
International Journal of Computer Applications (0975 – 8887)

Volume 24– No.6, June 2011

15

Median Predictor based Data Compression Algorithm for

Wireless Sensor Network

Ashish K. Maurya
Department of Electronics and Computer Engineering

Indian Institute of Technology Roorkee
Roorkee, India

Dinesh Singh
Department of Electronics and Computer Engineering

Indian Institute of Technology Roorkee
Roorkee, India

ABSTRACT

Large scale wireless sensor networks (WSNs) have emerged as the

latest trend in revolutionizing the paradigm of collecting and

processing data in diverse environments. Its advancement is

fueled by development of tiny low cost sensor nodes which are

capable of sensing, processing and transmitting data. Due to the

small size of sensor nodes there are various resource constraints.

It is the severe energy constraints and the limited computing

resources that present the major challenge in converting the vision

of WSNs to reality. In this paper, we propose a simple and

efficient data compression algorithm which is lossless and

particularly suited to the reduced memory and computational

resources of a wireless sensor networks node. The proposed data

compression algorithm gives good compression ratio for highly

correlated data. Simulations for the proposed data compression

algorithm are performed on TOSSIM.

Keywords

Wireless Sensor Network, Data Compression.

1. INTRODUCTION
A wireless sensor network is a large collection of tiny sensor

nodes that contain a sensing unit, a wireless radio transceiver, a

microprocessor and a power unit. Sensor nodes are capable of

performing some processing, gathering information and

communicating with other connected nodes in the network. In a

typical application, a WSN is scattered in a region where it is

meant to collect data through its sensor nodes. Instead of the

conventional methods, WSN deploys a large number of small

nodes which gather data to be interpreted in a distributed manner.

For ease of deployment, sensor devices should be inexpensive,

small, and have a long lifetime, which makes it important to

design protocols, software and solutions to make the most

efficient use of limited resources of energy, computation and

storage in a sensor node [1], [2]. The area of communications and

protocol design for sensor networks has been widely researched in

the past few years, and many solutions have been proposed and

compared.

1.1 Wireless Sensor Network Model
The major components of a typical sensor network are: sensor

nodes, the sensor field, the sink and the task manager. Sensors

nodes or motes are in charge of collecting data and routing this

information back to a sink. A sensor field can be considered as the

area in which the nodes are placed. A sink is a sensor node with

the specific task of receiving, processing and storing data from the

other sensor nodes. The task manager or base station is centralized

point of control within the wireless sensor network, which

extracts information from the network and disseminates control

information back into the network. It also serves as a gateway to

other networks, a powerful data processing/storage centre and an

access point for a human interface [1].

1.2 Data Compression
Data compression [4] is the process of encoding information

using fewer bits than an unencoded representation would use,

through use of specific encoding schemes. Compressed data can

only be understood if the decoding method is known by the

receiver. There are two types Compression techniques: lossless

and lossy. In lossless data compression technique; the

compressed-then-decompressed data is an exact replication of the

original data. WinZip program is an example of lossless

compression technique. In lossy data compression technique, the

decompressed data may be different from the original data. JPEG

is an example of lossy compression technique. Compression is

usually broken into two steps: modeling and coding. Modeling

describes the generation of the input source which is to be

compressed and coding maps symbols from the input alphabet

into compact binary sequences. Some popular coding schemes are

Huffman coding, arithmetic coding, LZW coding.

In this paper, we propose a simple and efficient data compression

algorithm for wireless sensor networks which will save energy by

compressing the size of the data. The algorithm is lossless and

particularly suited to the reduced memory and computational

resources of a wireless sensor node.

2. RELATED WORK
Wireless sensor networks have several resource constraints:

limited power supply, bandwidth for communication, processing

speed, and memory space. One possible way to achieve maximum

utilization of those resources is applying data compression on

sensor data. Existing compression algorithms are not applicable

for sensor networks because of their limited resources. Therefore,

some compression algorithms have been specifically designed for

wireless sensor networks [2], [4].

