  to the equation . 

The polynomial   is of degree at most g and   

 is a monic polynomial of degree . For odd 

characteristic it suffices to let  and to have f(u) square 

free. If no point on the curve over the algebraic closure of 

satisfies both partial derivatives  and 

– , then the curve is said to be non-singular. 

A divisor   , is a finite formal sum of 

points. Its degree is the sum of the coefficients . The set of 

all divisors form an Abelian group denoted by . The set of 

degree zero divisors  forms a subgroup of . 

Every rational function consisting of the formal sum of the poles 

and zeros of the function on the curve  gives rise to a divisor of 

degree zero. Such divisors are called principal and the set of all 

principal divisors is denoted by . If    then we write 

 if   ;  and are said to be equivalent 

divisors. Now, we can define the Jacobian of  as the quotient 

group  [6]. 

If we want to define the Jacobian over , denoted by C( ), we 

say that a divisor  is defined over  if   

is equal to  for all automorphisms  of over . Cantor 

shows that each element of the Jacobian can be represented in 

the form  

 –  such that for all ,  and  are not 

symmetric points. Such a divisor is called a semi-reduced 

divisor. Each element of the Jacobian can be represented 

uniquely by such a divisor, subject to . Such divisors are 

referred to as reduced divisors. We use the reduced divisor in 

addition of C.  

3. HIERARCHY OF OPERATIONS OF 

CURVE BASED CRYPTOGRAPHY 
The hierarchy of operations for ECC and HECC, can be divided 

in three levels as shown in Figure 1. The highest level shows the 

main operation in any curve-based primitive that is the scalar 

multiplication. At the next level are the point/divisor group 

operations in different co-ordinates. The lowest level consists of 

finite field operations such as addition, subtraction, 

multiplication and inversion required to perform the group 

operations. The main difference between ECC and HECC is in 

group operation because these consist of different sequences of 

operations. Unlike elliptic curves, the points on the hyperelliptic 

curve do not form a group. The additive group on which the 

cryptographic primitives are implemented is the divisor class 

group. Each element of this group is a reduced divisor. HECC 

are a bit more complex when compared with the ECC point 

operation, but they use shorter operands.  

3.1   Scalar Multiplication of curves 
Fast scalar multiplication is crucial in some environments such 

as in hand-held devices with low computational power. 

Different efficient scalar multiplication methods in elliptic 

curves like Windows-NAF, Fixed-Base comb, Montgomery 

point multiplication etc are available. Efficient techniques for 

High Speed scalar multiplication is found in [7]. Some efficient 

and innovative methodology for accelerating the elliptic curve 

point formulae over prime fields are proposed in [8] [9]. We 

proposed a secure access of smart cards using elliptic curve 

cryptography in [10]. In cases of HECC the main operations 

such as key agreement and signing/verifying involve scalar 

multiplication using a large integer. Any algorithm for scalar 

multiplication requires an efficient method of performing 

arithmetic in the Jacobian. This arithmetic essentially consists of 

two operations - addition and doubling of divisors. There has 

been extensive research to obtain cost effective „explicit 

formula‟ for performing addition and doubling on a HEC over 

2
n.For elliptic/ hyperelliptic curves, most useful method for 

scalar multiplication is using Montgomery‟s ladder as it can 

resist side channel attacks.  
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Fig 1: Hierarchy of operations of curve based cryptosystems 

 

We have explored the scalar multiplication cost found in [11] for 

different co-ordinate systems which are given in Table 1. From 

Table 1, we can say that Affine Coordinate is preferable for 

general Addition and Doubling operation.  

The first explicit formula for genus 2 proposed by Harley have 

been followed by work of Lange [12], [13]. After extensive 

research on explicit formula for performing addition and 

doubling, Avanzi [14] proposes a software implementation of 

genus 2 and 3 hyperelliptic curves over large prime fields. Pelzl 

and Wollinger [6],[15],[16] propose a cost effective explicit 

formula for genus 2 and 3 curves and give first implementation 

of a HEC cryptosystem on an embedded processor. We have 

discussed Evolution of Hyperelliptic Curve Cryptosystems in 

[17]. 

3.2  Group operations on a Jacobian 
Cantor‟s algorithm [18] is used for doing arithmetic in general 

hyperelliptic curve which applies to any genus and 

characteristic. This transfer the group laws in a sequence of 

Composition and Reduction using only polynomial arithmetic.  

Group operations on a Jacobian are performed in two steps: 

addition of generic divisors and doubling of generic divisors. 

Addition of divisor classes means multiplication of ideal classes, 

which consists in a composition of the ideals and a first 

reduction to a basis of two polynomials. The output of this 

algorithm is in semi-reduced form. Then the second algorithm 

(reduction) is used to find the unique representative in the class.  

Algorithm 1 (Composition)  

Input: , .   

Output:  where   

1. Compute  gcd  ;  

2. Compute =gcd ;  

3. Let ;  

4. ;  

     
                                                

Algorithm 2 (Reduction)  

Input:   semi reduced  

Output:   reduced with   

1. let , ;  

2. if  put ,  ;  

    goto step 1;  

3. make  monic.  

  

Harley’s algorithm for genus 2 Curve: Cantor‟s algorithm is 

slow due to Polynomial arithmetic. The solution is to transform 

polynomial operations into field operations (explicit formula) by 

considering most frequent cases (occur with probability ~1- O 

(1/q)). It was done by Harley in 2000 [19] by using reduced 

divisors represented by Mumford‟s representation for input and 

output divisor classes on genus 2 curves. 

