International Journal of Computer Applications (0975 — 8887)

Volume 24— No.7, June 2011

On Way to Acquiring Reliability Growth in
Software Systems

Javaid Igbal
Assistant Professor,

P.G Department of Computer
Science

University of Kashmir- North
Campus, India

ABSTRACT

Reliability of a software system has been one of the driving
forces for the various software engineering processes and
methodologies that led to their evolution and sophistication. The
concerns for reliability of a software system surface very early
on during the development phases of the software system. When
it comes to acquisition of reliability, we should not immediately
get model-oriented; instead every minutia of software
development life cycle should be given its due.

This paper outlines the areas where reliability needs to pick up.
This paper underlines the fact that it is only through carefully
controlled and carefully applied software engineering process
that software reliability growth can be achieved. It emphasizes
on the acquisition of reliability of software systems as soon as
the conception phase. We trace the reliability concerns from the
early stage to the fully functional stage. The terms “hard
reliability” and “soft reliability” are used.

General Terms
Software Reliability,
Reliability Growth.

Reliability ~ Acquisition, Software

Keywords
Reliability, Reliability Acquisition, Software system Reliability
Growth, Hard Reliability, Soft Reliability.

1. INTRODUCTION

Owing to the unexpectedly spiraling increase in the size and
complexity of software systems during the past few decades,
software reliability has become even more increasingly
important for such massive systems [2]. Early on, when there
was not so much of focus and concern for reliability of software
systems, the software were “un-structured” and the so-called
“spaghetti” type. However, as the software systems became
ubiquitous, they grew in size, and complexity and this led to the
development of “structured” and “modular” software systems
where the inherent complexity is better coped with. D.L. Parnas
and et al discuss in detail the modularization of complex systems
in [10]. Moreover, the launch of software systems in highly
time-critical and performance-critical applications got the
reliability considerations into limelight in the domain of
software reliability engineering. The process of acquisition of
the reliability growth in any type of software system starts as
early as the design/ architecture phase of the development of the
software system. During design phase, the designer puts a finger
on the “doing” of the software system and thus designs a holistic

Dr. S.M.K.Quadri

Head,

P.G Department of Computer

Science

University of Kashmir-
Hazratbal Campus, India

Tariq Rasool
Lecturer,

P.G Department of Computer
science

Islamic University of Science
and Technology, India

structure of software, for the intended functions to be carried out
as per the blueprint. Starting thinking in terms of the structure of
the software system itself implicitly connotes moving towards
the reliability of the system. It is here that the first treatment to
the inherently existent complexity can be made by an effective
structural design. Every software system has to have some
threshold reliability level in terms of its design and architecture,
and implementation, for it to be called an operational software
system which can be deployed for use. However, depending on
the target functionalities and service specifications of the
software system, the desired levels of reliability may be “hard”
for mission-critical or safety-critical software systems and the
levels of reliability may be “soft” for other types of software
systems where a potential hazard may not be too much
catastrophic. In this direction, much has been done to improve
upon reliability and much more needs to be done.

Off late, the increasing uses of Commercial Off-The-
Shelf Components (COTS), reusable components, and other
types of components have added new dimensions to the domain
of reliability analysis of software systems. Software engineering
started with the traditional function-centered water-fall process
model, went on to more sophisticated data-centered object-
oriented abstractions and one step further to structure-centered
component-based technology which again offers abstractions.
While data collection is very important in the development and
testing of traditional software reliability models. However, in the
case of COTS or Open Source Code, this data may not be
readily available, and the reliability of the software module is
questionable. Thus the domain of Component-Based software
Engineering (CBSE) is an area where reliability analysis has
gained focus. Moreover, Simulation-based approaches to
software reliability analysis have gone down very well with the
software engineering community. Javaid Igbal and Dr. S.M.K.
Quadri discuss in detail the relevance of Simulation for the
better acquisition of Software Reliability in [2].

2. SOFTWARE RELIABILITY AND THE
NEED FOR ITS ACQUISITION AND

GROWTH

Software Reliability is defined as the probability that software
will provide failure-free operation in a fixed environment for a
fixed interval of time [8]. The failure-free operation in the
context of software is interpreted as adherence to its
requirements [12]. It is a function of the software faults and its
operational profile [9], i.e., the inputs to and the use of the
software. Software does not have moving parts and does not