Hans and Schafer [3] present an overview of lossless data

compression in the context of audio data. Barr and Asanovi´c

show in [4] that the energy required for transmitting a bit can be

equivalent to the energy consumption of a thousand

microcontroller operations. However, their results were acquired

from a Compaq Personal Server handheld, which features 32

megabytes of RAM and 16 kilobytes of cache. This significantly

exceeds the resource constraints on many of today’s mote

platforms.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.6, June 2011

16

Pradhan et al. [5] suggested a framework for distributed

compression, in which he has used joint source and channel

coding that brings about the minimization in the amount of inter-

node communication for compression using both a quantized

source and correlated side information within each individual

node. With the introduction of many application domains like

various kind of sensor networks that are severely energy and

power constrained, the topic of energy efficiency is becoming

more important. Researchers have considered both of the aspects,

data compression as well as energy efficiency.

Zhuang and Li [6] have implemented the compression algorithms

for seismic data. In this paper, the amount of energy reduction due

to the reduction in data after compression has been estimated

while considering only the energy costs of communication

Sadler and Martonsi [7] have described a variation of lossless

LZW algorithm pertaining to the common sensor platforms with

few kilobytes of memory. This version can carry out the

compression of the data block with a length of 528 bytes at a time.

The S-LZW algorithm causes the saving in energy by the factor of

more than 1.5x locally, and over 2.5x as far as the overall network

is concerned, for the tests carried out with the data reprieved from

real sensor networks. However, the evaluation of the system was

made out with delay-tolerant network setting while data was

buffered before being transmitted.

Tsiftes et al. [8] have compared the mechanisms for compressing

code updates to remotely reconfigure nodes. They have proposed

SBZIP algorithm which blends multiple reprocessing with coding

steps. However, the characteristic of the decoder part that can still

be run on memory constrained sensor platforms is maintained

even now. The results show that the saving in energy that could be

notched up over the network is up to 67% when GZIP is used.

The EasiPC packet compression mechanism is proposed in [9] by

JU and Cui. The requisite for this method is that each packet field

is analyzed and classified in advance and then for each category,

we have different compression methods associated. Randomly

changing fields are always transferred uncompressed while

sequence number fields are encoded by difference coding or

length variable coding. Either the difference coding or length

variable coding is used for sensor reading. In addition to the

corresponding transmission delay, the compression gain up to

50% can be achieved by this mechanism due to its distinct feature

of removing redundant information from the packet.

Reinhardt, M Hollick and R. Steinmetz [10] have proposed a

stream oriented compression scheme based compression

technique. In this framework, for efficient data transfer between

the nodes the data compression has been shifted into a dedicated

layer for sensor network.

A different approach has been explored by Marcelloni et al. [11]:

In order to keep the algorithm as simple as possible and to avoid

complex computations on embedded nodes, their solution relies

on a two-phase coding process based on a lookup table of the size

of the analog-digital converter and compresses the raw bits of a

sensor reading. Here, a codeword is a hybrid of unary and binary

codes supplied by an adequate dictionary similar to the one used

for DC coefficient coding in JPEG compression. Since the size of

the dictionary is fixed and encoding is done via mapping, the

algorithm is well suited for on-the-fly compression. However, the

obtainable compression ratio is highly dependent on a good

mapping strategy.

Data compression shrinks raw data down to smaller volumes,

which is desirable for data communication since the compressed

data can require significantly less time and energy to transmit

compared to the raw data. Previous research for data compression

in communication mainly focuses on how to decrease delay or

save required transmission bandwidth. No any algorithm discusses

the energy savings with memory storage savings when sensor

readings are compressed at the originating node.

We propose a simple compression algorithm particularly suited to

the reduced memory and computational resources of a WSN node.

The compression algorithm is lossless. Since the sensor nodes are

deployed under various circumstances, the correlation of data is

unpredictable. Our anticipated goal is to reach good compression

ratio in the high correlated data and low correlated data.

3. THE COMPRESSION ALGORITHM

Model of Proposed algorithm

The Median Predictor based Data Compression (MPDC)

algorithm consists of three phases:

1. Selector: This phase selects three previous values with current

value. Initially, assuming three readings are zero.

2. Median Predictor: It predicts the median value along with

lowest value and highest value among three previous values

selected and calculates the deviation of current value from the

median value.

