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ABSTRACT 
The Electroencephalogram (EEG) is a biological signal that 

represents the electrical activity of the brain. However, the 

presence of artifacts like electro-oculogram (EOG), 

Electrocardiogram (ECG), electromyogram (EMG) and power-

line noise in the EEG signal is a major problem in the study of 

brain potentials. Hence, these superfluous signals are needed to 

be removed. There are various methods for removal of artifacts. 

This paper discusses a wavelet-based approach for correcting the 

artifacts generated by eye blinks, eyeball movements and facial 

muscle movements in EEG. 
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1. INTRODUCTION 
Electroencephalogram (EEG) is a bioelectric brain activity used 

as an important tool by physicians for studying the functional 

state of the brain and for diagnosing certain neurophysiologic 

states and disorders.  It is also used as a non-invasive approach 

for research in the study of neurophysiology. The presence of 

physiological artifacts such as eye blinks, muscular movement, 

and cardiac pulses in EEG recordings obscure the underlying 

processes and makes analysis problematic. Eye movement 

produces electrical activity the EOG which is strong enough to 

be clearly visible in the EEG [7, 8]. The EOG reflects the 

potential difference between the cornea and the retina which 

changes during eye movement. Another common artifact is 

caused by eyelid movement i.e. eye blinks which also influences 

the corneal-retinal potential difference. The blinking artifact 

usually produces a more abruptly changing waveform than eye 

movement, and, accordingly, the blinking artifact contains more 

high-frequency components. . Eye-blinks and movement of the 

eyeballs produce electrical signals that are collectively known as 

Ocular Artifacts (OA)[3]. Another common artifact caused by 

electrical activity of contracting muscles, measured on the body 

surface by the EMG. This type of artifact is primarily 

encountered when the patient is awake and occurs during 

swallowing, grimacing, jaw clenching, frowning, chewing, 

talking, sucking, and hiccupping. These artifacts are often called 

as Muscular Artifacts (MA). These are of the order of milli-volts 

and they contaminate the EEG [9, 10] signals which are of the 

order of micro-volts. The frequency range of EEG signal is 0 to 

64 Hz and the OA occur within the range of 0 to 16 Hz and that 

of MA occur in the range of 50 to 500 Hz. If to the wavelet 

based EOG and EMG signals, correction algorithm is applied to 

the entire length of the EEG signal, it results in the threshold of 

both low frequency and high frequency components even in the 

non-OA zones. Due to the overlapping of these artifacts over the 

desired signals, there is a considerable loss of valuable 

background EEG activity. Though the detection of OA and MA 

zones can be done by visual inspection, the OA and MA time 

zones need to be given as input to the EOG and EMG correction 

procedure, which is a laborious process. Hence there is a need 

for automatic detection of artifact zones. This paper discusses a 

method to automatically identify OA and MA zones and 

applying wavelet based adaptive threshold algorithm only to the 

identified OA zones, which avoids the removal of background 

EEG information. Adaptive thresholding applied only to the OA 

and MA zone does not affect the low frequency components in 

the non-OA zones  and high frequency components in the non-

MA zones ,i.e. , it  preserves the shape (waveform) of the EEG 

signal in non-artifact zones which is of very much importance in 

clinical diagnosis.  

2. WAVELETS FOR ANALYZING EEG 

SIGNALS 
A „wavelet‟ is a small waveform which has its energy 

concentrated in time. Wavelet Transforms [1] are used to 

convert a signal into a series of wavelets. The wavelet transform 

is an important tool for analysis of EEG signals. One of the 

primary benefits of the wavelet transform is that it is localized in 

both time and frequency, whereas other classical methods like 

the Fourier transform are localized in frequency, only. 

Moreover, the wavelet transform offers good time resolution for 

low-frequency components and good frequency resolution for 

high-frequency components of the signal being analyzed. It 

overcomes shortcomings of other similar methods, such as the 

short-time Fourier transform, wherein time-frequency 

localization is constant for all frequencies. The result is that a 

wavelet transform can be designed to detect specific signal 

transitions localized in time and frequency. Continuous wavelet 

transform (CoWT) is powerful in singularity detection. A 

discrete and fast implementation of CoWT (generally with real 

valued basis) is known as the standard DWT (Discrete Wavelet 

Transform). With standard DWT, signal has a same data size in 

transform domain and therefore it is a non-redundant transform. 