33

physically wear out as hardware, but is does outlive its
usefulness and becomes obsolete [6]. Software reliability marks
the hard-sought performance criterion in an evolving software
process. Software reliability has been shaping the thought-
process in the face of massively-complex software systems
engineering. In such software systems, reliability becomes more
and more volatile. Different factors contribute to the growth in
unreliability of the system. In general, the more the complexity
of a software system, the more is the level of unreliability. Thus,
highly-complex/least-simple software systems are most
unreliable whereas the least-complex/ most-simple software
systems are the most reliable. Thus, an exigent need for the
timely management of the software system arises in terms of the
management of the size, and complexity. With spiraling increase
in the complexity of software systems, performance
considerations became more significant. Structural
specifications need to be very clear. However, even though
some level of unreliability does exist for a software system, the
dynamic aspect of software quality needs to grow even as the
unreliability turns its head on in massively complex systems.
This necessitates a growth in reliability of software system as its
size and complexity accumulate. Reliability Growth helps
measure and predict the improvement of reliability through the
testing process. Reliability growth also represents the reliability
or failure rate of a system as a function of time or the number of
test cases. The practice of building massively-complex software
structures would be undoing the “build process”, if there is no
corresponding growth in reliability of the software system built.

3. MEASURING RELIABILITY

Reliability measures only the probability of failure.
There are different metrics which facilitate the measurement of
the quality characteristic reliability.Reliability can be measured
in terms of fault rates either in the form of the frequency of
faults, or in the form of a time-distribution of faults. Another
way is to measure the Mean Time between Failures (MTBF),
where the average time between software system faults is
calculated. Mean Time to Repair (MTTR) measures the average
time between a fault occurrence, and the restoration of the
system to normal operation and thus measures the
maintainability of the system [12].

MTBF = MTTF + MTTR

International Journal of Computer Applications (0975 — 8887)
Volume 24— No.7, June 2011

specifications, to actual implementation.Thus, reliability is an
“inclusive” attribute throughout the lifecycle of the software
system. Against the backdrop of the introductory section of this
paper, it is obvious that the reliability of a software system
depends on the design methodology adopted, the nature of the
software system vis-a-vis the hardness/softness of operation and
the individual reliability of components and their cumulative
reliability result as well. The design considerations may include
topology, dependency degrees etc. Unlike hardware, software
takes a different fault identification rate with the rate peaking at
integration and testing. Rigorous removal of faults takes place
during testing and continues on a sluggish side during the
operational settings of the software, as the software heads
towards a better reliability level. Operational characteristics may
indicate the levels of reliability achieved. Moreover, the
environmental settings also govern the reliability of the software
system in or other way. To acquire a certain level of reliability,
an accurate software system design needs to be in place and the
behavioral specifications need to be understood.

A modular design helps contain the complexity of the
software by way of increasing the “cohesion” of the modules
while reducing the “coupling” between the modules. Today’s
software engineering standards call for software to be organized
in accordance with a principle known variously as “Information
Hiding,” “Object-Oriented Programming”, “Separation of
Concerns,” “Encapsulation,” “ Data Abstraction,” etc. This
principle is designed to increase the “cohesion” of the modules
while reducing the “coupling” between modules [11].

Requirements

System
Analysis t—-—————- »

testing

Architectural _ Integration
Design < » testing

Quality
Review

Where MTTF is the mean time to failure and is a measure of
how long software is expected to operate properly before a
failure occurs.

4. THE ROAD TO RELIABILITY

When it comes to acquisition of reliability, we should not
immediately get model-oriented; instead every minutia of
software development life cycle should be given its due.
Though, it may appear that reliability considerations are born
only after the birth of software system. In fact, the road to
reliability starts as soon as the development of the software
system starts. It may be noted that the software that is properly
engineered takes the road through a well-structured process from
requirements specification and design, via detailed

Quality
Review

Detailed i i
<) Unit Testing

L

Coding

Figure 1: V-model of Software engineering

34

International Journal of Computer Applications (0975 — 8887)

Volume 24— No.7, June 2011

RETIREMENT
*Transferability,

conversion, migration
«Parallel checkout

Concept
suser needs/objectives
--functionality
--performance
—completeness
—consistency
*Documentation
Standards

OPERATION &

MAINTENANCE
«Integrity of changes
*Regression testing coverage

REQUIREMENTS
*Adherence to Needs
* Architecture
soperational environment

Software

*Ease-of-learning, Ease-of-use

INSTALLATION &CHECKOU
*Operational realism
*Configuration covera
*Interfaces
—-SW to SW

Test

reliability

*Completeness
*Ease of use

DESIGN
*Complexity
*Modularity
sInterfaces
*Expandability

—-SW to *Functional coverage
*Topical Coverage Implementation
«Component Interface | *Complexity
*Performance measure | *Interfaces
*Development stds
*Completeness
*Maintainability

*Timing, Sizing

Figure 2: Quality Factors Impacting Reliability [4], [7]