3. Huffman Coder: It calculates the Huffman code of the

deviation obtains from median predictor which results in

compress data. The basic idea of Huffman coding is to map an

alphabet to a representation for that alphabet, composed of

sequences of bits of variable sizes, so that symbols that occur

frequently have a smaller representation than those that occur

rarely. In this case, the symbols are R + 1 (where, R is the

resolution of the ADC) and the probabilities decrease with the

increase of the values. We have used table of Huffman variable

length codes (table 1) used in Marcelloni et al. [11] algorithm.

Figure 1 describes the block functioning of proposed MPDC

algorithm.

Figure 1 Model of proposed MPDC algorithm

Since the application of sensor nodes is mostly used to report the

status of interested area to users, it is more useful to measure xi

acquired by sensor node. Measure xi is converted to a binary

representation ri on R bits by an ADC, where R is the resolution of

the ADC [11]. For each new acquisition xi, the compression

algorithm predicts the median value among three previous values

and computes the deviation of current value from median.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.6, June 2011

17

Table 1: The Huffman variable length codes [11]

ni si di

0 00 0

1 010 -1,+1

2 011 -3,-2,+2,+3

3 100 -7,…,-4,+4,…,+7

4 101 -15,…,-8,+8,…,+15

5 110 -31,…,-16,+16,…,+31

6 1110 -63,…,-32,+32,…,+63

7 11110 -127,…,-64,+64,…,+127

8 111110 -255,…,-128,+128,…,+255

9 1111110 -511,…,-256,+256,…,+511

10 11111110 -1023,…,-512,+512,…,+1023

11 111111110 -2047,…,-1024,+1024,…,+2047

12 1111111110 -4095,…,-2048,+2048,…,+4095

13 11111111110 -8191,…,-4096,+4096,…,+8191

14 111111111110 -16383,…,-8192,+8192,…,+16383

encode (x, prevArray[], Table)

// x is current value and prevArray[]

contains previous three values

 a = prevArray[0]

 b = prevArray[0]

 c = prevArray[2]

 l = minimum(a,b,c)

 m = median(a,b,c)

 h = maximum(a,b,c)

 IF (l <= x <= h) THEN

 SET set_bit TO ‘0’

 SET pbs TO set_bit

 //pbs is previous bit set

 IF (x >= m)

 SET set_bit TO ‘0’

 SET pbs TO << pbs, set_bit >>

 // Compute Huffman Code

 HC(diff(x,m))

 SET hmc TO HC(diff(x,m))

 //hmc is Huffman Code

 SET final_code TO << pbs, hmc >>

 ELSE

 SET set_bit TO ‘1’

 SET pbs TO << pbs, set_bit >>

 HC(diff(x,m))

 SET hmc TO HC(diff(x,m))

 SET final_code TO << pbs, hmc >>

 ENDIF

 ELSE

 SET set_bit TO ‘0’

 SET pbs TO set_bit

 IF (x > h)

 SET set_bit TO ‘0’

 SET pbs TO << pbs, set_bit >>

 HC(diff(x,h))

 SET hmc TO HC(diff(x,h))

 SET final_code TO << pbs, hmc >>

 ELSE

 SET set_bit TO ‘1’

 SET pbs TO << pbs, set_bit >>

 HC(diff(x,h))

 SET hmc TO HC(diff(x,h))

 SET final_code TO << pbs, hmc >>

 ENDIF

 ENDIF

 RETURN final_code

Figure 2 Pseudo-code of the MPDC encode algorithm

Once final code is generated, it is appended to the bit stream

which forms the compressed version of the sequence of measures

xi. Figure 2 summarizes the algorithm used to encode current

value xi. Here, << pbs, hmc >> denotes the concatenation of pbs

and hmc. The compression algorithm described in figure 2 can be

implemented in a few lines of code and requires only maintaining

the first two columns of Table 1 in memory.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.6, June 2011

18

4. SIMULATION RESULTS
Compression ratio [2] is the performance metric to compute the

performance of data compression algorithm and is defined as:

comp_ratio = 100 * (1 – comp_size / orig_size)

where comp_size and orig_size are, respectively, the size of the

compressed and the uncompressed bit stream.

Simulations were performed on TOSSIM [14], a discrete event

simulator for TinyOS [13] sensor networks.

In this experiment, assuming R = 14 as 14-bit ADC converter is

used and consider samples acquired by a node every 2 minutes

during 48 hours (in total, 1440 samples). Considering that

uncompressed samples are normally represented by 16-bit

unsigned integers. So the original size of uncompressed data =

23040 bits (= 1440*16).