Standard DWT can be implemented through a simple filter bank 

structure of recursive FIR filters. A very important property; 

Multiresolution Analysis (MRA) allows DWT to view and 

process different signals at various resolution levels. The 

advantages such as non-redundancy, fast and simple 

implementation with digital filters using micro-computers, and 

MRA capability popularized the DWT for signal denoising. 

                 (1) 

The Discrete Wavelet Transform (DWT) means, choosing 

subsets of the scales „j‟ and positions „k‟ of the mother wavelet 

ψ (t).Choosing scales and positions are based on powers of two, 
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which are called dyadic scales and positions ( j and k are 

integers ). Equation (1) shows that, it is possible to build a 

wavelet for any function by dilating a function on ψ (t) with a 

coefficient 2j, and translating the resulting function on a grid 

whose interval is proportional to 2–j. Contracted (compressed) 

versions of the wavelet function match the high-frequency 

components, while dilated (stretched) versions match the low-

frequency components. By correlating the original signal with 

wavelet functions of different sizes, the details of the signal can 

be obtained at several scales. These correlations with the 

different wavelet functions can be arranged in a hierarchical 

scheme called multi-resolution decomposition. The multi-

resolution decomposition algorithm [2] separates the signal into 

“details“at different scales and a coarser representation of the 

signal named “approximation”. 

DWT (Discrete Wavelet Transform), being non-redundant, is a 

very powerful tool for many non-stationary Signal Processing 

applications, but it suffers from three major limitations; 1) shift 

sensitivity, 2) poor directionality, and 3) absence of phase 

information. To reduce these limitations, many researchers 

developed real-valued extensions to the standard DWT such as 

SWT (Stationary Wavelet Transform). The key point is that it 

gives a better approximation than the discrete wavelet transform 

(DWT) since, it is redundant, linear and shift invariant [2]. 

These properties provide the SWT to be realized using a 

recursive algorithm. Therefore, the SWT is very useful 

algorithm for analyzing a linear system. A brief description of 

the SWT is presented here.  

 

Fig 1 

3. METHODOLOGY 
Figure 1 shows the computation of the SWT of a signal x (k), 

where Wj,k and Vj,k are called the detail and the approximation 

coefficients of the SWT. The filters Hj and Gj are the standard 

low pass and high pass wavelet filters, respectively. In the first 

step, the filters H1 and G1 are obtained by up sampling the 

filters using the previous step (i.e. Hj-1 and Gj-1) [6]. The detail 

coefficients Wj,k are equal to the output of the highpass filters 

and similarly the approximation coefficients Vj,k are equal to 

the output of the lowpass filters. According to the time 

frequency properties of the wavelet transform Hj and Gj are a 

bank of ideal narrowband filters. 

The EEG recordings are contaminated by EOG and EMG 

signals. The EOG and EMG signals are non-cortical activities. 

The eye, facial muscles and brain activities have physiologically 

separate sources, so the recorded EEG is a superposition of the 

true EEG and some portion of the EOG signal and EMG signals 

[1]. It can be represented as  

       (2) 

where,  

EEGrec(t )- Recorded EEG which is contaminated signal and 

holds artifacts 

EEGtrue(t)- EEG due to the cortical activity (i.e., Brain activity)  

s.EOG(k )- Propagated ocular artifact due to eye blinks and 

movements, and having impact over the recording site  

t.EMG(K)- Propagated muscular artifact due to eye blinks,  jaw 

clenching, swallowing spit which again reflects over the 

recording site 

EEGtrue(t )-is to be estimated from by efficiently removing 

unwanted artifacts s.EOG(k ) and  t.EMG(K)   and at   the same 

time retaining the EEG activity 

The Algorithm proposed in this paper involves the following 

steps:  

i. Apply stationary wavelet transform to the contaminated EEG 

signals and decompose it up to six levels with Coiflet (Coif5) as 

a basis function. 

ii. Identify the spikes in the contaminated EEG at each level. 

iii. Identify the ocular and muscular artifact zones using 

coefficient of variation. 

iv. Apply de-noising technique (equation 4). To fix the suitable 

threshold value and threshold function for the artifact zones. 

v. Apply inverse stationary wavelet transform to the threshold 

wavelet coefficients to obtain the de-noised EEG signal [11]. 

4. ARTIFACT IDENTIFICATION 
There are several methods to identify automatically the artifact 

zones. When application requires real-time removal of artifacts 

or when calibration trials cannot be conducted owing to various 

constraints, method like ICA, regression becomes unsuitable. 