Scalar Multiplication on Curves 

Comb   

method 

Windows 

method 

Binary 

method 

Montogomery‟s 

method 

Point / Divisor group operations 

Binary Curves  Prime curves   

Addition Subtraction 

method 

Finite Field operations 

Multiplication Addition Inversion 

Affine 

Coordinates 

Projective 

Coordinates 

Jacobians 

Coordinates 

Addition Doubling 
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Table 1: Cost of Addition and Doubling operations in Elliptic and Hyperelliptic Curves 

 

Curves  Elliptic Curves  

(defined over Fp) 

Hyperelliptic Curves 

  in odd characteristic  

Hyperelliptic Curves 

 in even characteristic  

Coordinate 

System  

Addition Doubling Addition  Doubling  Addition  Doubling  

Affine (A)  I+2M+S  I+2M+2S  I+22M+3S  I+22M+5S  I+22M+3S  I+20M+6S  

Projective (P)  12M+2S  7M+5S  47M+4S  38M+6S  49M+4S  38M+7S  

New co-ordinates 

(N)  

12M+4S 

(Jacobian 

coordinates)  

4M+6S 

(Jacobian 

coordinates)  

47M+7S  34M+7S  48M+4S  37M+6S  

 

3.3  Finite Field operations on curves 
Field addition, multiplication, squaring and inversion are the 

basis for the group operations on elliptic and hyperelliptic 

curves. Adding elements in F2
n is  accomplished by a bitwise 

XOR of the components. A field multiplication of  2
n
 can 

be accomplished by first multiplying a and b as integers and then 

reducing the result modulo p. In the polynomial multiplication 

divide and conquer method of Karatsuba- Ofman is adapted [4]. 

For reducing a binary polynomial obtained by multiplying two 

binary polynomials of degree , or by squaring a binary 

polynomial of degree , Barrett‟s method for reduction is 

one of the popular method for polynomial reduction. 

Montgomery‟s algorithms for multiplication & reduction is also 

found in literature as it is efficient in restricted devices [11]. The 

Extended Euclidean Algorithm is applied to calculate inverses 

efficiently in 2
n. 

4. IMPLEMENTATION RESULTS 
Alfred J.Menezes proposed an elementary introduction of genus 

2 HECC and improved the Cantor‟s algorithm for adding 

Jacobian of hyperelliptic curve in [5]. According to his 

proposition, we find a semi reduced divisor  with 

, such that  where ,  

. A semi reduced divisor  

defined over a finite field  is taken as input to find out the 

(unique) reduced divisor  such that . We 

have considered the hyperelliptic curve 

 1 of genus 2 over the finite field 2
5.  The semi-

reduced divisor D will be computed by computing . 

We have examined the performance of HECC on a PC with Intel 

Core 2DUO CPU T6400@2.00GHz with 4GB RAM and 

windows vista operating system using jdk1.6. We have 

performed scalar multiplication technique (Montgomery‟s 

algorithms)  for Hyperelliptic genus 2 curves (binary fields) in 

affine co-ordinates when group orders are 

, 2^182. ECC scalar multiplication (using 

binary method) timings are also shown in Table 2 with 

hyperelliptic curves timing. EC scalar multiplication have been 

done on NIST recommended elliptic curves over 2
n where 

n=163, 233 and 283. 

Our result shows that HECC scalar multiplication takes less time 

than ECC scalar multiplication and the variation is shown in 

Table 2. 

Table 2. Timing of scalar multiplication operations in 

Elliptic and Hyperelliptic Curves 

   Curves 

 

Field  Group 

order 

Scalar 

Multiplication (ms) 

Hyperelliptic 

Curves 

(genus 2) 

2
81 

2
83 

2
88 

2
91 

2162 

2166 

2176 

2182 

2.12 

2.40 

2.51 

2.86 

 Elliptic 

Curves 

(genus 1) 

2
163 

2
233 

2
283 

2163 

2233 

2283 

4.24 

8.61 

12.72 

 

Comparison of Scalar Multiplication time of ECC and HECC 

are shown in Figure 2. 

 

 

Fig-2 – Comparison of Scalar Multiplication time of ECC 

and HECC 
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Table 3: Comparison of ECC and HECC for equivalent key sizes 

Operations (ms) 

 

(Binary field) 

 

ECC (genus 1) HECC (genus 2) 

Field 

order 

 2^ 163 

Field 

order 

2^233 

Field 

order 

 2^ 283 

Field 

order 

2^81 

Field 

order 

2^83 

Field 

order 

2^88 

Field 

order 

2^91 

Encryption 797 882 928 668 893 928 965 

Decryption 281 385 400 191 224 257 325 

 

Next we have done experiment for encryption and decryption of 

a Text File (File size :899 Bytes) using elliptic and hyperelliptic 

curve cryptography to compare the timings. The results are 

enlisted in Table 3. 

Comparison of Encryption and Decryption time of ECC and 

HECC are shown in Figure 3. 

Fig-3 – Comparison of Encryption and Decryption time of 

ECC and HECC 

 

Our results show that  

 Both ECC and HECC take more time in encryption process 

compared to decryption process. 

 Both ECC and HECC encryption and decryption time 

increases in higher field orders compared to lower field 

orders. 

 HECC decryption time is relatively less compared to ECC 

decryption time for same security level. 

5.  CONCLUSION 
Curve based Cryptosystem like ECC and HECC are extensively 

used for all kinds of embedded processor architectures, where 

resources such as storage, time or power are constrained. This 

paper explores in details main operations like scalar 

multiplication, group operations etc which are the prime steps 

for efficient implementation of ECC/ HECC. We have 

implemented  ECC (genus 1) and   HECC (genus 2) on  different 

binary fields. We observe that genus 2 HECC is faster than ECC 

in the experiment to study the relative performance of elliptic 

curve and hyperelliptic curves cryptosystem. In our view, genus 

2 HECC has the advantage over ECC in constrained 

environment due to its short operand size and it takes less 

processing time for basic operations like encryption, decryption. 
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