Table 2 summarizes the results obtained by applying the

compression algorithm. We note that, though the compression

algorithm is very simple, it is able to obtain considerable

compression ratios.

Table 2: Results Obtained by applying the proposed compression

algorithm

 Sample1 Sample2 Sample3

orig_size 23040 bits 23040 bits 23040 bits

comp_size 7466 bits 7545 bits 7498 bits

comp_ratio 67.60 % 67.25 % 67.46 %

.

5. CONCLUSIONS
Energy efficiency and reducing memory requirement is a critical

consideration for sensor network applications, such as those used

in surveillance and monitoring. Processing data consumes much

less power than transmitting data in wireless medium, so it is

effective to apply data compression before transmitting data for

reducing total power consumption by a sensor node. In this paper,

we have simulated a lossless data compression algorithm

particularly suited to the reduced storage and computational

resources of a wireless sensor network node. We have simulated

the algorithm on TOSSIM and evaluated the performance of

algorithm on performance metrics compression ratio by

compressing the data at originator node. We obtained the

compression ratio 67.60 %, 67.25 % and 67.46 % for three

samples respectively. The future work may be extended on actual

mote like mica2 mote. The performance of algorithm may be

evaluated on different performance metrics such as saving

memory percentage, execution time etc.

6. REFERENCES
[1] Akyildiz, I.F.; Weilian Su; Sankarasubramaniam, Y.; Cayirci,

E.;, "A survey on sensor networks," Communications

Magazine, IEEE , vol.40, no.8, pp. 102- 114, Aug 2002.

[2] Kimura, N.; Latifi, S.; , "A survey on data compression in

wireless sensor networks," International Conference on

Information Technology: Coding and Computing (ITCC

2005), vol.2, pp. 8- 13, April 2005

[3] M. Hans and R. W. Schafer, “Lossless compression of digital

audio,” IEEE Signal Processing Magazine, vol.18, no.4, pp.

21–32, July 2001.

[4] Kenneth. C. Barr and Krste. Asanovi´c, “Energy-aware

Lossless Data Compression,” ACM Transactions on

Computer Systems, Vol. 24, No. 3, pp. 250–291, August

2006.

[5] Pradhan S., Kusuma J., and Ramchandran K., “Distributed

Compression in a Dense Microsensor Network,” IEEE

Signal Processing Magazine, vol. 19, no. 2, pp. 51-60, 2002.

[6] Y. Zhang and J. Li, “Efficient seismic response data storage

and transmission using ARX model-based sensor data

compression algorithm,” Earthquake Engineering and

Structural Dynamics, vol. 35, pp. 781–788, 2006.

[7] C. M. Sadler and M. Martonosi, “Data Compression

Algorithms for Energy-Constrained Devices in Delay

Tolerant Networks,” in Proceedings of the 4th International

Conference on Embedded Networked Sensor Systems

(SenSys), 2006.

[8] N. Tsiftes, A. Dunkels, and T. Voigt, “Efficient Sensor

Network Reprogramming through Compression of

Executable Modules,” in Proceedings of the 5th Annual

IEEE Communications Society Conference on Sensor, Mesh

and Ad Hoc Communications and Networks (SECON),

2008.

[9] H. Ju and L. Cui, “EasiPC: A Packet Compression

Mechanism for Embedded WSN,” in Proceedings of the 11th

IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA), 2005

[10] A. Reinhardt, M. Hollick, and R. Steinmetz, “Stream-

oriented Lossless Packet Compression in Wireless Sensor

Networks,” in Proceedings of the Sixth Annual IEEE

Communications Society Conference on Sensor, Mesh and

Ad Hoc Communications and Networks (SECON), 2009.

[11] Francesco Marcelloni and Massimo Vecchio, “A Simple

Algorithm for Data Compression in Wireless Sensor

Networks,” IEEE Communications Letters, Vol. 12, No. 6,

June 2008.

[12] David Gay, Philip Levis, David Culler, Eric Brewer, “nesC

1.2 Language Reference Manual,” August 2005.

[13] Phillip Levis, “TinyOS Programming,” June 28, 2006.

[14] Philip Levis and Nelson Lee, “TOSSIM: A Simulator for

TinyOS Networks,” September 17, 2003.