When accurate detection of these artifacts by singular 

observation of the time or frequency domains fails, wavelet 

transform maintaining the Integrity of the Specifications can be 

used to study the time-frequency maps of the EOG contaminated 

EEG. From the number of „approximate‟ coefficients obtained at 

each level of wavelet decomposition, the approximate 

coefficients in the form aj+1,aj, aj-1 is selected. Normally, every 

spike contains three coefficients. Next spike identification starts 

with aj+1, treated as aj-1and checks the next two coefficients. 

Based on this arrangement, the spikes in the contaminated EEG 

have to be identified. The decomposition level is restricted to 

six, in order to have a reasonable computational complexity. The 

mother wavelet should be chosen in such a way that it better 

approximates and captures the artifacts in the noisy EEG signal. 

Coiflet (Coif5) wavelet has been chosen as the basis function, 

since it resembles the shape of the eye movement [5].  
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5. EOG AND EMG CORRECTION USING 

ADAPTIVE THRESHOLDING OF 

WAVELET COEFFICIENTS  
Wavelet Thresholding, Wavelet Shrinkage, and Non-linear 

Shrinkage are widely used terms for wavelet domain denoising. 

Principally, Donoho et al have developed denoising by 

thresholding in wavelet domain. In wavelet domain, larger 

coefficients correspond to the signal, and smaller ones represent 

mostly noise. The denoised data is obtained by inverse-

transforming the suitably thresholded, or shrunk coefficients. 

Algorithm for denoising is written as 

 Compute i iterations of wavelet transformation on y to 

obtain the transformed vector y. Call the 

approximation portion as l and detail portion as d. 

 Apply the threshold rule to the detail portion d of y.  

The rules will either “shrink” or set 0 values to detail. 

 Rejoin the modified portion with the original portion 

of y  to form a modified transform vector ŷ=[l | d] 

 Compute i iterations of inverse wavelet transformation 

of ŷ to obtain v. The N vector v should be denoised 

version of ĝ. 

 E(||g- ĝ ||)2  is used to determine the effectiveness of  

the denoising method. 

The standard thresholding of wavelet coefficients is governed 

mainly by either „hard‟ or „soft‟ thresholding function [6]. 

The hard thresholding function is given as:  

 

              (3) 

where, w and z are the input and output wavelet coefficients 

respectively. λ is a threshold value selected.  

Similarly, soft thresholding function is given as:  

 

                (4)  

In hard thresholding, the wavelet coefficients (at each level) 

below threshold λ are made zero and coefficients above 

threshold are not changed whereas in soft thresholding, the 

wavelet coefficients are shrunk towards zero by an offset λ. 

Generally soft thresholding gives fewer artifacts and preserves 

the smoothness. The choice of threshold value is very crucial for 

a given signal for denoising. In this proposal, the thresholding 

algorithm employed is Stein's Unbiased Risk Estimate (SURE). 

Donoho et al. introduced various shrinkage rules based on 

different threshold values and thresholding functions such as 

„VisuShrink‟ with fixed universal threshold λ=σ
n2log2

and „another method based on Stein‟s Unbiased Risk Estimator 

(SURE), which is called SUREShrink. SureShrink suppresses 

noise by thresholding the wavelet coefficients. A threshold level 

is assigned to each level by the principle of minimizing the 

SURE threshold estimates. The computational effort of the 

procedure is in the order of N.log(N) as a function of sample 

size N. SureShrink is smoothness adaptive i.e if the unknown 

function contains jumps, the  reconstruction also does and if the 

unknown function has a smooth piece, the reconstruction is as 

smooth as the mother wavelet will allow. 

SureShrink has the following ingredients: 

 Discrete Wavelet Transform of Noisy data. The N 

noisy data are transformed via the discrete wavelet 

transform, to obtain noisy wavelet coefficients (yj,k). 

 Thresholding of Noisy wavelet Coefficients. Let 

ηt(y)=sgn(y)(|y|-t)+ ,which sets to zero data y below t 

in absolute value, and which pulls the other data 

towards the origin by an amount t. The wavelet 

coefficients yj,k are subject to soft threshold with a 

level dependent threshold level t*j. 