5. WHAT HELPS ACQUISITION OF

RELIABILITY

As per IEEE[3], [5]: “Software engineering(SE) is the
application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software, and
the study of these approaches; that is, the application of
engineering to software.” Another definition is the establishment
and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on
real machines [1]. The goal of SE is to produce quality software
in a timely, cost effective manner. Against the backdrop of these
definitions, we make the following statement for successful
acquisition of reliability. The successful acquisition of reliability
is assessed in terms of the objective of the system to be
designed, the underlying assumptions made, the requirements
design, the requirements specifications, the architectural design
specification, the specification of the design methodology
adopted, and the use of other benchmark and fitting software

engineering methodologies. It should be clear that the road to
the acquisition of reliability starts with the process of software
product development. Though reliability measures are typically
obtained from testing data, in case of COTS, the better way of
obtaining reliability measures could be from the information
supplied by its supplier. The increased modularization along
with component engineering (development and testing) and then
the integration testing help development and maintenance of
highly reliable software economically, within stipulated time-
schedule. IEEE Std 982.2-1988 includes the diagram in Figure
2, which indicates the relationship of reliability to the different
life cycle phases [4], [7]. Figure 1 shows the V-model of
software engineering.

As is evident from the diagrams in Figure land Figure 2, the
quality attributes permeate the software life cycle from its
conception, via various stages of gestation period, till its
retirement. This also signifies the relevance of reliability
considerations during the early phases of the software

35

development life cycle (SDLC). However, the pertinent
attributes to a particular phase must be properly identified and
assessed as per the time-line of the development process. It may
be noted that many errors introduced/un-prevented at the
requirement specification level may not show up until the final
software product is ready and hence faulty. The role of these
quality attributes becomes more pronounced in case of “hard
reliability software systems”. A coherent focus for acquisition of
hard reliability must especially go to requirements, design,
implementation and test phases of the SDLC. However, the key
to success would be how comprehensively requirements are
analyzed and, of course, tested. The quality assurance activities
ensure that during SDLC, the statement “the right thing at the
right time in the right way” [12] is observed strictly, with the
fundamental focus on the planning activity and the compliance
to them.

6. CONCLUSION

Acquisition of reliability and its growth in a software system
must not be thought of a process attached exclusively to the
debugging phase. In fact, the reliability considerations permeate
the entire software development process. Any decision in any
phase of the life cycle may have a bearing on the reliability of
the software. In fact, the broader domain of quality aspect which
includes the reliability element also, is a companion to all the
phases of software life cycle. They have to go hand-in-hand for
the assurance of quality. As a cautionary note, it would be a
naivety to incorporate reliability consideration after the birth of
software system or after some particular stage of its gestation
period.

7. REFERENCES
[1] Bauer, F.L., Software Engineering, Information Processing,
71, 1972.

[2] Igbal, J, and Quadri, S.M.K.”Software Reliability
Simulation: Process, Approaches and Methodology”.

International Journal of Computer Applications (0975 — 8887)
Volume 24— No.7, June 2011

Global Journal of Computer Science and Technology,
volume 11, issue 8, May 2011.

[3] IEEE Standards Collection: Software Engineering, IEEE
Standard 610.12-1990,IEEE, 1993.

[4] IEEE Standard 982.2-1987 Guide for the Use of Standard
Dictionary of Measures to Produce Reliable Software.

[5] IEEE STD 610.12-1990, IEEE Standard Glossary of
Software Engineering Terminology, IEEE Computer
Society, 1990.

[6] Kitchenham, Barbara, Pfleeger, Shari Lawrence, “Software
Quality: The Elusive Target”. IEEE Software 13, 1
(January 1996) 12-21.

[7] Rosenberg, L., Hammer, T., and Shaw, J. “Software Metrics
and Reliability”. 9th International Symposium on Software
Reliability Engineering, Germany. November 1998.

[8] Musa, J.D., lannino, A., and Okumoto, K., Software
Reliability—Measurement, Prediction, Application. New
York: McGraw Hill, 1987.

[91 Musa, J.D. “Operational Profiles in Software-Reliability
Engineering,” IEEE Software, vol. 10, no. 2, pp. 14-32,
Mar. 1993.

[10] Parnas, D. L., Clements, P.C and Weiss, D.M.(1985)
“Modular Structure of complex Systems”. IEEE
Transactions on Software Engineering, 11, pp 259-266.

[11] Parnas, D. L., Schouwen, J., and Kwan, S., “Evaluation of
Safety-Critical software”. Communications of ACM, June
1990.

[12] Pressman, Roger S., “Software Engineering: A
Practitioner’s Approach”. The McGraw-Hill Companies,
Inc., 1997.

36