 Stein‟s Unbiased Estimate of Risk for Threshold 

Choice. The level-dependent thresholds are arrived at 

by regarding the different resolution levels (different j) 

of the wavelet transform as independent multivariate 

normal estimation problems. Within one level (fixed j) 

one has data yj,k  = wj,k +ε zj,k ,k=0,….,2j-1and one 

wishes to estimate (wj,k)2j-1 k=0. 

 Stein‟s Unbiased Estimate of Risk for θk (t)= ηt(yj,k) 

gives an estimate of the risk for a particular threshold 

value t; minimizing this give a selection of the 

threshold level j. 

Stein‟s theorem gives an alternative way to write the Mean 

Square Error (MSE), which is a method for estimating the error 

in an unbiased fashion. 

In statistics, Stein's unbiased risk estimate (SURE) is an 

unbiased estimator of the mean-squared error of a given 

estimator. In other words, it provides an indication of the 

accuracy of a given estimator. This is important since, in 

deterministic estimation, the true mean-squared error of an 

estimator generally depends on the value of the unknown 

parameter, and thus cannot be determined completely. Then, 

Stein's unbiased risk estimate is given by 

 

(5) 

Where θ is a parameter vector from noisy measurements.       

Here hi(x) is the ith component of the vector h. The importance 

of SURE is that, it is an unbiased estimate of the mean-squared 

error of h(x), i.e. 

                      (6) 

Thus, minimizing SURE can be expected to minimize the MSE. 

Except for the first term in SURE, which is identical for all 

estimators, there is no dependence on the unknown parameter 

θin the expression for SURE above. Thus, it can be manipulated 

(e.g., to determine optimal estimation settings) without 

knowledge of θ. 

6. RESULTS AND DISCUSSION 
In the proposed system three types of artifacts are simulated 

The three different types of artifacts generated here are Eye 

Blink Artifact, Eye Ball movement Artifact and Muscle Artifact, 

which arise due to blinking, clenching or other facial 

expressions  

(1) Eye blink time courses using random noise band-pass 

filtered (FIR) between 1 and 3 Hz were been modeled. 

For the eyeball movement artifacts, random noise 
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band-pass filtered (FIR) between 3and 16 Hz were 

generated.  

(2) Temporal muscle artifacts using random noise band-

pass filtered (FIR) between 20 and 60 Hz were been 

modeled. 

These types of artifacts were produced using Matlab. Applying 

stationary wavelet transforms to the contaminated EEG signals 

and decomposes it up to six levels with Coiflet (Coif5) as a basis 

function. The denoising technique employed at this stage is 

SURE by fixing a threshold value and thresholding function. 

The last stage is to obtain the de-noised EEG signal. Apply 

inverse stationary wavelet transform to the threshold wavelet 

coefficients to obtain the de-noised EEG signal. 

 
  

Fig (2) shows the ‘approximation’ and ‘detail ‘plot for the 

contaminated EEG signal 

 
 

Fig (3) shows the de-noising of EEG signal is carried out by 

using   different combinations of threshold limit, threshold 

function and window sizes. 

 
Fig (4) shows the Power Spectral Density of Contaminated 

signal 

 
Fig (5) shows the Power Spectral density of artifact Free 

signal 

 
 

Fig (6) shows the Frequency correlation plot between noisy 

and De-noised data. 
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Fig (7) shows the Frequency correlation plot between noisy 

and De-noised data. 

Artifacts in EEG signals are considerably reduced using the 

proposed method. The test bed used in our proposal was 

simulated data and for further augmentation, the trial could be 

carried on real time data obtained from hospitals. 

 

7. CONCLUSION 
A method to identify the ocular and muscular artifact spike 

zones through wavelet transform is proposed and SURE 

thresholding is applied to the artifact zones. Adaptive 

thresholding applied only to the artifact zone, does not attenuate 

the low frequency components and also preserves the shape of 

the EEG signal in the non-artifact zones, which is of very much 

importance in clinical diagnosis. The proposed method is to 

minimize the complexity of the work and easily identify the 

artifact zones for removing the artifacts. The metrics used to 

depict the performance in the proposed paper are Spectral Power 

Density and Correlation plots. Suppression of ocular artifacts 

and muscular artifacts proved to be good. It is concluded that the 

proposed method gives less complexity and easier to removal of 

the artifacts with the help of wavelet decomposition and is an 

efficient technique for improving the quality of EEG signals in 

biomedical analysis. Further, this method has been tested over 

simulated data, the same holds good to be applied for real time 

data. 
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